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dereplication by diffusion ordered
NMR spectroscopy (DOSY)†

Guy Kleks, ab Darren C. Holland, ab Joshua Porterab and Anthony R. Carroll *ab

Diffusion-ordered NMR spectroscopy (DOSY) can be used to analyze mixtures of compounds since

resonances deriving from different compounds are distinguished by their diffusion coefficients (D).

Previously, DOSY has mostly been used for organometallic and polymer analysis, we have now applied

DOSY to investigate diffusion coefficients of structurally diverse organic compounds such as natural

products (NP). The experimental Ds derived from 55 diverse NPs has allowed us to establish a power law

relationship between D and molecular weight (MW) and therefore predict MW from experimental D. We

have shown that D is also affected by factors such as hydrogen bonding, molar density and molecular

shape of the compound and we have generated new models that incorporate experimentally derived

variables for these factors so that more accurate predictions of MW can be calculated from experimental

D. The recognition that multiple physicochemical properties affect D has allowed us to generate

a polynomial equation based on multiple linear regression analysis of eight calculated physicochemical

properties from 63 compounds to accurately correlate predicted D with experimental D for any known

organic compound. This equation has been used to calculate predicted D for 217 043 compounds

present in a publicly available natural product database (DEREP-NP) and to dereplicate known NPs in

a mixture based on matching of experimental D and structural features derived from NMR analysis with

predicted D and calculated structural features in the database. These models have been validated by the

dereplication of a mixture of two known sesquiterpenes obtained from Tasmannia xerophila and the

identification of new alkaloids from the bryozoan Amathia lamourouxi. These new methodologies allow

the MW of compounds in mixtures to be predicted without the need for MS analysis, the dereplication of

known compounds and identification of new compounds based solely on parameters derived by DOSY

NMR.
Introduction

One of the challenges in natural product (NP) discovery is the re-
isolation and identication of known compounds. The process of
identifying these known compounds early in the discovery
process is known as dereplication. Using dereplication strategies,
the time consuming process involved in re-isolation and struc-
ture elucidation of known compounds is avoided allowing the
isolation and structure elucidation efforts to focus solely on new
compounds.1 In NP discovery, LC-MS is a common tool for der-
eplication. This requires comparison of data acquired by MS or
tandemMS (MS/MS) with that of known NPs found in databases.
This has been facilitated by the use of molecular networking via,
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iffith University, Brisbane, QLD 4111,

n (ESI) available: Structures of all
of data used to generate molecular
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for instance, the free online community-based platform Global
Natural Products Social Molecular Networking (GNPS), in which
MS/MS data is used to identify a network of chemically related
NPs.2,3 Unfortunately, because fragmentation patterns, ion
intensities and the experimental parameters used to acquire data
can vary across instruments, mis-identication and/or failure to
identify compounds can still occur.4–6

While the most common NP dereplication techniques are
MS-based, themain tool for structure elucidation of NPs is NMR
spectroscopy. The only approach currently used to correlate
NMR and MS data is by hyphenated NMR techniques such as
LC-NMR-MS. This technique allows real-time acquisition of
combined MS and NMR data to be obtained for compounds
eluting from a LC system.7While hyphenated NMR is a powerful
tool for dereplication, it is time consuming and requires
specialized and expensive hardware not available in most
laboratories. An alternative approach is to perform LCMS
separation rst, followed by fraction analysis (aer evaporation
and reconstitution in an appropriate NMR solvent) either in
NMR tubes or using a ow NMR probe.8 This technique is also
labour intensive and time consuming.
© 2021 The Author(s). Published by the Royal Society of Chemistry
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The difference between MS and NMR gives rise to several
problems:

(1) Since MS is several orders of magnitude more sensitive
than NMR, compounds that are marked as potential new
compounds by MS-based dereplication techniques may be
present in concentrations too small for isolation and subse-
quent NMR identication.

(2) Compounds that are not easily ionizable may not be
visible by MS. Furthermore, those with low signal intensities
may be overlooked.

(3) Structural/congurational isomers can be misidentied
as known compounds by MS, while NMR analysis can delineate
the difference between isomers more clearly.

(4) There are approximately 30 000 unique accurate masses
that account for >215 000 published NPs. However, many of
these masses are represented by hundreds of different NPs. For
example 264.13615 da represents the MW of 640 different NPs.9

These points highlight the need for more accessible NMR-
based dereplication methods that allow for the identication
of compounds in mixtures. Recent developments in this area
include a large open access NP database that is functional group
annotated for NMR feature matching (DEREP-NP),9 a HSQC-
TOCSY analysis method that has been used to identify molec-
ular fragments in complex mixtures,10 SMART 2.0 (Small
Molecule Accurate Recognition Technology) a machine learning
tool to identify compounds in mixtures based on HSQC data11

and MADByTE (Metabolomics and Dereplication by Two-
Dimensional Experiments) a tool that associates HSQC and
TOCSY data from complex mixtures to allow identication of
molecular networks.12 A signicant limitation of these methods
is that none have the ability to predict the MWs of resonances
computationally annotated by NMR.

Diffusion-ordered spectroscopy (DOSY) is an NMR technique
that allows resonances associated with individual components
in a mixture to be separated in the NMR tube based on their
size. This non-destructive technique does not require any
special equipment and can be performed on any modern NMR
spectrometer.

Based on pulsed eld gradient (PFG) NMR, the diffusion rate
of a compound in a solvent is measured by acquiring a series of
spectra at incrementing gradient strengths, resulting in signal
attenuation that is used to calculate a diffusion coefficient (D).
This provides a DOSY spectrum, a pseudo-2D spectrum in which
the resonances are separated in a derived second dimension
according to the diffusion rate of the molecule they emanate
from. The diffusion of a molecule in solvent is described by the
Stokes–Einstein equation as the diffusion coefficient (D):

D ¼ kbT

6phrH

This equation assumes a molecule possesses a sphere-like
shape and is dissolved in a continuous uid. In the numer-
ator kb is the Boltzmann constant and T is the temperature. The
denominator represents the friction experienced by the mole-
cule, in which h is the solvent viscosity and rH is the hydrody-
namic radius of the molecule.13
© 2021 The Author(s). Published by the Royal Society of Chemistry
Differences in T between samples will result in variation of
Ds and the temperature should be kept constant in order to
compare Ds of different samples. Sample temperature should
also be regulated, since a temperature gradient in the sample
could lead to convection, resulting in erroneous Ds.14 While low
viscosity solvents, such as chloroform (0.54 cP at 298 K), are
more prone to the formation of convection, DMSO is more
viscous (1.99 cP at 298 K), making it a good candidate for
DOSY.14 The solvent viscosity (h) changes with sample concen-
tration,15 affecting the diffusion rate of all the components in
the sample. To be able to compare the Ds of compounds
measured in different samples, an internal reference must be
used. While an obvious choice for an internal reference would
be the residual NMR solvent peak, previous research has shown
ambiguous results, with some advising caution with referencing
Ds to the solvent signal,15 while others have reported excellent
results.16

The Stokes–Einstein equation states that the D of the mole-
cule possesses an inverse relationship to its hydrodynamic
radius. In other words, a small molecule diffuses faster than
a large one, thereby displaying a larger D value. Therefore, DOSY
provides a spectroscopic separation of the signals associated
with compounds in a mixture without any physical separation,
making DOSY a powerful technique for mixture analysis.

