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Direct Cu-mediated aromatic ®F-labeling of highly reactive
tetrazines for pretargeted bioorthogonal PET imaging

Pretargeted positron emission tomography (PET) imaging
uses short-lived radionuclides to visualize and quantify
slowly accumulating targeting vectors such as antibodies.
Fluorine-18 is the most clinically relevant PET radionuclide,
while tetrazine-trans-cyclooctene ligation is the most popular
reaction for pretargeted imaging due to its high speed

and biorthogonal character. Hence tetrazines labeled with
fluorine-18 and having fast ligation kinetics are highly sought
after. This work presents a simple, scalable and reliable
procedure for direct covalent '®F-labeling of highly reactive
tetrazines suitable for pretargeted imaging /n vivo.
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Direct Cu-mediated aromatic ®F-labeling of highly
reactive tetrazines for pretargeted bioorthogonal
PET imagingf

Rocio Garcia-Vazquez,;*© Umberto M. Battisti,i? Jesper T. Jorgensen,®®

Vladimir Shalgunov,?®° Lars Hvass,”® Daniel L. Stares,? Ida N. Petersen,”

Francois Crestey,? Andreas Loffler,® Dennis Svatunek, ©4 Jesper L. Kristensen, ©2
Hannes Mikula, ¢ Andreas Kjaer @ *°° and Matthias M. Herth & *a¢

Pretargeted imaging can be used to visualize and quantify slow-accumulating targeting vectors with short-
lived radionuclides such as fluorine-18 — the most popular clinically applied Positron Emission Tomography
(PET) radionuclide. Pretargeting results in higher target-to-background ratios compared to conventional
imaging approaches using long-lived radionuclides. Currently, the tetrazine ligation is the most popular
bioorthogonal reaction for pretargeted imaging, but a direct F-labeling strategy for highly reactive
tetrazines, which would be highly beneficial if not essential for clinical translation, has thus far not been
reported. In this work, a simple, scalable and reliable direct 18F—labeling procedure has been developed.
We initially studied the applicability of different leaving groups and labeling methods to develop this
procedure. The copper-mediated 8F-labeling exploiting stannane precursors showed the most
promising results. This approach was then successfully applied to a set of tetrazines, including highly
reactive H-tetrazines, suitable for pretargeted PET imaging. The labeling succeeded in radiochemical
yields (RCYs) of up to approx. 25%. The new procedure was then applied to develop a pretargeting
tetrazine-based imaging agent. The tracer was synthesized in a satisfactory RCY of ca. 10%, with a molar
activity of 134 + 22 GBq pmol™* and a radiochemical purity of >99%. Further evaluation showed that the
tracer displayed favorable characteristics (target-to-background ratios and clearance) that may qualify it
for future clinical translation.

for molecular imaging. These include a relatively short positron
range (2.4 mm max. range in water), a good branching ratio

Positron Emission Tomography (PET) is a powerful, non-
invasive and routinely used imaging tool in precision medi-
cine or drug development.’ Its high sensitivity (the level of
detection approaches 10™'> M of tracer), isotropism and
quantitativity are in combination unmatched compared to any
other in vivo molecular imaging technique.*® Fluorine-18 (**F) is
considered as the best suited PET radionuclide for clinical
applications as it provides almost ideal physical characteristics
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(96.7% positron decay) and a half-life of approx. 110 min, which
enables the distribution of '®F-labeled tracers within a several
hundred kilometers range.®® Recently, bioorthogonal chemistry
has emerged as a versatile tool for pretargeted nuclear imaging
of slow-accumulating targeting vectors such as monoclonal
antibodies (mAbs) or other nanomedicines.®™ Improved
imaging contrast (up to 100-fold) and lower radiation burden to
healthy tissue can be achieved using pretargeting compared to
conventional imaging strategies." These improved imaging
characteristics are a result of the temporal separation of the
slow targeting process of nanomedicines from the actual
imaging step. Consequently, the exceptional target specificity of
nanomedicines as well as the optimal pharmacokinetics of
small molecules for molecular imaging, e.g. selective target
accumulation and rapid clearance from blood, can be exploited
using pretargeted imaging.''® So far, the most prominent
reaction for pretargeted imaging is the tetrazine (Tz) liga-
tion.™"” Excellent chemoselectivity, metabolic stability and
high reactivity make the Tz ligation as exceptional as the biotin-
(strept)avidin interaction for pretargeting strategies.’** The Tz

