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Chromophore-radical excited state
antiferromagnetic exchange controls the sign of
photoinduced ground state spin polarizationt

Martin L. Kirk, © *2 David A. Shultz,+*° Patrick Hewitt,® Daniel E. Stasiw,§® Ju Chen?
and Art van der Estf*©

A change in the sign of the ground-state electron spin polarization (ESP) is reported in complexes where an
organic radical (nitronylnitroxide, NN) is covalently attached to a donor—acceptor chromophore via two
different meta-phenylene bridges in (bpy)Pt(CAT-m-Ph-NN) (mPh-Pt) and (bpy)Pt(CAT-6-Me-m-Ph-NN) (6-
Me-mPh-Pt) (bpy = 5,5 -di-tert-butyl-2,2'-bipyridine, CAT =
phenylene). These molecules represent a new class of chromophores that can be photoexcited with visible
light to produce an initial exchange-coupled, 3-spin (bpy'~, CAT™" = semiquinone (SQ), and NN), charge-
separated doublet 2S; (S = chromophore excited spin singlet configuration) excited state. Following excitation,
the 2S; state rapidly decays to the ground state by magnetic exchange-mediated enhanced internal

3-tert-butylcatecholate, m-Ph = meta-

conversion via the 2T, (T = chromophore excited spin triplet configuration) state. This process generates
emissive ground state ESP in 6-Me-mPh-Pt while for mPh-Pt the ESP is absorptive. It is proposed that the
emissive polarization in 6-Me-mPh-Pt results from zero-field splitting induced transitions between the
chromophoric 2T, and *T; states, whereas predominant spin—orbit induced transitions between 2T, and low-
energy NN-based states give rise to the absorptive polarization observed for mPh-Pt. The difference in the
sign of the ESP for these molecules is consistent with a smaller excited state T, -1y gap for 6-Me-mPh-Pt
that derives from steric interactions with the 6-methyl group. These steric interactions reduce the excited
state pairwise SQ-NN exchange coupling compared to that in mPh-Pt.

Introduction

Molecular quantum information science (QIS) requires the
synthesis and study of new molecules that can enable the
generation, manipulation, and readout of specifically prepared
quantum states' in order to advance new nanoscale technolo-
gies that include, computing,”® sensing,*” and communica-
tions.® QIS exploits quantum bits, or qubits, that are unlike two-
level classical bits (e.g., binary 0 and 1) since they can be
entangled and exist as superposition states described by linear
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combinations of these 0 and 1 binary representations.”® An
unpaired electron spin (S = 1/2, my +1/2) represents such a two-
level quantum system that can be created with relative ease in
a molecular environment. However, expanding such a system to
include multiple unpaired spins and generating the desired
coherences within the system represents a significant challenge.
Building on our earlier work,**® we have shown that photoex-
citation into the low-energy ligand-to-ligand charge transfer
(LL'CT) bands of bipyridine-metal-catecholate ((bpy)M(CAT))
complexes with M = Pt or Pd provide a convenient way to generate
charge transfer excited states with considerable biradical spin
character.”*>'*” When these molecules are elaborated with
a persistent radical attached to the CAT donor, the LL'CT excited
states can be described as having three localized spin qubits that
possess different pairwise exchange interactions.'®” A particular
benefit of this tripartite entanglement®***° is that when the spins
in the open-shell excited singlet- (S) and triplet (T) states of the
chromophore exchange couple with the radical, two doublet states
(>S; and °Ty) and a quartet state (*T;) result, and magnetic
exchange interactions admix the *S; and °T; states.'” This excited
state exchange mixing effectively mediates an enhanced inter-
system crossing®>* that permits access to the localized high-spin
triplet configuration of the chromophore. The triplet state of the
(bpy)M(CAT) parent chromophore is otherwise inaccessible due to

© 2021 The Author(s). Published by the Royal Society of Chemistry
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non-competitive intersystem crossing (ISC) rates compared to
efficient non-radiative relaxation back to the singlet ground
state.*>®