A signicant limitation of DOSY is signal overlap, compli-
cating the extraction of the D since the observed signal atten-
uation is derived from two or more components with different
diffusion rates. While there are several techniques that attempt
to resolve this problem, it remains a very complicated task.16,17

Clearly, this poses a problem for complex mixtures such as
those commonly encountered in NP research. However, DOSY
can be implemented with 2D NMR experiments such as DOSY-
COSY and DOSY-HSQC,18,19 expanding the diffusion into
another dimension thus minimizing the possibility of signal
overlap. Alternatively, the likelihood of overlap could be
reduced by collapsing all signal multiplets to singlets using
pure shi DOSY.20

As DOSY separates the resonances in a mixture according to
theirD, corresponding tomolecular size, theD can be correlated
to molecular weight (MW). There are many examples in which
DOSY was used to determine MW from D of polymers,21,22

simple organic compounds15 and organometallics.14,23 However,
in NP research DOSY has only been used for separation of
resonances by their D, and this information was not correlated
to any other physical or chemical properties. To our knowledge,
there are only two examples in which DOSY has been used in NP
discovery for the dereplication and identication of unknown
compounds. The rst was the dereplication of a chromato-
graphically inseparable mixture of NPs from a marine cyano-
bacterium,24 and while the second was used to aid in the
identication of a mixture of bromopyrroles from the marine
sponge Agelas sp.25 Since the literature contains very little
information about D of NPs, dereplication of NPs by DOSY
cannot currently rely solely on experimental D. Therefore,
experimentally derived D need to be investigated in more detail
to determine if this property correlates to a common physical
Chem. Sci., 2021, 12, 10930–10943 | 10931
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property used for dereplication, such as MW or if it can be used
as surrogate for MW.

In this paper, we investigate correlations between experi-
mental D of NPs to various structural and chemical properties.
This has allowed us to develop models that can be used to
dereplicate known NPs and identify new NPs through applica-
tion of DOSY NMR techniques.
Results and discussions
Referencing DOSY data

As described above, the viscosity of the NMR solvent can affect
D, and changes in the concentration of dissolved analytes can
affect the viscosity of the solvent. To avoid these issues we have
used relative diffusivity of an internal reference compound to
account for variations of viscosity between samples.26 The
“standard” D of the reference (Dstand) was determined as the D
of the reference in a blank sample (containing only the refer-
ence compound and the NMR solvent at 350 mM), and the ratio
between the observed D of the reference (Dref) in each sample to
that of the standard was used to standardize the D of the
compound (Dcomp) using the following equation:

D ¼ Dstand

Dref

Dcomp

This referencing method enables the DOSY data to be
reproducible (Fig. S1†), allowing D values acquired for
compounds to be compared even on different spectrometers
using different pulse sequences. An ideal reference should
resonate at a chemical shi that rarely overlaps with analyte
resonance and should have a diffusion co-efficient like that of
the analytes.

Since diffusion parameters in the DOSY NMR pulse
sequence should be set to provide up to �90% signal attenua-
tion for analytes, and since the average MW of reported NPs is
414 amu,27 we chose tetrakis(trimethylsilyloxy)silane (TTMS),
384.84 amu, Dstand 3.157 10�10 m2 s�1 at 298 K as a more suit-
able internal reference. TTMS shows good solubility in DMSO,
is a liquid at room temperature making it easy to handle, and
with a boiling point of 103–106 �C, can be evaporated upon
removal of DMSO (189 �C) from the sample. TTMS displays
a single proton resonance at dH 0.09 ppm derived from its 12
constituent methyl groups (36 protons) meaning only a small
concentration (0.5% v/w) is enough to produce an intense
signal.
The relationship between D to MW

The relationship between D to MW is non-linear, and has been
shown to possess a power-law relationship:21

D ¼ A � MWa

To achieve a linear relationship, the logarithms of both the D
and MW should be used:
10932 | Chem. Sci., 2021, 12, 10930–10943
log(D) ¼ a log(MW) + log(A) (1)

However, it has been shown that a specic power-law rela-
tionship needs to be established for each compound class and
each solvent.28 Aer a correlation between D to MW is deter-
mined, it can be used to predict the MW of an unknown
compound in a specic compound class from its experimental
D. While this model has been shown to produce accurate MW
predictions for specic compound classes,14,23 variation
between structure classes has been shown to produce large
errors in MW estimation.15,29

We have acquired 1H DOSY spectra in DMSO-d6 for 55
individual compounds with a MW range of 123–1486 amu,
including 38 NPs, four NP derivatives, and 13 synthetic
compounds of which eight are drugs (Table S1,† for structures
and numerical structure codes see ESI†). The NPs in the dataset
consist of diverse structure classes such as oxygenated linear
and cyclic terpenes, alkaloids and their TFA salts, anthracycline,
a b-triketone, a coumarin derivative, a saponin, andmacrocyclic
compounds such as macrolide antibiotics.

The least-squares t of the experimental log D vs. the log MW
of each compound generated model 1 (n ¼ 55, R2 ¼ 0.852) with
coefficient values of �0.6057 and �8.0952 for a and log(A),
respectively.

model 1:

MWpre ¼ 10((log(D)+8.0952)/(�0.6057))

To quantify the accuracy of the MW prediction (MWpre), the
MWpre error as the percentage of the residual MWpre from the
true MW (MWtrue) for each compound was determined (eqn (2)):

MWpre error ¼ (MWpre � MWtrue)/MWtrue (2)

This provides an intuitive error scale in which compounds
that diffuse slower than their predicted D (Dpre – derived from
the calibration curve) will translate to a MWpre value that is
greater than their true MW and will therefore display a positive
error, and underestimation of MWpre will show a negative error.

In previous research, calibration curves generated using the
power law relationship in CDCl3 and D2O displayed MWpre

errors mostly within a range of �30%.29 While analysis of data
previously reported for compounds in THF-d8 and toluene-d8
(Tol-d8) showed MWpre errors within a range of �20%.14 Our
results in DMSO-d6 showed an average +20.6% MWpre error for
overestimated compounds, and �14.7% for underestimated
compounds. However, the total MWpre error range for our
dataset was larger than for CDCl3, D2O, THF-d8 or Tol-d8 with
a maximum error of +55% for overestimated compounds and
�32% for underestimated compounds (Fig. 1).

The difference in the MWpre error range observed for
compounds previously studied in CDCl3 and D2O (although
none of these compounds structures were disclosed in the
paper)29 compared to DMSO can be attributed to the wider
dissolution range of DMSO, capable of dissolving more polar
compounds than CDCl3 and less polar compounds than D2O.
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 log–log plot of the experimental D in DMSO-d6 against MW for
each individual compound (n ¼ 55) (a). The residual error for each
compound as percentage of MW prediction from the true MW with
mean error range in blue (b).

Fig. 2 Log–log plot of relationships between D to MW for three
compound groups: HBD-containing compounds (n ¼ 40, R2 ¼ 0.91),
non-HBD containing compounds (not including disc or sphere-like
compounds) (n¼ 13, R2¼ 0.94) and brominated compounds (n¼ 7, R2

¼ 0.99).
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All of the compounds previously studied in THF-d8 and Tol-d8
are lipophilic with low structural diversity.15 In contrast, our
dataset consists of structurally diverse compounds displaying
a wide polarity range, with c log P ranging from �7.0 to 9.6 (see
Fig. S2† for comparison of physicochemical properties). Several
NPs in our dataset such as carboxylic acids, aminoglycoside and
avonoids are too polar to be dissolved in CDCl3. Since the high
structural diversity of the compounds used in this study to
directly correlate D with MW resulted in an inaccurate power
law (model 1) relationship, we next investigated the factors that
contributed to these variations with the aim to establish a more
accurate DOSY MW prediction model.

Molecular shape

Molecular shape affects diffusion rates with expanded disc-like
(ED) or compact spherical molecules (CS) displaying faster
diffusion trends relative to other molecules classied as dissi-
pated spheres and ellipsoids (DSE).15 Pyrene (8), anthracene and
acridine have previously been classied as EDs.15 Using model
1, the predicted MWs of the ED compounds 8 and phenan-
threne (5) (Fig. 2) show signicantly faster diffusion rates rela-
tive to that predicted by their MW, corresponding to a �34%
MWpre error for both (Fig. S3†). In addition, artemisinin (25),
arborinine (27), clarithromycin (51) and oleandomycin-
triacetate (52) all showed signicantly faster diffusion rates
than predicted by their MWs and this might also be attributed
to their shape. TTMS, the reference compound for our dataset,
displayed the most underestimated MWpre (error of �46%)
using model 1. This agreed with the literature since similar
compounds, tetrakis(trimethylsilyl)silane and tris(-
trimethylsilyl)amine, classied as CS display faster diffusion
compared to DSE compounds.