© 2021 The Author(s). Published by the Royal Society of Chemistry
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ligation is driven by the Inverse-Electron-Demand Diels-Alder
(IEDDA) cycloaddition between an electron-deficient Tz and
a strained trans-cyclooctene (TCO) derivative, followed by
aretro-Diels-Alder elimination of nitrogen.'®**>* Despite efforts
focused on TCO-based click imaging agents,*® the use of
radiolabeled Tz has gradually emerged in recent literature.*
Throughout the last decade, the labeling of Tzs was mostly
limited to chelation of radiometals such as ®*Cu, #zr, **Sc or
®8Ga.?*' In 2013, the first successful attempt to label a Tz
moiety with a covalently bound PET radionuclide, ie. with
carbon-11, was reported by our group.** Despite significant
progress in the field, until recently all reported '*F-Tzs had
electron-donating alkyl substituents at the Tz ring and thus had
low reactivity towards TCOs.** The reason for this is that highly
reactive mono- or bis-(hetero)aryl-substituted Tzs decompose
under the harsh conditions used for standard nucleophilic **F-
fluorination (Sx2 or SyAr) approaches.'*?*"** Only relatively base
insensitive and less reactive Tzs could be radiolabeled, via an
"8p-aliphatic substitution (Sy2) strategy. Radiochemical yields
(RCYs) up to 18% were achieved.”* More recently, the prepara-
tion of a highly reactive '®F-labeled glycosylated Tz by Keinénen
and co-workers and an ["*F]AIF-NOTA-labeled Tz radioligand by
Meyer and co-workers were reported.*** The latest strategy
added to this portfolio is the synthesis of '®F-radiolabeled tet-
razines via the copper-catalyzed azide-alkyne cycloaddition.****
Within this study, we aimed to develop a simple, scalable
and reliable direct aromatic radiofluorination procedure that
can be applied to access highly reactive '®F-labeled Tzs (Fig. 1).
Direct aromatic [*®F]fluorinations are in general fast and effi-
cient and the corresponding fluoroarenes are more stable
towards defluorination than their aliphatic counterparts.** For
these reasons, the synthesis of '*F-fluorinated aryls has found
widespread application within the last decade.***~** Typically,
nucleophilic aromatic substitution (SyAr) is the method of
choice to radiolabel fluoroarenes. However, they require rela-
tively strong basic conditions and high temperature, and as
such, the SyAr is not ideally suited to 8F_label structures con-
taining highly reactive Tz moieties which are known to be base-

sensitive.”»® Recently, several mild aromatic '®F-labeling
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strategies have been reported that proceed at lower tempera-
tures and with short reaction time, while using less basic
reaction conditions. In particular, Cu-mediated oxidative fluo-
rinations of tin and boronic esters or acids allow fluorination of
electron-rich substrates under mild conditions.**** In this
work, several SyAr and oxidative fluorinations were screened in
order to label highly reactive Tzs. Cu-mediated fluorinations of
stannane precursors succeeded in moderate RCYs (d.c.) of 10-
24% at the end of the synthesis (EOS). Based on these results,
a new Tz, compound 21, that possesses the necessary lip-
ophilicity (log D, 4 < —3) and high rate constant (>50 000 M
s~ 1) for in vivo pretargeting experiments was designed.** ['®F]21
was radiolabeled in a RCY (d.c.) of 11 & 3%, with an A, of 134 +
22 GBq pmol " (d.c.) and a RCP of =99%.%>374° Pretargeted in
vivo PET imaging in tumor-bearing mice showed a mean tumor
uptake of ['*F]21 of 0.99 + 0.14% ID per g (mean + S.E.M.) after
only 1 hour with a high mean tumor-to-muscle ratio of 10. We
believe that the developed tracer shows pharmacokinetic
properties warranting in depth preclinical evaluation in the
near future and that the developed labeling method will pave
the way for developing '®F-Tz based pretargeted imaging agents
with favorable reaction kinetics, good metabolic stability and
a pharmacokinetic profile required for bioorthogonal in vivo
chemistry.