Chromophores with appended radicals have been used to
provide high-resolution information regarding the nature of
their low-energy excited states,"*>*¢" illustrate how multiple,
pairwise, excited state magnetic exchange interactions influ-
ence photophysical processes,' and highlight how the excited
state chromophore triplet - radical magnetic exchange inter-
action and associated excited state dynamics can affect electron
spin polarization (ESP).'»'%17:2223:2534 Tn most systems of this
type, ESP is a result of the spin selectivity of the transitions
between nearly degenerate *T; and “T, states and, in the
absence of intermolecular collisions, ESP is observed when
these states are relatively long lived. These radical-elaborated
chromophores possess spin-polarized quartet “T; excited
states with lifetimes that compete with or exceed the spin-lattice
relaxation time (7;) of the appended radical, and this effectively
inhibits the transfer of ESP to the electronic ground state.
Although the observation of ground state ESP is rare in glassy
matrices, a few examples are known and they occur via the
reversed quartet mechanism (RQM, Fig. 1).>*3¢

Electron spin polarization,*”** including that generated by
RQM,**?¢ derives from non-Boltzmann mg sublevel populations
(Fig. 1) and can be detected using time resolved electron para-
magnetic resonance (TREPR) spectroscopy as either an
enhanced emissive (Fig. 1A) or absorptive (Fig. 1B) signal. An
emissive TREPR signal via the RQM requires the *T; state to be
higher in energy than *T; (and AEpig ~ kgT where kg is Boltz-
mann's constant and T is temperature). In this case, spin
selective transitions (kqppg, Fig. 1) between the *T; and *T,
states result in an excess population of the higher energy mg =
+1/2 sublevel of the doublet and enhanced emissive ESP.
Conversely, an absorptive TREPR signal via the RQM (Fig. 1B)
requires the “T; quartet state to be lower in energy than the *T,
doublet (and AE ~ kyT). Here, spin selective transitions (kqp/pq,
Fig. 1) between >T; and *T; result in an excess population of the

Reversed Quartet Mechanism
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Fig. 1 Left (A): reversed quartet mechanism (RQM), antiferromagnetic
Jcr. Spin-selective transitions (kqp/pa) between doublet and quartet
result in non-Boltzmann population (red dots) of the doublet mg levels
(non-Boltzmann population of quartet not shown) resulting in
enhanced emissive ESP. Right (B): RQM, ferromagnetic Jcg. Spin-
selective transitions (kqp/pa) between doublet and quartet states result
in non-Boltzmann population (blue dots) of the doublet mg levels
(non-Boltzmann population of quartet not shown) resulting in
enhanced absorptive ESP.
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lower-energy mgy = —1/2 level of the doublet and enhanced
absorptive ESP. This photogenerated >T; ESP can then be
transferred to the ground state if *T; — S, relaxation is faster
than the T, spin relaxation of the appended radical in the %S,
state. A key point of the RQM is that the sign of the exchange
parameter determines the relative energy ordering of the *Ty
and *T; states, and whether the observed ESP will be absorptive
or emissive.***® This mechanism predicts that antiferromag-
netic chromophore-radical exchange (Jcrx <0), with E(’T) <
E("Ty), results in emissive ESP (Fig. 1A), while ferromagnetic
chromophore-radical exchange (Jor >0), with E(*T;) < E(*Ty),
yields absorptive ESP (Fig. 1B).>**¢

Recently, we demonstrated that despite the short *T; excited
state lifetime and absence of intermolecular collisions, strong
ground state ESP can be generated in (bpy)Pt(CAT-m-Ph-NN)
(mPh-Pt, NN = nitronylnitroxide radical).’® The intensity of
the photoinduced ESP in mPh-Pt was also shown to be
dramatically altered by changing the metal ion from Pt to Pd in
what are otherwise identical complexes.* In the present work,
we show that the nature of the ground state ESP is also related
to the magnitude of the excited state chromophore-radical
antiferromagnetic exchange (Jsq-nn (= 2Jcr) Fig. 2A), which can
be controlled by tailored bond torsions that reduce 7t-system
mediated superexchange coupling. Thus the sign of the pho-
togenerated ESP is not determined by changing the sign of Jsqo-
NNy as predicted by the RQM.***¢ Here, changing the magnitude
of the excited state exchange affects how the coupled
chromophore-radical *T;-°T; states interact with localized
states of the radical (e.g., Dnn, Qnn, Vide infia), suggesting a new
mechanism for modulating the sign of ground state ESP.