Stalke and co-workers have suggested shape-specic MW
prediction, generating power-law relationships between D and
© 2021 The Author(s). Published by the Royal Society of Chemistry
MW for three shape types: (1) CS, (2) ED and (3) DSE.15,30 While
this improved their MW prediction, for compound mixtures it
requires a priori knowledge of the different shape-classes that
are present in the mixture, reported D for these shape classes,
and a method to match the resonances in the mixture with the
appropriate shape class. The distinction between CS, DSE and
ED shape classes is also problematic because compounds lie on
a continuum between the three shape-classes. Furthermore,
analogues or stereoisomers can display different hydrodynamic
radii, resulting in different MWpre errors within a specic
shape-class and these shape-specic power law models do not
work for compounds with similar shapes but containing
hydrogen bond donor (HBD) or no HBD groups.
Hydrogen bonding

Intermolecular hydrogen bonding (H-bonding) can result in
a slower diffusion rate than predicted by MW (i.e. smaller
diffusion coefficient) due to an increase in the hydrodynamic
radius (rH) of the compound.31,32 Since DMSO is a hydrogen
bond acceptor (HBA), it is capable of hydrogen bonding with
a hydrogen bond donor (HBD). Inspection of Fig S3† shows that
most compounds with MWpre errors >0 from model 1 (26 of 27)
are compounds containing HBDs and those with MWpre errors
<0 are non-HBD containing compounds.

The effect of H-bonding on diffusion is clearly visualized by
the linear least-squares t of MW vs. D for HBD-containing
compounds (n ¼ 40, R2 ¼ 0.91) and non-HBD containing
compounds (n ¼ 13, R2 ¼ 0.94), as the latter display faster
diffusion rates since they are not involved in H-bonding (Fig. 2).

Since the NP dataset consists of both HBD-containing
compounds and non-HBD containing compounds, MW
prediction using model 1 provides intermediate MWpre values
for these two groups. Power-law based MW prediction (i.e.
model 1) therefore has a wide error range and will result in an
Chem. Sci., 2021, 12, 10930–10943 | 10933
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overestimated MWpre for many HBD-containing compounds,
and an underestimated MWpre for many non-HBD containing
compounds. This is demonstrated by predicting MW using
model 1 for the HBD compound gembrozil (19), and the non-
HBD compound parthenolide (18) (250.3 and 248.3 amu,
respectively). Model 1 predicts MWpre values that differ by 70
amu, with a MWpre of 269 for 19 and a 199 MWpre for 18
(Fig. S3†). Therefore, using model 1 to predict the MW for 19
from its experimental D provides an overestimated MWpre of
+7% (MWpre error). This overestimation derives from an
increase in the rH of 19 as its HBD group is intermolecularly H-
bonded to DMSO, resulting in a slower diffusion rate (smaller
D). Conversely, the MWpre for 18 is underestimated by �20% as
it does not contain any HBDs and is therefore not involved in H-
bonding with DMSO. The increase in the effective size of
a compound through H-bonding with DMSO therefore relates to
the equilibrium constant for the H-bonding interaction and the
resident time spent as one molecular system.

Cabrita and co-workers have shown that DOSY can be used to
qualitatively evaluate H-bond strength by comparing the D of
HBD-containing compounds in the presence and absence of
a HBA.31,32 AHBD acidity scale (aH2 ) has been used to correlate H-
bond acidity to the increase of rH observed by DOSY for acidic
compounds.31 The aH2 scale ranges from 0 (no H-bonding) to 1
(strongest H-bonding).33,34 While this scale has been established
in CCl4, it has been shown that H-bond acidity ðA ¼ P

aH
2 Þ can

also be predicted with high accuracy by the 1H NMR chemical
shi difference for a protic hydrogen between DMSO to CDCl3.35

The H-bond acidity of many classes of compounds have been
determined and predictable trends relating to functional
groups have been obtained. In summary, phenols, carboxylic
acids, 1� amides, the amide NHs in imidazol-2-one, pyrimidine-
2,4(1H,3H)-dione and related structures show comparable and
strong H-bond acidity, 1� alcohols, benzylic 1� and 2� alcohols,
acyclic 2� alcohols, anilides, 1� anilines, indole, pyrrole (and
related aromatic amines) possess intermediate H-bond acidity,
2� anilines and 2� and 3� cyclic alcohols and vicinol diols
possess weak H-bond acidity, while alkyl amines possess
extremely weak H-bond acidity.33,36 It is known that the acidity
of HBD groups are also affected by factors such as electron
donating or withdrawing substituents and steric hindrance and
these factors also affect H-bond strength, although in many
cases deviations within functional group classes are minimal.33

Cabrita and co-workers have shown that the faster diffusion rate
of 2,6-di-tert-butylphenol relative to its structural isomer, 2,4-di-
tert-butylphenol, for example, is due to hindering by the second
bulky group ortho to the phenol and this results in weaker H-
bonding with the HBA.31

Unsurprisingly, compounds containing strongly acidic HBD
groups such as carboxylic acids and phenols showed the largest
MWpre errors in the NP dataset when model 1 was used.

Intramolecular H-bonding between an acidic proton to an
adjacent carbonyl oxygen is manifested in 1H NMR spectra with
the observation of the acidic proton resonating as a sharp signal
at a signicantly deshielded chemical shi (dH >12 ppm).37

Unlike all other carboxylic acid containing compounds, nalidixic
10934 | Chem. Sci., 2021, 12, 10930–10943
acid (15) displayed an underestimated MWpre of �18%. This
alongside a deshielded and sharp resonance at dH 14.89 sug-
gested that the carboxylic acid proton is intramolecularly H-
bonded and not participating in intermolecular H-bonding and
this is in contrast with other compounds containing a carboxylic
acid in the NP dataset. Arborinine (27) shows an underestimated
MWpre of �24% that is different to the other phenolic
compounds in the dataset. A sharp and deshielded resonance at
dH 14.86 suggests that the phenolic proton in 27 does not
undergo intermolecular H-bonding because it is intramolecular
H-bonded to the adjacent carbonyl oxygen. Salicylic acid (2) also
contains an intramolecular H-bonded phenol as well as
a carboxylic acid and it shows an overestimated MWpre of +16%
that is likely to be associated with only an H-bond between the
carboxylic acid proton and DMSO.
Contribution of H-bonded DMSO to total MW

Applying the power law least squares t equation derived from
analysis of the non-HBD compounds (n ¼ 13, a ¼ �0.562, log A
¼ �8.151, R2 ¼ 0.95) to the compounds possessing HBDs (n ¼
40) provided a predictive tool to estimate their intermolecular
extended H-bonded MWs (EHBMWpre model 1a).

model 1a:

EHBMWpre ¼ 10((log D+8.151)/(�0.562))

Subtraction of MWtrue from EHBMWpre and dividing this
mass by the MW of DMSO-d6 (84 amu) (eqn (3)) then allowed
a good estimate of the number of intermolecular H-bonding
interactions with DMSO per molecule for compounds contain-
ing functional groups with strong H-bond acidity (Fig. 3).

