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ations into the biosynthesis of the
gymnastatin and dankastatin alkaloids†

Bingqi Tong,ab Bridget P. Belcher,ab Daniel K. Nomura abc

and Thomas J. Maimone *ab

Electrophilic natural products have provided fertile ground for understanding how nature inhibits protein

function using covalent bond formation. The fungal strain Gymnascella dankaliensis has provided an

especially interesting collection of halogenated cytotoxic agents derived from tyrosine which feature an

array of reactive functional groups. Herein we explore chemical and potentially biosynthetic relationships

between architecturally complex gymnastatin and dankastatin members, finding conditions that favor

formation of a given scaffold from a common intermediate. Additionally, we find that multiple natural

products can also be formed from aranorosin, a non-halogenated natural product also produced by

Gymnascella sp. fungi, using simple chloride salts thus offering an alternative hypothesis for the origins

of these compounds in nature. Finally, growth inhibitory activity of multiple members against human

triple negative breast cancer cells is reported.
Introduction

Natural products have long been a rich source of medicinal
agents and sources of inspiration for the design of numerous
clinical candidates and FDA-approved drugs.1 Among these,
members that interact with protein targets through covalent
bond formation have the potential to open up new areas of
druggable space, provide sustained target engagement, and
confer unique selectivity as a result of architectural comple-
mentarity to many fully synthetic small molecules.2 Moreover,
natural products featuring more than one covalent warhead
offer the prospect of engaging several nucleophilic protein
residues and potentially multiple protein partners.3

Against this backdrop, we became interested in the fasci-
nating array of chlorinated gymnastatin and dankastatin alka-
loids rst disclosed in 1997 from the fungal strain Gymnascella
dankaliensis isolated from the sponge Halichondria japonica
(Fig. 1).4 Presumably produced through the merger of tyrosine
and a 14-carbon polyketide fragment (see 1) to rst generate
gymnastatin N (2), electrophilic halogenation and various
oxidative cyclization reactions create a small library of archi-
tecturally complex natural products from a common and simple
fornia–Berkeley, Berkeley, CA 94720, USA.
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precursor. Gymnastatin and dankastatin alkaloids possess
a veritable treasure trove of distinctive electrophilic functional
groups, including chloroenone, a-chloroketone, epoxyketone,
lactol, and a,b,g,d-unsaturated amide moieties; indeed, some
members contain as many as ve potential electrophilic sites.5

While detailed target identication studies are lacking, many of
these tyrosine-derived alkaloids are reported to possess signif-
icant anti-cancer activity.4

With over 20members isolated possessing varying degrees of
oxygenation, halogenation, and cyclization, it is not unreason-
able to suspect that gymnastatin A (3) plays a central role in the
Fig. 1 Tyrosine-derived alkaloids from Gymnascella sp. fungi.
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Fig. 2 Selected chlorinated gymnastatin and dankastatin members and related natural product aranorosin.
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biosynthesis of other tyrosine-derived alkaloids (see 4–14),
possibly through chemistry which can be replicated without
enzymes (Fig. 2). Indeed, biosynthetic logic has guided
synthetic routes to various gymnastatin members and related
alkaloids.6,7 Despite this, detailed chemical insight regarding
the formation, stereochemistry, and interconversion of various
members is lacking. Given our interest in bicyclo[3.3.1]nonane-
containing natural products and covalently binding natural
products, especially those containing similar lipophilic amide
side chains,3 we sought to develop a unied synthetic platform
to these alkaloids as a gateway into studying their biological
targets.8,9 Herein we report simple synthetic solutions to
multiple chlorinated gymnastatin and dankastatin metabolites,
uncovering very subtle factors which favor the formation of
a given skeletal type. We also provide an unappreciated link
between this natural product family and the well-known fungal
natural product aranorosin (15) which has also been isolated
from a terrestrial variant of G. dankaliensis. Finally, we report
Fig. 3 Understanding ring formation in the biosynthesis of gymnastatin a
(B) Stereochemical problems encountered when employing water as an

© 2021 The Author(s). Published by the Royal Society of Chemistry
growth inhibitory activity of six members spanning all three
scaffold types (spirocyclic dienone, bicyclo[3.1.1]nonane, and
oxo-decalin) against human triple negative breast cancer cells.

Results and discussion

Bicyclo[3.3.1]nonane-containing gymnastatins and the oxo-
decalin-containing dankastatins are proposed to arise from 3
via aldol (see 16) and oxa-Michael (see 17) pathways respectively
(Fig. 3A).4 The presence of a C-9 methyl ether in gymnastatins F
(9) and Q (10) relative to a secondary hydroxyl group in gym-
nastatins G (11) raises questions regarding the identity of the
“OR” group that can trigger this process (i.e. H2O vs. MeOH), in
addition to stereochemical concerns arising from inter- vs.
intramolecular delivery of the oxygen nucleophile. Additionally,
dankastatins exists as two different sets of oxo-cis-decalin dia-
stereomers (compare 12 vs. 13/14); how (or if) nature controls
the formation of a given isomer is an intriguing question.
nd dankastatin alkaloids. (A) Chemical and stereochemical possibilities.
oxygen nucleophile (C) optimization studies.