(Bipyridine)Pt"(catecholate-bridge-
radical) complexes
The (bpy)M(CAT-Ph-NN) chromophoric system (Fig. 2A and

B)"'%'7 offers a synthetically flexible platform to explore
magnetic exchange contributions to both the sign and
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Fig. 2 (A) (Left) ground doublet- (3So/Dg) and LL/CT excited state
manifold. Vertical doublet 2S,(D,) undergoes rapid internal conversion
(kic) to 2T1(D4), which has (bpy)Pt(CAT) triplet character. Nonradiative
decay of the 2T, state (kng) provides the 2Sq ground state with non-
Boltzmann ms populations. (Right) depictions of ground- (?So/Do), and
LL'CT excited states; magnetic exchange coupling parameters, Jsq-ppy
and Jsq-nn defined; Jsq-nn is related to Jeg in Fig. 1. (B) Electronic
absorption spectra (300 K; CH,Cl,), for mPh-Pt (blue line) and 6-Me-
mPh-Pt (red line), indicating TREPR photoexcitation energy relative to
the ~17 000 cm~* 2S4(Dg) — 2S4(Dy) LL'CT transition
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magnitude of the photoinduced ground state ESP. Fig. 2B shows
the virtually identical solution electronic absorption spectra of
mPh-Pt and (bpy)Pt(CAT-6-Me-m-Ph-NN) (6-Me-mPh-Pt), where
the characteristic low-energy CAT(HOMO) — bpy(LUMO)
ligand-to-ligand charge transfer (LL'CT) transitions are
observed at ~17 000 cm ™ '.***57 [nterestingly, localized aryl-NN
7 —7* transitions are also observed in this spectral region,***
but they are obscured in mPh-Pt and 6-Me-mPh-Pt by the more
intense LL'CT band.' Despite the remarkably similar electronic
absorption spectra observed for (bpy)Pt(CAT-bridge-NN)
complexes,” the nature of the magnetic exchange coupling
between spins in the excited states of (bpy)Pt(CAT-bridge-NN)
systems can dramatically affect excited state processes when
compared to the parent (bpy)Pt(CAT) chromophore that lacks
an appended radical.* This was previously exemplified by the
observation of both magnetic circular dichroism (MCD)
activity,”” and a dramatic modulation of excited state lifetimes
in (bpy)Pt(CAT-bridge-NN) molecules.*

Optical excitation into the mPh-Pt and 6-Me-mPh-Pt spin-
allowed *S, — S; LL/CT transition leads to a high degree of
CAT — bpy charge separation, and a bpy'CAT'NN' (ie.,
a bpy’SQ'NN" tri-radical; SQ = semiquinone; hereafter “*” is
omitted) electronic configuration that has *S;, Ty, and *T,
excited states (Fig. 2A and B)."” The cross-conjugated meta-
phenylene bridges in mPh-Pt and 6-Me-mPh-Pt promote an
antiferromagnetic chromophore - radical exchange interaction
Jsqnn, Fig. 2A,% with the primary consequence being that the
>T, state resides at lower energy than the high-spin *T; quartet
excited state (Fig. 1A and 2A). Moreover, the spatial separation
of the unpaired spins in the LL/CT state leads to large differ-
ences in the pairwise magnetic exchange couplings to the NN
radical, which results in mixing of the *S; and °T; states, and
ultrafast enhanced intersystem crossing (EISC)****** from the
%8, to the T, state. Thus, photoexcitation followed by EISC (kic,
Fig. 2A) results in >S, — *S; — T, (Fig. 2A) for both mPh-Pt and
6-Me-mPh-Pt. Fast non-radiative decay (kng, Fig. 2A) of the *T;
state yields the %S, ground state. 67

The effect of bond torsions on excited
state exchange

The key structural difference between mPh-Pt and 6-Me-mPh-Pt
is a single methyl substituent on the meta-phenylene bridge
fragment of 6-Me-mPh-Pt that results in increased CAT-bridge
bond torsion. As seen in Fig. 2B, the CAT-bridge bond torsion
results in modest changes in the LL'CT band by attenuating
CAT-bridge delocalization.” The increased CAT-bridge torsion
reduces the LL'CT excited state SQ-mPh-NN r-overlap relative to
that of mPh-Pt.**** This reduction in m-overlap decreases the
magnitude of Jsq.ny in the LL/CT excited state of 6-Me-mPh-Pt so
that AEp;q(6-Me-mPh-Pt) < AEpq(mPh-Pt) (Fig. 2A). An
experimentally-derived estimate of Jso.nn for the LL/CT excited
state of 6-Me-mPh-Pt is obtained from Jsq.nn in the ground state
biradical ligand of LZnSQ-6-Me-mPh-NN (Fig. 3). The SQ-6-Me-
mPh-NN linkage in LZnSQ-6-Me-mPh-NN is, by analogy, the two-