Number of H-bonds ¼ (EHBMWpre � MWtrue/MWDMSO d6
) (3)

Most compounds (27 out of 37) that have between one and
ve intermolecular HBDs based on HBD count (but excluding
intramolecular H-bonds) have EHBMWpre calculated from D
within �12% of their expected EHBMWs. This indicated that the
MW errors generated by model 1 are exaggerated in small MW
compounds because the mass of DMSO in one H-bonding
interaction can contribute signicantly to the overall mass.
Carboxylic acids

Using model 1, compounds containing a carboxylic acid as the
sole intermolecular HBD group showed overestimated MWpre:
niacin (1) (+24%), 2 (+16%), ibuprofen (9) (15%), naproxen (13)
(15%) and 19 (+7%). These MWpre errors agree with a single
DMSO H-bonding interaction and the variation in error is the
result of the different mass contribution of the compound and
DMSO to the overall EHBMW.
Phenols

Compounds that contain phenolic groups as the only HBD
group also display overestimated MWpre using model 1. While
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Total intermolecular HBDs per compound and predicted number of DMSO molecules associated with intermolecular H-bonding
interactions per molecule derived from model 1a and eqn (3).
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boldine (32) and prunolide C (47) show similar overestimated
MWpre of +20% and +24%, bisphenol A (12) and 7-hydrox-
ydictamnine (10) display variation in MWpre error with +38%
and +8% respectively. Analysis of the result from eqn (3) shows
that the overestimated MWpre for 47, 32, 12 and 10 obtained
using model 1 correlates with the ratio of compound MW to
number of phenols, again indicating that the magnitude of the
error correlates with the mass of the combined DMSO interac-
tions relative to the MW of the compound. The phenol, a-
tocopherol (37), displays an underestimated MWpre (�7%)
usingmodel 1 but applying eqn (3) shows that this error can still
be explained by one DMSO molecule H-bonding with 37.

Even though 37 displays a slightly lower H-bond acidity (A ¼
0.43) compared to 12 and 32 (A¼ 0.48 and A¼ 0.52 respectively),
which can be attributed to steric hindrance by the adjacent
methyls in the 2,6-dimethylphenol moiety, this does not
signicantly reduce its H-bonding interaction with DMSO.
Nitrogen HBD groups

Some compounds that contain only protons attached to
nitrogen as the sole HBD group displayed less signicant MWpre

overestimation than carboxylic acids and phenols using model
1. Penicillin G (35) and colchicine (36) both containing
a secondary amide, displayed MWpre errors of +21% and +6%.
Analysis of the results from eqn (3) suggests that 35 has two H-
bonding interactions with DMSO (via its carboxylic acid and
amide protons) and 36 has 1.5 interactions, with the tropanone
ring in 36 likely acting as a weak second HBD. Two additional
compounds, imazapic (24) and lamouroic acid (29), both con-
taining carboxylic acid and amide groups display similar MWpre

errors (+23% and +21%) were also predicted to have two H-
bonding interactions with DMSO (based on analysis of eqn
(3)). Trimethoprim (28), containing two 1� amines attached to
a pyrimidine, displayed the largest MWpre overestimate (+22%
error using model 1) for a compound containing an N HBD
group in the dataset however the estimated number of H-
bonding interactions with DMSO (using eqn (3)) is two, as ex-
pected. Emetine (44), containing a secondary amine displayed
an underestimated MWpre of �9% and a predicted 0.8
© 2021 The Author(s). Published by the Royal Society of Chemistry
interaction with DMSO. These results are in line with literature
expectations since amides show signicantly higher H-bond
acidity than secondary amines.33,34 The bis-indole, di(1H-indol-
3-yl)methanone (21) displayed a MWpre error of +10% but the
result from eqn (3) suggests that only 1.2 DMSO molecules are
predicted to H-bond to it. Likewise, 2-aminoanthracene (6)
containing an aniline moiety had an underestimated MWpre of
�9% and an estimated DMSO H-bonding contribution of 0.3.
These results are also in line with the predicted H-bond acidity
scale since indoles are more acidic than anilines, but less acidic
than amides.

Lignocaine (16) contains an acetanilide moiety but displays
an underestimated MWpre of �14% that is indicative of a non-
HBD containing compound. The predicted H-bonding contri-
bution of DMSO is also low (0.2). This does not agree with the
literature as acetanilides displays high hydrogen bond acidity
(aH2 ¼ 0.50) compared to other nitrogen functional groups.34

Therefore, this suggests that the amide proton is sterically
hindered by the methyls of the 2,6-dimethylphenyl moiety and
this conclusion is reinforced by a very low measured H-bond
acidity (A ¼ 0.04) for the amide proton in 16.
Alcohol HBD groups

Of the remaining eight compounds with EHBMWpre lower than
expected all but one contains alcohols or aniline HBDs, func-
tional groups known to possess weak H-bond acidity. Four
compounds, oleandomycin (49), erythromycin (50), 51 and
rifampicin (53) are macrocycles containing three to ve alcohols
that most likely take part in cross ring intramolecular H-
bonding, one is a vicinal diol toddalolactone and two
compounds are small MW mono-alcohols. Compounds con-
taining sugar moieties (n¼ 4) have signicantly lower EHBMWpre

and this is also in line with the literature since 1,2-diols have
weak H-bond acidities resulting in H-bonding in a non-
equimolar ratio with DMSO. Digitonin (54) for example has 17
HBDs associated with a pentasaccharide and hydroxy groups in
the triterpene moiety, but it appears that an additional mass
equivalent to only three DMSO molecules H-bond to this
compound. These observations affirm that DOSY is a powerful
Chem. Sci., 2021, 12, 10930–10943 | 10935
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tool to quantify the extent of H-bonding between the analyte
and NMR solvent and that hydrogen bond acidity contributes to
the residence time for hydrogen bonding interactions (and thus
the average hydrodynamic radius).

Based on these observations, classifying HBD groups into
three categories: phenol/carboxylic acid HBD (OH), nitrogen
HBD (NH) and alcohol HBD (aOH) provided an opportunity to
predict the contribution of additional MW derived from each
type of HBD group.

Multiple linear regression analysis of counts of HBDs in each
compound using the three HBD categories, and predicted
EHBMWpre (model 1a) vs. the actual MW of the compounds
established a highly predictable MW estimation (R2 ¼ 0.98, n ¼
55, model 1b) and indicated that, on average, phenol/carboxylic
HBDs (OH) contribute 86.081 amu, nitrogen HBDs (NH) 44.584
amu, and alcohol HBDs (aOH) 19.44 amu per HBD to the total
predicted MW (Fig. 3).

model 1b:

MWpre ¼ 0.932 � 10EHBMWpre � 86.081

� OH � 44.584�NH � 19.44�aOH + 21.088

MWpre ¼ 0.932 � 10((log D+8.151)/�0.562) � 86.081 � OH

� 44.584 � NH � 19.44 � aOH + 21.088

These results are in line with H-bond acidity trends reported
in the literature for acidic, phenolic and alcoholic HBDs. The
reported H-bond acidity of nitrogen HBDs are quite variable
and combining all counts of nitrogen HBDs into one category
produced an average prediction for the MW contribution for
amides, amines and aromatic NH and sub-categorizing these
groups will likely improve the MW prediction further (Fig. 4).
Molecular density

Molar density is another factor affecting diffusion rates. Stalke
and co-workers have shown that compounds containing heavy
atoms such as bromine and iodine display fast diffusion rates
relative to their MWs.38 The molar density of the Br atom
(calculated by dividing its mass by its van der Waals volume)15
Fig. 4 Plot of relationships between MWtrue and MWpre based on
model 1b with factors for acidic OH (phenols/carboxylic acids),
nitrogen HBDs and alcoholic HBDs that contribute to hydrodynamic
radii used to predict MW of 55 natural products and their derivatives. (n
¼ 55, R2 ¼ 0.98) based on their diffusion co-efficients.

10936 | Chem. Sci., 2021, 12, 10930–10943
shows a 5.2/3.4/2.8-fold higher density than C/N/O atoms
respectively. The linear least-squares t of D vs. MW for a group
of brominated NPs (n ¼ 7, R2 ¼ 0.99) displayed a different
diffusion trend to other compounds in the dataset (Fig. 2).
Although all of the brominated compounds contain HBDs, they
show faster diffusion rates compared to non-HBD containing
compounds. Calculation of the Br ratio shows that the
compounds that displayed fast diffusion rates possess a Br ratio
>28%. The exception was botryllamide C (56), displaying
a diffusion rate like that of other HBDs molecules (MWpre error
of +6%) due to a lower Br ratio of 20% (and was therefore
excluded from the linear least-squares t displayed in Fig. 2).