Results and discussion
Preparation of tetrazine precursors

In order to explore whether highly reactive Tzs can be directly
8p-labeled, we investigate different nucleophilic **F-labeling
strategies, such as concerted nucleophilic aromatic substitu-
tion of uronium or iodonium salts,***>**” hypervalent iodonium
based precursors,**** minimalistic labeling strategies®>*” and
Cu-mediated reactions. Tz 6 was initially selected as a simple
model as it is readily accessible and displays moderate stability
against strong bases. This allows us to first study the suitability
of these types of reaction before attempting the most promising
strategy with base-sensitive Tz-scaffolds. Precursors 1-5 and
reference compound 6 were synthesized similarly to reported

This work
Direct '®F-Labeling of High Reactive Tz
—
<
18F Cu-mediated '®F-Fluorination
 Milder reaction conditions
o Easy to implement
o Scalable
o Late stage labeling

Tz with suitable kinetics for
in vivo applications can be
BF-Jabeled

Fig. 1 Comparison of previously reported '8F-labeling strategies of tetrazines vs. the direct aromatic '8F-labeling approach developed in this

work.
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procedures (ESI, section $21).%%2 In our hands, '®F-labeling
strategies including SyAr approaches resulted in decomposi-
tion of the product. In contrast, the Cu-mediated '°F-
fluorination starting from the stannane (3) and the boronic
ester (3a) precursor resulted in the radiolabeling of the model
compound ['®F]6. The radiochemical conversion (RCC) was
approximately 14% at the first attempt (Fig. 2A).>* However, only
the stannane precursors of more reactive Tzs could be synthe-
sized. Boronic ester precursors decomposed (ESI, section S27).
Consequently, further optimization of temperature, reaction
time and amount of base at the start was only performed with
precursor 3 and led to an improvement of approx. 30% RCC
(Fig. 2B).

Synthesis and radiolabeling of tetrazines with increased
reaction kinetics

With these encouraging results, we decided to study whether
more reactive Tzs could also be labeled using this strategy. Tzs
with stepwise increased reactivity were selected to investigate
the scope of our radiofluorination method (Table 1). Precursors
and reference compounds were synthesized using known
procedures (ESI, section S2t)**>**%% and radiolabeling was
conducted using the best conditions identified labeling our
model compound [**F]6. Moderate RCCs (12-31%) as well as
sufficient decay-corrected (d.c.) RCYs (10-24%) were observed at
the end of synthesis (EOS) for methyl-, phenyl- and H-Tzs (Table
1). The automated synthesis including [*®F]fluoride concentra-
tion and drying, labeling, high-performance liquid chromatog-
raphy (HPLC) separation and formulation was carried out

View Article Online
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within 90 minutes (ESI, section S3}). Radiochemical purity
(RCP) was >99% for all prepared '®F-fluorinated tetrazines, and
the molar activity (A,) was 190 & 10 GBq umol " (d.c) (n = 3) for
[*®F]6, which is in line with the results obtained for other tracers
on the used module and the same starting activity. The typical
activity yield was 2.5-3 GBq starting from ~12 GBq fluoride-18.
Pyridyl structures could not be labeled using this labeling
strategy, most likely due to a chelation of the copper ion with
the respective pyridyl moieties of the Tz.*® As expected, the most
reactive Tz resulted in the lowest RCY. However, the observed
RCYs are in the range of many clinically applied PET
tracers.*"*>%7

Effect of synthesis and radiolabeling of H-Tz upon
substitution in the aryl ring

To study the effect of different substituents at the aryl ring, [**F]
13 was selected for further analysis since it displayed the
highest relative IEDDA reactivity. The IEDDA reactivity is one of
the most crucial factors for pretargeted in vivo applications.™
Electron-donating and electron-withdrawing substituents were
introduced on the phenyl moiety at different positions, and the
substitution pattern was correlated with its synthetic accessi-
bility and RCCs (used as a surrogate for RCYs, RCC correlated
with RCY in our study) (Table 2). While all 5-substituted stan-
nane precursors were successfully synthesized from respective
iodo-Tz intermediates, only the methyl and/or methoxy deriva-
tives among 4- and 6-substituted stannanes could be prepared -
most likely due to steric hindrance.* During '°F-
fluorinations, only 3,5-disubstituted stannane precursors