13706 | Chem. Sci, 2021, 12, 13704-13710

View Article Online

Edge Article
0.03 :
Fit Error
ey Parameter
10 0.0257 Jioanfcm? 4.2 01
£ 0.024 % Biradical  0.899 0.004
;4 TIP 0.002 <10
; 0.0154 R 0.996 NA
£ o5
HiCyZ O

9 0014 /C’/'.Y#
- O Lzl XY %
E - t+Bu
P 0.005 1 =) ~ 5 5

0 +——————r—r—r———r——r—r———r—r—

0 50 100 150 200

Temperature (K)

Fig. 3 Variable-temperature paramagnetic susceptibility data for
LZn(SQ-6-Me-mPh-NN) (L = hydro-tris(cumenyl, methyl-pyrazolyl)
borate), see ESIt for details. The best fit of eqn (2) to the data yields Jsq-
NN = —4 Cmil.

spin donor half of the charge separated LL'CT excited state for
6-Me-mPhPt.

The magnitude of the antiferromagnetic Jsonn mediated by
an unsubstituted m-Ph bridge has previously been determined
from solid state magnetic susceptibility measurements on
LZnSQ-mPh-NN (Jsqxn = —32 cm™').** The same Heisenberg-
Dirac-Van Vleck spin Hamiltonian (eqn (1)) is used here to
describe the exchange split singlet and triplet components of
the LZnSQ-6-Me-mPh-NN ground state. The corresponding
expression for the magnetic susceptibility is given by eqn (2),
which is used to determine the singlet-triplet energy gap (ds_r =
—2Jsqnn) for LZn(SQ-6-Me-mPh-NN). In eqn (2), x is percentage
of the biradical that contributes to the susceptibility, (1 — x) is
the mole fraction of the monoradical impurity, and TIP is the
temperature-independent paramagnetism.*>*

H= —ZJSQ.NN§1§2 (1)
2J5Q-NN
0.5 emu mol™! 6e ksT
Xpara =X 2J5Q-NN
1+ 3e T
+ (1 — x)0.375 emu mol T 4 TIP (2)

The A4g r value that we obtain by fitting eqn (2) to the
magnetic susceptibility data (Fig. 3) for LZn(SQ-6-Me-mPh-NN)
is dsr = 8.0 ecm ™" (Jsonn = —4.0 cm ™), which corresponds to
an 87% decrease in the magnetic exchange coupling relative to
LZn(SQ-mPh-NN).'*** For conjugated systems, the attenuation
of m-type superexchange coupling between SQ and NN is
approximated by the product of the cosine squared of bond
torsion angles for the SQ-bridge and bridge-NN linkages.'®**
Based solely on the differences in SQ-bridge-NN torsion angles,
this is expected to reduce the magnitude of Jsqnn for LZn(SQ-6-
Me-mPh-NN) by >99% relative to LZn(SQ-mPh-NN). The larger
experimental Jsqo.nn value observed for LZn(SQ-6-Me-mPh-NN),

© 2021 The Author(s). Published by the Royal Society of Chemistry
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compared to that predicted solely by the bond torsion angles,
derives from a combination of weak o- and configuration
interaction contributions to the exchange.'®** Critically, the
bridge methyl group attenuates antiferromagnetic Jsonn
exchange in LZn(SQ-6-Me-mPh-NN) and this translates to
a similar attenuation of Jsq.ny in the LL/CT excited state of 6-Me-
mPh-Pt that results in AEp,q(6-Me-mPh-Pt) < AEp,q(mPh-Pt)
(Fig. 24A).

Excited state exchange determines
ground state electron spin polarization

Low-temperature EPR and time-resolved EPR (TREPR) spectra
of mPh-Pt and 6-Me-mPh-Pt are presented in Fig. 4A and B,
respectively, and these data highlight the dramatic difference in
their spin polarized EPR signals at virtual parity of their
molecular (but not conformational) structure, ground-state EPR
spectra, and LL'CT energy. Note that the direct-detection
method used to measure the TREPR spectra is insensitive to
static EPR signals and the difference between EPR absorbance
before, and after, the laser flash is taken. Thus, a signal is only
observed when time-dependent spin polarization is generated.
We note that no ESP is generated in (DMSO),Pt(CAT-m-Ph-NN),
which lacks an LL'CT excited state, indicating that the LL'CT
excited state is necessary to observe ground state ESP in these
systems.*®