Although we did not use the brominated compounds to
construct the calibration curve for model 1, the effect of
bromine density on diffusion is demonstrated by comparing the
MWpre errors generated by applying model 1 to brominated
analogues of compounds in the NP dataset. While 21 showed
a MWpre error of +10% due to H-bonding, its 6,60-dibromo
analogue showed a faster diffusion rate that translated to
a MWpre error of �24%. 47 displayed a MWpre error of +24%,
while its brominated analogues prunolide B (59) (containing 6
bromines) and prunolide A (60) (containing 8 bromines) dis-
played MWpre errors of �24% and �34% respectively (Fig. S3†).
The faster diffusion rate of 60 correlates to the increase in
bromine ratio for 60 compared to 59 (45.8% and 53.0%), sug-
gesting that a higher bromine ratio will result in a faster
diffusion rate relative to MW, corresponding to an underesti-
mation in MWpre using model 1.

While the Br atom is signicantly denser than the C atom
(5.2-fold), more common elements in NPs, such as O and N, are
only 1.9 and 1.5-fold denser than C. Neufeld and Stalke sug-
gestedmeasuring the density of a compound by dividing its MW
by the sum of all van der Waals volumes of the atoms.15 This
however provided a poor correlation for the non-HBD contain-
ing compounds in our dataset due to the fact that the variation
in diffusion rates relative to MW derive also from molecular
shape and not just from molar density. The b-triketone wood-
sianone B (22) for example,39 has a higher O content (24%)
compared to fragrolide (17) and 18 (19%) and slightly lower O
content than 25 but displayed a slower diffusion rate relative to
its MW as it has a different molecular shape. The structurally
related compounds, the sesquiterpenes 17, 18 and 25 displayed
an opposite trend. While 17 and 18 (both containing 19% O)
displayed a MWpre error of �20%, 25 (28% O) showed a much
larger MWpre error of �30%. However, this difference might
also be associated with a more compact spherical shape of 25.

A clear example where an increase in molar density is
observed is for the TFA salts of alkaloids. Ion pairing is observed
by DOSY as a decrease in diffusion rate (smaller D) as a result of
an increase in the rH of the compound.40 Our dataset contain
three alkaloids (quinine (31), 32 and sanguinarine (34)) that
displayed an increased diffusion rate as TFA salts relative to
their MWs (including 114 amu for TFA) compared to diffusion
rates of these compounds without TFA. This increase in diffu-
sion rate, corresponding to underestimation in MWpre by model
1, indicates an increase in molar density as TFA contributes two
© 2021 The Author(s). Published by the Royal Society of Chemistry
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oxygens and three uorines to the overall density of the
compound.

While Stalke and co-workers have suggested that molar
density has a larger impact on diffusion rate than molecular
shape,38 the ED compounds in our dataset, 8 and 5, showed
larger MWpre errors using model 1 than brominated compounds.
However, unlike in the Stalke dataset in which the majority of
compounds did not contain HBDs (57 of 60),38 all of the bromi-
nated compounds in our dataset contained at least one HBD
suggesting that higher molar density counterbalances the effect
of H-bonding in predicting MW. This suggests that the factors
affecting MW prediction involve a combination of H-bonding,
molar density and molecular shape. The correlations observed
between D to MW for each separate group of compounds (HBDs,
non-HBDs and brominated) in our dataset are more accurate
than the combined relationship of HBDs and non-HBDs (n ¼ 55,
R2 ¼ 0.85) and therefore predicting MW from D for each specic
HBD, non-HBD and high density compound groups is advisable.
However, unless there is a method to associate the resonances
observed in a mixture with compounds that do or do not contain
HBDs and/or heavy atoms such as bromine then these MW
prediction equations are irrelevant. For non-halogenated
compounds our analysis indicates that H-bonding generates
the greatest error for MW prediction by DOSY in DMSO.
Improved MW prediction models

Model 2 – hydrogen bonding observed by 1H NMR. Although
molecular shape and molar density can affect rates of diffusion,
it is difficult to identify NMR signals that can be used to
denitively assign molecular shape or molar density features in
a molecule. Conversely, we have shown that HBD signicantly
affects D and acidic protons associated with HBD functional
groups can be visualized by 1H NMR spectroscopy as deshielded
resonances (and by their exchange with D2O) thus providing
a potential tool to investigate the relationship between H-
bonding, MW and D. Since the chemical shi of acidic
protons have been shown to correlate with H-bond acidity the
relationship between the chemical shi (effdH) of the most
acidic exchangeable proton observed in the 1H NMR spectrum
may directly correlate with the D of the compound.

As discussed earlier, intramolecular H-bonded protons are
characteristically deshielded, resonating at frequencies greater
than dH 12 ppm and do not usually contribute to intermolecular
H-bonding. The compounds 15 and 27 display very deshielded
(>dH 14.00) and sharp resonances that are clear indicators of
intramolecular H-bonding. Therefore, in developing a HBD
model, we have set an upper limit for the chemical shi of the
effdH parameter so that only the chemical shis of intermolec-
ularly H-bonded protons are used. This ideally meant that the
effdH parameter only captures HBD's that lead to an increase in
a compound's rH, and therefore affect diffusion. Since not all
NPs contain HBDs, a value of effdH ¼ 0.00 has been set for
compounds containing no HBDs. Therefore, effdH was limited to
a chemical shis range between 0 and 14, where effdH equals the
most deshielded exchangeable proton resonance observed
between dH 0 and 14.
© 2021 The Author(s). Published by the Royal Society of Chemistry
Multiple linear regression analysis of 55 compounds affor-
ded the following relationship:

model 2:

log D ¼ �0.6077 log MW � 0.0102 effdH � 8.0282

This model displayed a very signicant improvement (R2 ¼
0.95) in MW prediction relative to a simple power-law rela-
tionship of D vs. MW using model 1 (n ¼ 55, R2 ¼ 0.85) (Fig S4
and S5†). The effdH parameter showed an excellent correlation
(P-value ¼ 1.3 10�13) to the variation between log D vs. log MW.

The effdH parameter in model 2 is a surrogate for the MW of
DMSO in the extended MW of HBD compounds. The more
deshielded the exchangeable signal, the greater the mass that is
subtracted from the total MWpre, resulting in the MWpre being
closer to that expected for the MW of a compound alone
(without a contribution of DMSO in HBD/HBA interactions).
When the effdH parameter is set to 0 for any compound, the
resulting MWpre are almost identical to the EHBMWpre gener-
ated using model 1a. Model 2 improved the MWpre for the polar
carboxylic acids 1, 24 and 2 displaying a very accurate MWpre

(�4%,�1% and�3% error compared to +24% + 23% and +16%
respectively from model 1). However, only two of three lipo-
philic carboxylic acids 9, gembrozil (19) and 13 had improved
MWpre with model 2 vs.model 1 (�7% vs. +15%, �8% vs. +15%,
�13% vs. +7% respectively). Some compounds containing more
than one strong HDB (such as bis phenol A, acetaminophen (3),
atenolol (23), 28 and folic acid (39)) had improved MWpre but
were still >20% in error while tobramycin (42) and fusidic acid
(46) had MWpre errors increased to >20%. This suggested that
using the exchangeable proton chemical shi of only the most
deshielded resonance in the model ignored the contribution of
other strongly acidic HBDs.

The amide proton in 16 is deshielded leading to a signicant
reduction in its MWpre using model 2. This led to a MWpre error
for 16 of �23% (an increased underestimation of its MWpre

compared to model 1). The chemical shi of the NH proton
does not account for the steric hindrance it experiences from
the two ortho methyl groups.