A) B)
B |
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["8FIKF/KOTHIK,CO5
Cu(OTf),, pyridine
1 5
NZN NN NP DMA, temp., time NP
N N NTN NTN NT'&
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SyAr viaiodorium st 8 [7F16
via an iodine precursor
o. O\D P Base amount (ug)t! RCC (%)
25 2948
|j;(° OH
o ; \ 50 3145
["8FIF/Kp2/K,CO3 { Y PImel, o 100 1942
2 : ['°Fl6 i 4 "
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&
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Fig. 2 Proof of principle of F-labeling of a methyl-phenyl-Tz. (A) Radiolabeling strategies using different methyl-phenyl-Tz precursors. (B)
Optimization of the Cu-mediated F-fluorination from stannane precursor 3 to [*8F]6. 2Conditions: Cu(OTf),, pyridine, [*8FIKF, DMA, 100 °C,
5 min. PConditions: Cu(OT#),, pyridine, [*¥FIKF (50 ug K»COs), DMA, 5 min. “Conditions: Cu(OTf),, pyridine, [*®FIKF (50 pg K,COs), DMA, 100 °C.
Radiochemical conversion (RCC) was determined by radio-TLC and radio-HPLC (n = 3). Radiochemical yield (RCY) was decay corrected to the
starting amount of radioactivity received from the cyclotron and the isolated product without a formulation step (n = 3).
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Table 1 Product scope for the Cu-mediated *F-fluorination of aryl-tetrazines starting from stannane precursors

18 18 18

18 18 18

18F F | N 18F
=N
NZTN z z
é é é« é« oy
X X J
Compound [**Fl6 [**F]7 [**F]8 [**F]9 [**F]10 [**F11 [**F]12 [**F13
RCC* [%)] 3045 2841 3045 3142 — 18 + 4 — 12+1
RCY? [%] 23+1 26 +2 23 +£2 24 +3 — 15 + 3 — 1143
Rel. reactivity” 1.0 1.4 1.8 3.0 10 70 91 96
RCP [%)] =99 =99 =99 =99 — 99 — 99

“ Radiochemical conversion (RCC) and radiochemical purity (RCP) were determined by radio-HPLC and radio-TLC (n = 3). ” Radiochemical yield
(RCY) was decay corrected to the starting amount of radioactivity received from the cyclotron and the isolated product without a formulation step (n
= 3). © Relative IEDDA reactivity was calculated based on second order rate constants determined by stop‘?ed—ﬂow measurements of the respective

reference compound ('°F-Tz) with trans-cyclooctene at 25 °C in 1,4-dioxane or acetonitrile (see the ESI).

provided useful RCCs in the order of 14-31%. No or only
minimal product formation could be observed with a different
substitution profile (Table 2). Hence, the 3,5-disubstitution
pattern was identified to be best suited for Cu-mediated
oxidative "®F-fluorinations.

Design of the promising tetrazine

Recently, our group has demonstrated that the performance of
Tz-derivatives and probes for pretargeted in vivo ligation
strongly depends on the lipophilicity and the IEDDA reactivity
of the Tz agent. Low polarity (clog D, 4 < —3) and rate constants
>50 000 M~ ' s™! for the click reaction with axially configured
TCO tags (Dulbecco's PBS, 37 °C) resulted in the best target-to-
background ratios.* In this respect, we designed two highly

Table 2 Product scope with respect to different substituted phenyl-
Tzs for the Cu-mediated *8F-fluorination from stannane precursors

-

5R\4\ LBF 3

6 l Z 2

N N

| u

N N

Compound Position

R (-p, -m, -0) 4(p) 5 (-m) 6 (-0)
-CH, [**Fl14 — 14 + 3° —
-OCH, [**Fl15 4+1 17 + 3° —
-NHCOCH;, [**F16 — 31+ 3° 4
-CONH, [**F17 — 24 4 2° —
-CONHCH;, [**FJ18 — 20 + 3° —

“ Stannane precursor could not be synthesized. > RCCs were determined
by radio-HPLC and radio-TLC (n = 3). ¢ Decomposed during the Cu-
mediated '*F-fluorination. ¢ Iodo-Tz intermediate could not be
synthesized.