Remarkably, and contrary to the predictions of the RQM, we
observe emissive ESP in the recovered ground state of 6-Me-mPh-
Pt and absorptive ESP in the recovered ground state of mPh-Pt.
Thus, the non-Boltzmann population distribution within the
’S, ms = +1/2 sublevels generated by the laser-induced
excitation/relaxation photocycle (Fig. 2A and 5) differs mark-
edly for these two complexes. The differences in the nature of
the ESP for mPh-Pt and 6-Me-mPh-Pt correlate with the bridge-
dependent energy gaps between >T; and the other states (“T;,
’NN, *NN) in this energy region, which are affected by CAT/SQ-

cw EPR Signal (dy”/dB,)
(X) leusis yd3 pazuejod uids

322 344 346 348 350 352 354 356

344 346 348 350 352 354
Magnetic Field (mT)

Fig. 4 X-band cw-EPR (A); 20 K; 2-MTHF, and TREPR (B); 20 K; 2-
MTHF spectra for mPh-Pt (blue lines) and 6-Me-mPh-Pt (red lines). (A)
Field modulation detected cw-EPR spectra of the ground states
without light excitation. (B) Light-induced, spin-polarized TREPR
spectra, extracted from time/field datasets 4 ps after the laser flash.
Light excitation at 532 nm, concentrations ~0.5 mM. Abs = absorption,
Em = emission.
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Fig. 5 (A) The reversed quartet mechanism (RQM). Mixing of chro-

mophoric 2T, and T, states, mediated by conformational Jsq-nn-
modulation, gives rise to emissive ESP for 6-Me-mPh-Pt. (B) Spin-
orbit induced mixing of chromophoric 2T; and the NN-based quartet
state, “NN, gives rise to absorptive ESP for mPh-Pt. The 2NN state can
be observed spectroscopically (see ESIT).

bridge bond torsions. Since the degree of charge separation in
the excited state manifolds of mPh-Pt and 6-Me-mPh-Pt is near
unity,” the Jsqo.nn value for LZn(SQ-6-Me-mPh-NN) can be used
as a proxy for Jso.nn in the excited state of 6-Me-mPh-Pt. The J5q.
~n exchange interaction that we obtain for LZn(SQ-6-Me-mPh-
NN) is related to the *T;-*T, energy gap (AEpq) in the three-
spin excited states of mPh-Pt and 6-Me-mPh-Pt according to
AEpiq = 1.5 Jsqnn When Jiopy'sq >> Jsonn.” Thus, the *T,-'T;
energy gaps (AEp,q) are 48 cm™ ' for mPh-Pt and 6 cm ™' for 6-
Me-mPh-Pt, respectively.

These AEp,q values indicate that <6% of the mPh-Pt 4T, state
would be populated at thermal equilibrium at 20 K (the
temperature at which the EPR spectra were recorded), but this
increases dramatically to ~56% “T; population for 6-Me-mPh-Pt
at the same temperature. These populations are significant
because the RQM (Fig. 1A and 4) requires thermal population of
the *T,(Q) state and spin-orbit coupling (SOC) induced zero-
field mixing between the >T,-*T, states to observe ground-
and excited state ESP in mPh-Pt and 6-Me-mPh-Pt. SOC induced
interconversion rates between Zeeman split T; and “T; states
are given by the rate constants kpq and kqp (Fig. 5), with kpq and
kqp being related by the equilibrium Boltzmann populations
between the two levels (i.e. kg = kqpe ¥se™/k7)333¢ Given that
Jsqnn is antiferromagnetic in 6-Me-mPh-Pt, the RQM correctly
predicts emissive ground state ESP due to E(*T,) > E(*T,), >T;-"T,
SOC state mixing, and kqp > kpq.*>*® Since mPh-Pt displays
absorptive ground state ESP and a significantly larger
*>Ty(D;)-*T4(Q) energy gap, a different ESP mechanism must be
operational for this complex.