While this model displays a very good correlation between
the chemical shi of acidic exchangeable protons and varia-
tions in diffusion, it has some signicant practical limitations.
First, chemical exchange causes signal broadening. Resonances
associated with acidic protons such as those present in
carboxylic acids or phenols can undergo chemical exchange
with residual H2O, resulting in signal broadening up to a point
where these resonances cannot be seen in a 1H NMR spectrum.
Second, several compounds in our dataset (doxycycline hyclate
(45) 53 and rutin (48)) displayed resonances for intramolecular
H-bonded phenols below the effdH limit of 14.00 ppm (dH 11.48,
12.44 and 12.60 ppm respectively). These intramolecular H-
bonded phenolic resonances are identiable as they are
sharper than other phenols in their spectra that can undergo
chemical exchange with H2O. Third, a proton which is a HBD
can undergo chemical exchange with H2O and will display
a larger D value than the other proton resonances in the same
Chem. Sci., 2021, 12, 10930–10943 | 10937
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compound.41 These exchangeable proton resonances therefore
display an average D value somewhere between that of the
compound and that of H2O and this D is dependent on the
diffusion delay used in the pulse sequence.41 These caveats
could make it difficult to distinguish exchangeable proton
resonances from specic molecules in a mixture.

Unfortunately, practical application of model 2 for MW
prediction of compounds in mixtures requires the effdH for each
compound in the mixture to be quantied. Using model 2 with
a mixture containing a compound capable of intermolecular H-
bonding and a compound that cannot, will signicantly increase
the MWpre error for one of these compounds. For example,
assuming a mixture contains a avonoid and a non-polar terpene
and setting effdH to match the exchangeable chemical shi of the
phenol would decrease the MWpre error for the avonoid but
increase the terpene's MWpre substantially, and vice versa.

Therefore, application of model 2 is only applicable to
mixtures that have undergone initial partitioning, such as an
acid/base extraction to obtain separate fractions containing
either acidic, neutral, or basic components from an extract.
Alternatively, if exchangeable proton resonances observed in
the spectrum of mixtures can be associated to specic groups of
other resonances in the mixture based on integral intensities
then different effdH values can be applied to each group of
resonance at specic experimental D.

Model 3 – lipophilicity by RP HPLC. In modern NP drug
discovery, fraction libraries are routinely generated from crude
extracts for high-throughput screening, with reversed-phase
HPLC (RP HPLC) used as a common method to generate such
fractions.42 The retention time of a compound derived from RP
HPLC is a function of its hydrophobicity, and therefore several
methods have been developed to determine compound lip-
ophilicity by RP HPLC.43,44 We therefore examined if lip-
ophilicity correlates with D. Since log P is a common parameter
to measure lipophilicity, we examined the correlation between
D and calculated log P (n ¼ 55, R2 ¼ 0.870). This was an
improvement frommodel 1 (n¼ 55, R2¼ 0.852), and the P-value
for calculated log P (0.009) implied a correlation to D (Table
S4†). We therefore examined the correlation between the RP
HPLC retention of compounds in our dataset to their D. While
RP HPLC elution vs. % MeCN has been used to predict log P
with good accuracy,43,44 since MeOH is a much more common
solvent used for RP HPLC separation of NPs we therefore
investigated the relationship between D and NP elution using
H2O/MeOH gradients on C18 silica gel.

The % MeOH elution of 41 compounds were measured by
positive or negative ESI LC-MS with a H2O (10 mM ammonium
acetate)/MeOH gradient. The dwell time was subtracted from
the retention time to calculate the % MeOH at which each
compound eluted. Multiple linear regression analysis using the
% MeOH elution for 41 compounds has provided the following
relationship:

model 3:

log D ¼ �0.6497 log MW + 0.1906 (% MeOH) � 8.0979
10938 | Chem. Sci., 2021, 12, 10930–10943
This model displayed a signicant improvement in MW
prediction (R2 ¼ 0.91) relative to the power-law MW prediction
for the same compounds (n ¼ 41, R2 ¼ 0.84). The % MeOH at
which compounds eluted by RP HPLC also showed a much
better correlation to D (P-value ¼ 2.2 � 10�6) than calculated
log P (P-value ¼ 0.009) for the same compounds (Fig. S6†).

In general, model 3 reduced the MWpre error compared to
results from model 1 for non HBD compounds as well as many
of the compounds that contained a higher proportion of HBD
groups relative to their MW. Most compounds containing no
HBDs still have underestimated MWpre while a smaller
proportion of compounds containing HBD still had over-
estimated MWpre. This suggested that the % MeOH parameter
partially accounted for the MW contribution of DMSO for many
HBD containing compounds leading to a reduction in the
difference in the log A term in the power law relationship for
compounds containing no HBDs compared to HBD
compounds. The % MeOH term in model 3 is therefore
a surrogate for the contribution of H-bonded DMSO to the NPs
hydrodynamic radius and thus MWpre. As the proportion of %
MeOH required to elute a NP by RP HPLC increases, the
reduction in DMSO MW contribution to MWpre for HBD
compounds decreases. Unfortunately, this meant that for
compounds containing mainly lipophilic moieties but also
containing a HBD group, and that interact with C18 solely
through hydrophobic interactions, thus eluting in a high
proportion of MeOH, the % MeOH term in model 3 does not
provide a compensatory factor to reduce the MW contribution
of DMSO to the overall MWpre for these compounds.

Model 3 improved the MWpre for the polar acids 1, 2 and 24
displaying a MWpre errors of �9%, �6% and �3% respectively.
It also improved the MW prediction for 3, 28, 23, 30, 31, 32, 36,
44, 50, 48 and 53. However, the lipophilic acids (9, 19 and 13),
phenols (37, 47, 10 and 12) and 21 (eluting at 68%, 57% 78%,
100%, 64%, 62%, 67% and 63% MeOH respectively) each dis-
played an increased MWpre error (+25%, +22% + 24%, +21%,
22%, 13%, 46% and 14% respectively). This suggested that
model 3 was ineffective at improving the MWpre for lipophilic
compounds with a strongly acidic HBD group. Model 3 signif-
icantly improved the MWpre error for 16 (�5%) suggesting that
the sterically hindered amide proton does not contribute to
polar interactions with the HPLC solvent (Fig. S6†).

Model 3 therefore provides a compromise MW prediction
between HBD and non HBD containing compounds. It is
important to note that this model is not suitable for RP HPLC
fractions obtained using a H2O/MeOH gradient with an acid
modier since the retention times of acidic and/or basic
compounds will change at low pH.43
Predicting D by compound structural properties

The complexity of physicochemical properties that contribute to
D in highly functionalised molecules such as NPs led us to the
conclusion that one predictive model to correlate DwithMW for
complex mixtures of NPs was futile. However, through the
generation of models 2 and 3 we have clearly demonstrated that
with some prior knowledge of a molecular structure, accurate
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Correlation between experimental and predicted diffusion
coefficients (n ¼ 63, R2 ¼ 0.99).

Fig. 6 Correlation between log(Dpre) vs. log(MW) and histograms of
counts of log(Dpre) and log(MW) for all 217 043 compounds in the
DEREP-NP database.
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predictions of D can be made. Some failings were also recog-
nized, with molecular shape or molar density proving to be
contributing factors to D as we observed for brominated
compounds. Since the aim of this study is to develop an
orthogonal NMR dereplication method that can correlate
structural information derived from NMR with MW, we decided
to see if D could be predicted based on structural features and
use experimental D as a surrogate for MW. There are several
public and proprietary databases that contain structures of
published NPs and cheminformatics platforms provide tools to
calculate a multitude of parameters that could be used to aid in
the prediction of D. We have previously used the universal
natural product database UNPD (containing 217 043 publicly
available NPs reported prior to 2013) to develop a platform
(DEREP-NP) for rapid identication of known NPs based on
structural features derived from experimental MS and NMR
data.9 DEREP-NP was established in DataWarrior,45 an open-
source soware that also allows other structural and chemical
properties for compounds to be calculated. Based on our
observations of factors that contribute to predicting accurate D,
we calculated seven additional properties for all 217 049
compounds in the database. These properties accounted for:

(a) molar density through a count of oxygens which are not
attached to hydrogens (heavy O), and by a Br ratio (% Br) which
is calculated as the sum of the Br atoms mass as a % of the total
compound MW.