© 2021 The Author(s). Published by the Royal Society of Chemistry

No product could be isolated.

reactive Tzs, which contained polar groups and allowed for
direct '®F-labeling. Tz 19 possesses a clog Dy 4 of —3.09 and
a rate constant of 91000 M~' s™' and Tz 21 possesses
a clog D, 4 of —6.93 and a rate constant of 82 000 M~ " s~ (ESI,
section S5t). Both compounds were synthesized in sufficient
yields via a Pinner-like synthesis (ESI, section S2) and evalu-
ated in an in vivo assay recently described by our group
(Fig. 3A).** This assay, inspired by traditional receptor blocking
studies, applies anti-TAG72 mAb CC49 modified with axially
configured TCO tags (CC49-TCO) and [""'In]DOTA-Tz (22),
which has previously successfully been used for pretargeted
imaging in (TAG72 expressing) LS174T tumors.”® In short,
tumor-bearing mice are injected with a CC49-TCO, 72 h before
the non-labeled Tz is to be tested. Subsequently, [***In]DOTA-Tz
(22) is injected after 1 h and a biodistribution is performed 22 h
later (ESI, section S5t).*** The assay evaluates the blocking
ability of the non-labeled Tz, and therefore allows estimation of
the in vivo ligation performance of this compound. Higher
blocking capacity is correlated with better in vivo performance
of the respective Tz."* As expected — based on our previous data -
we found a correlation between clog D 4 and in vivo blocking of
the Tzs tested in the assay (Pearson's r = 0.89, p <0.01) and the
most polar Tz 21 (clog D;, = —6.93) resulting in the best
blocking effect (90%) (Fig. 3B) was selected for further
development.

Synthesis, radiolabeling and stability of final compound [**F]
21

The shelf stability of Tz 21 was assessed in phosphate-buffered
saline (PBS) by analytical-HPLC. Compound 21 did not show
degradation in PBS after 12 h at 37 °C at a concentration of 2
nmol mL~" (98%). Consequently, the stannane precursor 20
was synthesized in 4 steps (ESI, section S2t). Radiolabeling
succeeded in a one-pot, two-step sequence with a RCY (d.c.) of
11 + 3% (n = 4) and an overall synthesis time of ca. 90 minutes

Chem. Sci., 2021, 12, 1668-11675 | 11671
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(A) Visualization of the blocking assay. Tumor-bearing mice were first injected with CC49-TCO, 72 h before administration of the non-

radioactive Tz. After 1 h, *in-labeled Tz ([}*'In]DOTA-Tz, (22), was injected and an ex vivo biodistribution was carried out 22 h p.i. in order to
determine the blocking effect of the non-radioactive Tz. (B) Ability of 1°F-Tzs (13, 14—18-m, 19, and 21) to block *!In-DOTA-Tz (22) in the in vivo
screening assay described in (A) (n = 3) (ESI, section S5t). (C) Synthesis and radiolabeling of [*®F]21. (D) Analytical-HPLC of reference compound
21 (UV/Vis, 254 nm) (upper panel), and radio-HPLC of the purified [**F]21 (middle panel) and ligation product after click reaction with the TCO-
PNP carbonate (23), one hour post-injection (lower panel). Analytical HPLC conditions: Luna 5 pm C18(2) 100 A, 150 mm x 4.6 mm; eluents: A,
H,O with 0.1% TFA: B, MeCN with 0.1% TFA: gradient from 100% A to 100% B over 12 min, back to 100% A over 3 min, flow rate 2 mL min™™.

including synthesis, separation and formulation. ['*F]21 was
obtained with an A, of 134 + 22 GBq pmol " (d.c.), a RCP of
=99% (n = 4) and an activity yield of 600-700 MBq (EOS)
starting from ~12 GBq fluoride-18 (Fig. 3C and D). ['®*F]21 was
stable in PBS at room temperature for minimum 4 h and rapidly
reacted with TCO-PNP carbonate (23) as confirmed by radio-
HPLC (Fig. 3D and ESI, section S31). Residual amounts of Cu
and Sn in the final formulated solution were analyzed by ICP-
MS and found to be well below the allowed limits specified in
the ICH Guidelines (41-60 and 2.3-3.0 ug L™" vs. 300 and 600 pg
per day, respectively).**>%-¢

Pretargeted PET in vivo imaging

Next, we evaluated the performance of [**F]21 in pretargeted
PET imaging (Fig. 4A). Balb/c nude mice bearing LS174T tumor
xenografts (n = 3 per group) were injected i.v. with either CC49-
TCO (100 pg, 3.9 nmol, ~7 TCOs per mAb) or non-modified
CC49 (control). After 72 h, [**F]21 (2.86 + 0.99 MBq/100 L)
was administered and the mice were PET/CT scanned after 1 h.
Image-derived uptake in tumor, heart (surrogate for blood) and
muscle tissue was quantified as percentage injected dose per
gram (mean %ID per g) (Fig. 4B-E). After completion of the
scan, mice were euthanized and ex vivo biodistribution was