Recently, we described how localized NN radical *NN(Dyy)
and *NN(Qny) states (Fig. 4B) may be nearly isoenergetic with the
>T, state of mPh-Pt.** We propose that the dynamic population of
the *NN state effectively competes with the higher energy *T; state
to determine the sign of the ground state ESP. This competition is

Chem. Sci., 2021, 12, 13704-13710 | 13707
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Fig. 6 Origins of emissive and absorptive ESP for NN-elaborated (bpy)Pt(CAT) complexes. Left: RQM with emissive ESP is observed. Right: RQM

with absorptive ESP is observed.

readily apparent in mPh-Pt and results from the larger value of
Jsqnn for this complex, which leads to a larger AEp,q energy gap,
a more stabilized T, state, and AEpiq > AEpionn between
chromophoric *>T; and Quy states (Fig. 5). The inclusion of
additional states in the context of the RQM is key, as it correctly
predicts the experimentally observed absorptive ESP via °T; <
Qnn mixing for mPh-Pt. Thus, the magnitude of the antiferro-
magnetic excited state exchange interaction, Jsqonn, controls how
the T, state mixes with neighboring excited states to switch the
sign of the ground state ESP. This observation highlights the
effectiveness of TREPR spectroscopy for revealing details of fast
non-radiative processes that are difficult to detect using other
spectroscopic methods. In the present case, the sign of the
ground state ESP reveals how the small energy gap between
charge transfer and localized excited states, coupled with the
relative magnitudes of interstate mixing, critically alters the spin
selectivity of the electronic relaxation.

Conclusions

In summary, we observe dramatic differences in ground state
ESP for mPh-Pt and 6-Me-mPh-Pt that are attributed to the
energies of their T, states relative to chromophoric “T(Q)
states and a localized radical-based Quy state (Fig. 6). For 6-Me-
mPh-Pt, an LL'CT excited state SQ-bridge bond torsion effec-
tively attenuates the magnitude of the excited state Jsq.nn anti-
ferromagnetic exchange interaction, which leads to AEp,q <
AEpignn and emissive ESP as described by the RQM (Fig. 1A)
and observed experimentally (Fig. 4B). Conversely, the
comparatively planar CAT-mPh-NN 7-system of mPh-Pt results
in AEpionn < AEpiq, and absorptive ESP is both predicted and
observed (Fig. 1B and 4B, respectively). Thus, small conforma-
tional changes along low-frequency torsional modes of donor-
acceptor molecules that have been elaborated with pendant
persistent radicals can lead to conformational j-modulation,
and this affects the sign and magnitude of the ground state ESP.
This indicates that the sign of the excited state chromophore-
radical exchange predicted by the RQM is not universal, and
our work points to a previously unobserved change in ground
state ESP as a function of the magnitude of the excited state
exchange interaction, Jsq.nn. The present results highlight the
extreme importance of understanding how excited state elec-
tronic structure affects excited state properties and dynamics,

13708 | Chem. Sci., 2021, 12, 13704-13710

and demonstrates additional mechanisms to control ESP rele-
vant to QIS. Ongoing research efforts focus on further explora-
tion of synthetic design principles directed toward determining
the electronic and geometric structure factors that control
optically-generated ESP in these and related radical-elaborated
donor-acceptor chromophores, and how these can be exploi-
ted for QIS applications.

Experimental
General considerations

Reagents and solvents were used as received and purchased
from commercial vendors. See ESI{ for compound syntheses
and characterization.

Magnetic susceptibility measurements

Magnetic susceptibility measurements were collected on
a Quantum Design MPMS-XL7 SQUID magnetometer. Variable
temperature magnetometry experiments were performed with
a constant field of 0.7 T on a microcrystalline sample (~15 mg)
which was loaded into a gelcap/straw sample holder and mounted
to the sample rod with Kapton tape. Collected raw data was
initially corrected with a straight line for diamagnetic response of
sample and container as a first approximation, where the slope of
the line represents the residual diamagnetic correction.

EPR and TREPR spectroscopies

Samples for steady state and transient EPR measurements were
prepared by dissolving solid (bpy)Pt(CAT-mPh-NN), (mPh-Pt) or
(bpy)Pt(CAT-6-Me-mPh-NN), (6-Me-mPh-Pt) in 2-methylTHF to
a concentration of ~0.5 mM. The samples were placed in 4 mm
O.D. quartz EPR tubes and degassed by repeated freeze-pump-
thaw cycles. The frozen, degassed samples were then trans-
ferred without thawing from liquid nitrogen to the spectrometer
cryostat, which was at 20 K. The steady state spectra were
collected using field modulation detection with a modulation
amplitude of 0.1 mT and a microwave power of 6.3 mW. TREPR
time/field dataset were collected with direct detection at the
microwave power as for the steady state experiments. The
samples were irradiated at 532 nm using 10 ns laser flashes
from a frequency doubled NdYAG laser. The modified Bruker
EPR 200D-SRC X-band spectrometer used for the EPR experi-
ments has been described in detail elsewhere.*

© 2021 The Author(s). Published by the Royal Society of Chemistry
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