(b) Molecular shape Index (shape), generated by Data-
Warrior, provides values close to 0 for spherical compounds and
values close to 1 for linear compounds, thus taking molecular
shape into account.

(c) Lipophilicity by the relative polar surface area (polarity),
providing a much better correlation than c log P.

(d) Intermolecular H-bonding generated as the total mass
(17 amu � tally of free phenols and carboxylic acids) as a % of
total compound MW (% OH). Counts of free phenols and
carboxylic acids were generated by subtracting counts of
phenols and carboxylic acids that were intramolecularly H-
bonded (as determined using substructure count feature). The
ratio of nitrogen HBDs (% NHBD) and alcohol HBDs (% AHBD)
were calculated in the same manner.

Multiple linear regression analysis of eight structural and
chemical properties for the 63 compounds that we have
acquired experimental D has provided the following
relationship:

model 4:

log D ¼ �7.6365–0.7403 log MW + 0.139 shape

+ 0.0069 heavy O � 0.8506 (% phenol/acid)

� 0.2586 (% Br) � 0.4016 (% NHBD) �0.0947

� (% AHBD) � 0.1282 polarity

This model provides a very accurate prediction of diffusion
coefficients (n ¼ 63, R2 ¼ 0.99), with predicted D (Dpre) dis-
playing a small average error range of �3.7% to +3.0% from
experimental D, and a maximum error range of�9.3% to +7.9%
(Fig. 5 and S7†).
© 2021 The Author(s). Published by the Royal Society of Chemistry
This model can be used to predict diffusion coefficients
(Dpre) for any compound in the DEREP-NP database (or for any
other database of compounds) in DataWarrior‡ and with the
structural fragment tools already embedded in DEREP-NP this
orthogonal Dpre data can replace MW data for structure
matching. The histograms for counts of log(MW) and log(Dpre)
were also very similar (Fig. 6). This again highlights the role of
H-bond acceptors interacting with the DMSO solvent.

In addition, counts of the total number of basic N in
a molecule allowed us to predict D (Dpre_TFA) for TFA salts of all
alkaloids in the NP-DEREP database.

This is a different approach to use DOSY-based dereplication
than that suggested with models 2 and 3 as the D obtained
experimentally are compared against computationally pre-
dicted Dpre. This provides a useful tool for dereplication,
allowing a Dpre lter based on the experimental D to be used in
conjunction with other structural lters (such as counts of
methyl, sp2 proton etc) derived from the observed proton
Chem. Sci., 2021, 12, 10930–10943 | 10939
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resonances in the 1H NMR spectrum. We compared the Dpre

parameter to experimental D (Dexp) for an additional four NPs
not used in the generation of the model. The TFA salts of
aerophobin-2 (64), 19-bromoisoeudistomin U (65), and aplys-
amine 2 (66) all have Dpre within 4% error of their experimental
D, while aerothionin (67) had a 9% error.
Fig. 7 MW prediction improvement with model 2 (upper blue) and
model 3 (bottom red) compared to model 1 (both black) for i (faster
diffusing) and ii (slower diffusing). Green lines represent true MWs.
Validation of models

The accuracy of models 1–4 was tested on a mixture of chro-
matographically inseparable compounds obtained from the
Australian shrub Tasmannia xerophila, also known as Alpine
Pepper. The ground leaf material of T. xerophila was extracted
with MeOH and CH2Cl2, both fractions were combined and
separated by RP HPLC and NP HPLC.

The RP HPLC fractions from T. xerophila was found to con-
tained complex mixtures. Analysis of the residuals from the
monoexponential tting of the 1H DOSY data showed a curva-
ture pattern for all residuals in the dH 0.50–7.50 region, indi-
cating signal decay deriving from more than one component.16

This overlap is the major limitation of 1H DOSY experiments,
rendering inaccurate D values. Individual D values for over-
lapping resonances can potentially be extracted using multi-
exponential processing, however this method cannot
distinguish similar D.16 The multiexponential tting of the 1H
DOSY data for the RP HPLC fraction did not result in any
improvement, leading to erroneous D for resonances in the dH

0.50–7.50 region.
Baseline interference can be detected prior to acquiring 1H

DOSY data through examining the 1H NMR spectrum baseline
at high signal intensity. In the case of the RP HPLC fractions
(Fig. S8†) there was an uneven broad baseline suggesting that
the fractions contained mixtures of larger molecular weight
tannins as well as small molecules. To analyze complex
mixtures such as this requires a 3D DOSY methodology and this
is outside of the scope of this manuscript.

The NP HPLC fractions on the other hand had a cleaner
baseline, devoid of tannin signals responsible for the broad
baseline. Fraction 10 (F10) predominately contained 1H NMR
resonances associated with a mixture of two compounds (i, and
ii) in a ratio of 2 : 1 that coeluted in 70%MeOH by RP HPLC. 1H
Table 1 Diffusion coefficients, MW predictions and DEREP-NP hit rates

Compound name

Dexp Dpre (% error) MW amu (% error)

(10�10 m2 s�1) True Model 1

Spathulenol (68) 3.40 3.55 (+4.6) 220 185 (�16)
Cyclocolorenone (69) 3.72 3.70 (�0.6) 218 160 (�27)
Convolutamine K (70) 2.65 2.76 (+4.1) 408 280 (�31)
Convolutamine Ka (71) 1.96 1.94 (�0.8) 636 460 (�28)
Convolutamine L (72) 3.26 3.44 (+5.4) 323 198 (�39)
Convolutamine La (73) 2.51 2.63 (+4.8) 437 306 (�30)
Volutamine F (74) 1.77 1.70 (�4.1) 828 542 (�35)

a TFA salt. b DEREP-NP hit compounds obtained using. c Only Dpre set to �
e Only NMR features.

10940 | Chem. Sci., 2021, 12, 10930–10943
DOSY data separated these resonances into two bands in the
diffusion dimension (Table 1). Applying the power-law MW
prediction (model 1) to this data established MWpre ¼ 160 and
185 amu for i, and ii respectively (Table 1 and Fig. 7). The 1H
NMR spectrum of the mixture contained a resonance for an
exchangeable proton at dH 3.95 that, based on its integral size,
could be assigned to compound (ii). Therefore, applying MW
prediction using model 2 with effdH values of 0 for i and 3.95 for
ii generated MWpre ¼ 202 and 202 amu for i and ii respectively
(Table 1 and Fig. 7).

Since the two compounds eluted with 70% MeOH by RP
HPLC model 3 predicted an average MWpre ¼ 180, and 207 amu
for i, and ii respectively (Table 1 and Fig. 7).

Matching Dpre in the DEREP-NP database to Dexp (�5% error)
for i generated 4612 hits. Since DEREP-NP was specically
for isolated NPs

DEREP-NP hitsb

Model
2 Model 3 Dpre

c (�5%) NMR/Dpre
d NMRe

202 (�8) 207 (�6) 8089 24 914
202 (�7) 180 (�18) 4612 8 64
353 (�13) 22 460 0 1
580 (�9) 26 470 0 1
250 (�23) 9817 0 4
386 (�12) 23 272 0 4
683 (�18) 19 792 0 0

5% of Dexp.
d Combination of NMR features and Dpre set to �5% of Dexp.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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developed as a tool to identify compounds based on NMR
features, the additional structural features identied for the
faster diffusing compound (i) in the 1H and DOSY NMR spectra
included four methyls, a methyl doublet (CH3–CH) two methyl
singlets (CH3–Cq) and a deshielded methyl (CH3–C sp2), and
incorporating these features as structural lters reduced the
number of potential structures to 96. A pair of aliphatic protons
with a large mutual 18.5 Hz coupling constant, suggesting
a methylene group adjacent to a carbonyl, was present in the
molecule, and a CO lter was added reducing the number of
hits to 28. Since no protonated sp2 hybridized proton was
observed, setting a non-aromatic CH sp2 lter to zero further
reduced the number of hit structures to eight.