1672 | Chem. Sci, 2021, 12, 11668-11675

performed (ESI, section S6t). Mice pretreated with CC49-TCO
demonstrated a mean tumor uptake of [*F]21 of 0.99 =+
0.14% ID per g (mean + S.E.M.). The tracer displayed good
target-to-background ratios with muscle uptake < 0.15% ID
per g for all animals (Table S91). This was also evident from
PET/CT images, where tumor uptake in the CC49-TCO group
was clearly visible (Fig. 4E). The mean tumor-to-blood ratio was
0.9, and thereby the specific uptake is similar to what was
previously reported for other pretargeted imaging agents in the
same tumor model.**

In contrast, a mean tumor-to-muscle ratio of 10 was detected
which in fact is significantly higher compared to what has
previously been found for the “state-of-the-art” Tz-based
imaging agents ['®F]22 and [*'Cu]Cu-NOTA-PEG7-H-Tz in
a similar pretargeting set-up (LS174T bearing mice, using CC49-
TCO 72 h prior to tracer injection, similar imaging timeframes)
(Fig. 4C and D).2*** However, ['®F]21 showed a 3 to 5-fold lower
tumor uptake compared to those imaging agents (Fig. 4E).2>*
All tissues including tumors showed low '®F-uptake in control
animals (CC49) (tumor uptake of 0.05 £+ 0.04% ID per g). The
findings from the imaging experiment were confirmed by ex
vivo biodistribution data (Table S107t). Except for the tumor, the
only tissue where the tracer uptake was significant was blood.
This accumulation is likely caused by the in vivo ligation of [**F]

© 2021 The Author(s). Published by the Royal Society of Chemistry
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in the field
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Tumor [% ID/g] 1.0£0.1 32102 48104
TIM ratio 10.0 6.4 3.2 g 0%ID/g
T/B ratio 0.9* 1:4* 0.6*

Fig. 4 PET/CT scan of CC49-TCO pretargeted [*3F]21 in LS174T tumor xenograft bearing mice. (A) General pretargeted imaging approach. (B)
PET-image derived mean %ID per g in tumor, heart and muscle tissue 1 h p.i. of [*8F]21. Data are shown as mean + S.E.M; n = 3 per group. *p <
0.05 (Welch's t-test). (C and D) Image-derived tumor uptake (mean %ID per g), tumor-to-muscle (T/M) and tumor-to-blood ratio (T/B) of [*3F]21
in comparison with the “state-of-the-art” applied Tz imaging agents [**CulCu-NOTA-PEG7-H-Tz (PET 2 h p.i., n = 4) and [**In]22 (SPECT 2 h p.i.,
n = 4). Tumor uptake and ratios of [**CulCu-NOTA-PEG7-H-Tz and [**In]22 2 h p.i. in nude BALB/c mice bearing subcutaneous LS174T tumor
xenografts pretreated with CC40-TCO (100 pg) have recently been published.?8%° Data are shown as mean =+ standard error of mean (SEM).
*Image-derived uptake in heart from SPECT and PET images used as a surrogate for blood.?¢° (E) Representative images from PET/CT-scans 1 h
p.i. of [*®F]21. Mice were administered with either non-modified CC49 (left) or CC49-TCO (right), 72 h prior to [*8F]21 injection. Arrows indicate

LS174T tumor xenografts. Scale bar indicates mean %ID per g.

21 to CC49-TCO still circulating in the bloodstream, an obser-
vation that has been reported before for other pretargeting
pairs.” If residual mAbs are removed from the blood pool by e.g.
a clearing agent, subsequent injection of ['*F]21 will likely result
in an improved tumor-to-blood ratio.*®

Conclusion

In conclusion, this work enabled the first direct '*F-labeling of
highly reactive Tzs starting from stannane precursors via a Cu-
mediated approach. Applying this strategy, we have successfully
prepared a new '°F-Tz, ['®F]21, with highly favorable charac-
teristics for pretargeted in vivo imaging. The developed proce-
dure is simple, short, reproducible and scalable. Therefore, it is
more suitable for clinical applications than previously used
multistep '®F-labeling strategies. We are thus convinced that
our method for the direct radiofluorination of highly reactive
tetrazines will improve and accelerate the clinical translation of
pretargeted imaging based in vivo click chemistries.
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