For ii, the Dpre (�5% Dexp) lter resulted in 8089 hit struc-
tures. Other structural lters were then applied based on the
observed proton resonances: CH3-Cq for 3 methyl singlets, zero
CH sp2 hybridized protons, >3 CH sp3 hybridized protons and
a sp2 hybridized CH2 group and a OH, reducing the number of
hit structures to 24.

To verify the accuracy of the MW prediction generated by the
four models the structures associated with the two diffusion
bands of resonance were identied from analysis of 2D NMR
data, to be the known sesquiterpenes spathulenol (ii¼ 68) (MW
220.35) rst isolated from Eucalyptus spathulata,46 and cyclo-
colorenone (i ¼ 69) (MW 218.33) rst isolated from Pseudo-
wintera colorata.47

The hydroxyl proton in 68 shows H-bonding with DMSO
leading to slower diffusion compared to 69 even though the two
compounds have almost identical MW. Each of these
compounds were present in the respective hits identied
through the DEREP-NP database search. Of the eight hits
matched to i three are 69 or its stereoisomer, while ve of the 24
possible matched structures for the slower diffusing compound
are 68 or its congurational isomers. For both compounds all
other matches are sesquiterpenes with molecular weights �16
amu. Keeping the structural lters determined by 1H NMR but
eliminating the Dpre lter (�5% error range) increases the
number of possible structures for i from eight to 64, and for ii
from 24 to 914 (Table 1), demonstrating the potential of this
method for dereplication. Clearly, acquiring a quick 2D exper-
iment, such as an edited HSQC, which provides more structural
information, would help to further reduce the number of hits
and this approach should be considered as a possible extension
for 1H DOSY-based dereplication. To our knowledge, this is the
rst database to contain predicted D data for compounds.

This real-life example validates that models 2 and 3 more
accurately predict MWs than a power-law model (Table 1). H-
bonding contributes to the variation in D relative to MW,
providing a clear separation in the diffusion dimension for two
compounds with only a 2 amu difference in MW. We have
© 2021 The Author(s). Published by the Royal Society of Chemistry
recently published the structures of several new brominated
alkaloids isolated from the bryozoan Amathia lamourouxi.48 To
further test the application of this dereplication methodology,
we acquired DOSY data for both the free bases and TFA salts of
(70 and 71) and K (72 and 73) and the free base of volutamine F
(74). Their Dpre vs. Dexp were all within 5.5% error. Applying the
Dpre lter (�5%) in DEREP-NP and adding lters for counts of
aromatic singlets, aromatic methoxys and N-methyls produced
no hits indicating that the compounds were not, as expected, in
the database and were thus considered to be new.

Conclusions

The quest to develop a tool to predict MW by NMR has ulti-
mately led us to produce a highly accurate model to predict
diffusion coefficients based on structural features. Experi-
mental D can be correlated to predicted D (a surrogate for MW)
and this orthogonal physicochemical property along with
structural features, both of which are derived from NMR can be
used to dereplicate known structures found in databases
without the need to acquire mass spectroscopic data. Further-
more, the acquisition of D for compounds in mixtures can be
used as a tool to identify new compounds. Recently developed
tools such as SMART 2.0 (ref. 11) and MADByTE12 that use 2D
NMR data derived from mixtures to dereplicate or predict
structures in databases will signicantly benet from an
orthogonal tool to correlate predicted D with experimentally
derived D (a surrogate for MW). This DOSY methodology is
highly applicable to areas outside of NP research and could be
adapted more broadly in metabolomics and lipidomics
research. We are currently investigating potential to apply the
DOSY diffusion coefficient prediction tool to 3D NMR data such
as DOSY-COSY and DOSY-HSQC for molecular network
matching.

Experimental

LC-MS analysis was carried out on an Agilent 6530 Q-TOF mass
spectrometer with a 1200 Series autosampler and 1290 Innity
LC module using electrospray ionization with a mobile phase
linear gradient of 100% H2O (10 mM ammonium acetate) to
100% MeOH on a Kinetex® 5 mm C18 100 �A (100 � 4.60 mm)
column over 10 min. Each compound was injected individually,
and retention times were determined in (+) or (�) mode and by
UV. The total dwell time of the system was measured by UV and
was found to be 1.2 min, this was then subtracted from the
retention times of compounds and divided by the total number
of mins to afford the %MeOH at which each compound eluted.
HPLC separation was performed on a Merck Hitachi L-7100
pump equipped with a L-7455 diode array detector, and frac-
tions were collected with a Gilson 215 liquid handler. The total
dwell time of HPLC system was determined to be 3.7 min by UV
measurement. The solvents used for HPLC separation were
HPLC grade, and solvent used for LC-MS analysis were LC-MS
grade. H2O was ltered using a Millipore Milli-Q PF.

NMR data was recorded at 298 K on a Bruker Avance III HDX
800 MHz spectrometer with a triple resonance 5 mm cryoprobe,
Chem. Sci., 2021, 12, 10930–10943 | 10941
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and a Bruker III 500 MHz spectrometer with a 5 mm probe. All
compounds were prepared as individual samples in 3 mm NMR
tubes with 200 mL of DMSO-d6 with 0.5% (v/v%) TTMS. The 1H
DOSY data was acquired without sample spinning at 298 K. The
pulse sequence used was LEDBP (ledbpgp2s in the Bruker
library) with 32 768 data points and 32 scans. The diffusion
delay (D) was kept constant at 0.1 s and the diffusion pulse (d)
was adjusted to provide �90% signal attenuation for each
compound, the spoil gradient was 0.6 ms, the gradient recovery
delay was 0.2 ms and the eddy current delay was 5 ms. Each
experiment was acquired with 24–32 diffusion gradients incre-
mented linearly from 5 to 95% of the maximum gradient
strength.

NMR data was processed in TopSpin 3.6.1, without zero-
lling and with line broadening of 0.3–0.5 Hz. The 2D DOSY
spectra were generated with Dynamics Center 2.5.2 using
monoexponential curve tting. The D for each compound was
calculated as the average D of all signals that showed accurate D
without any signal overlap. The average D for a compound was
referenced to TTMS signal at 3.157 � 10�10 m2 s�1, which was
determined from a mixture of only TTMS and DMSO in three
different samples.

All calculations were carried out using MATLAB 2016a (The
MathWorks, Inc.). The log P calculation and parameters used to
establish model 4 were generated in OSIRIS DataWarrior
Version 5.2.1 by adding substructure counts to the DEREP-NP
database. Dpre and Dpre TFA were generated by applying the
formula from model 4 using the “calculated values” function in
DataWarrior.

The Tasmannia xerophila plants were purchased from
Victorian Alps Nursery, Victoria, Australia. The dried and
ground T. xerophila leaf material (80 g) was exhaustively
extracted with CH2Cl2 and MeOH, collectively yielding a dark
green gum (16 g). The combined extracts were dissolved in
MeOH and adsorbed onto C18 silica and loaded to an HPLC
cartridge (20 mm � 10 mm) and connected in series to a Betasil
5 mm100�A C18 HPLC column (21.2� 150mm). The column was
eluted with a linear gradient from 100% H2O to 100% MeOH at
a ow rate of 9 mLmin�1 for 60minutes with fractions collected
every min. This provided mixtures of related compounds
throughout all HPLC fractions, including 68 and 69 in fraction
47. Reverse-phase HPLC fractions 25–52 were then combined
(189 mg) and adsorbed onto diol-bonded silica and loaded to an
HPLC cartridge (20 mm � 10 mm) and connected in series to
a YMC-pack diol 5 mm 120 �A HPLC column (21.2 � 150 mm).
The column was eluted with a linear gradient from 85% hexane/
15% CH2Cl2 to 100% CH2Cl2 over 55 min, then to 90% CH2Cl2/
10% MeOH over 20 min at a ow rate of 9 mL min�1 for 60
minutes with fractions collected every min, providing a mixture
of 68 and 69 in fraction 10 (0.6 mg).
Data availability

The ESI le contains data used to develop the MW
and D prediction models. The DEREP-NP database containing
predicted D can be downloaded at https://github.com/guykl/.
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