Chem. Sci., 2021, 12, 8884–8891 | 8885
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We initially targeted gymnastatin G (11) owing to its potent
reported activity against the P388 lymphocytic leukemia cell
line, and reactive epoxyketone functionality.4a Inspired by the
work of Nishiyama on ether-containing gymnastatins F/Q, we
had hoped that simply substituting methanol with water would
forge the bicyclo[3.3.1]nonane core of 11 in a biomimetic
cascade (Fig. 3B).6d Known compound 18, derived from (L)-
tyrosine,6 was treated with aqueous KOH in MeCN yielding two
bicyclo[3.3.1]nonane-containing products, 19 and 20 in a 1.2 : 1
ratio. Surprisingly, however, the C-9 stereocenter was incorrectly
set during this process.10 Isomer 20 could be converted to 19 by
treatment with catalytic amounts of base, suggesting that dia-
stereomers at C-1 are formed in a reversible aldol reaction step,
and that, the oxa-Michael addition step, albeit producing an
undesired outcome, was stereoselective. Presumably this
outcome arises from fast intramolecular oxa-Michael addition,
wherein a hydrated aldehyde intermediate (see 17, R¼H) serves
to deliver the oxygen nucleophile internally forming the cis-6,6-
fused (dankastatin-type) bicyclic lactol. Subsequent lactol ring-
opening then generates an aldehyde which participates in the
aldol process. This observed reactivity questions the strategy
nature employs in setting the correct C-9 stereocenter if water is
used as a nucleophile. From a synthetic standpoint, we were
also not successful in advancing 19/20 into gymnastatin G (11)
(vide infra).11

Given these results, we examined alternative alcohol-based
nucleophiles in order to prevent the proposed reaction
pathway that leads to undesired C-9 stereochemistry; the
resulting alkyl ethers formed could in principle be deprotected
and ultimately processed to 11 which we desired for biological
testing (Fig. 3C). Dienone 18 was reacted with various quantities
of either allyl or benzyl alcohol using a variety of bases and
subsequently quenched at various temperatures. Employing
sub stoichiometric quantities of Li-, Mg-, and Na-based bases
was ineffective at low temperatures (entries 1–3), but potassium
bases employed in excess afforded substantial amounts of the
desired bicyclo [3.3.1]nonane 21 and isomeric counterpart 22
(entries 4–7). The gymnastatin-type scaffold was favored under
these conditions, and optimal ratios of 21 were obtained using
Scheme 1 Total synthesis of gymnastatin G.

8886 | Chem. Sci., 2021, 12, 8884–8891
two equivalents of base (entries 6 and 7).12 Of note, in entry 5,
wherein the reaction was kept colder, we observed formation of
small amounts of the dankastatin scaffold (see 23) in addition
to 21/22. Finally, maintaining a �78 �C reaction temperature
(entries 8–10) led to substantial quantities of 23 showing that
under carefully controlled conditions either scaffold can be
generated from 18.

With conditions identied for construction of the key bicyclo
[3.3.1]nonane core with the correct C-9 stereocenter, we rein-
vestigated the synthesis of gymnastatin G (11) (Scheme 1).
While the epoxide found in 11 could be envisioned to arise from
the chloroenone motif of gymnastatin F/Q, we had been unable
to realize this process using previously prepared isomer 19/20.11

Given these observations, we proceeded to investigate a mono-
chlorinated tyrosine derivative as a means to synthesize 11.

Carefully controlled mono-chlorination of Boc-tyrosine
methyl ester (24) was achieved using sulfuryl chloride under
a stream of argon, by which the produced HCl could be removed
thus preventing undesired removal of the Boc group under
acidic conditions. The resulting ester (25) was then reduced
with DIBAL providing aldehyde 26, which was subsequently
dearomatized with PIFA in the presence of TEMPO to provide
spirolactol 27 as a mixture of four diastereomers, two of which
are inconsequential. Using conditions discovered previously
(vide supra), treatment of 27 with allyl alcohol and KHMDS led
to the bicyclo[3.3.1]nonane-containing product 28 in 35% yield
as a mixture of diastereomers. Of note, the C-1 hydroxyl group,
formed in the aldol step, was a-disposed in the major product.
Moreover, no isomeric bicyclo[3.3.1]nonane-containing prod-
ucts possessing an a-chloroenone motif were formed. The
carefully-chosen allyl protecting group was removed under
reductive palladium-catalysis (Pd(PPh3)4, Bu3SnH) providing
triol 29. Diastereoselective epoxidation of 29 with H2O2 and
Triton B afforded epoxyketone 30; notably the basic conditions
employed also partially epimerized the C-1 stereocenter
(presumably via a retro-aldol/aldol reaction) to now favor b-
stereochemistry as found in 11. The mixture of epoxides were
then exposed to TFA, removing the Boc group, and the free
amine (31) coupled to known acid 32 (HATU, DIPEA) thus
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Studies towards the dankastatins. (A) Challenges in forming dankastatin A. (B) Total synthesis of dankastatin C.
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delivering gymnastatin G (11) and its C1-epimer (33) in 60%
combined yield.13 Epimer 33 could also be converted into 11 in
50% yield by treatment with KHMDS.

With access to the most complex gymnastatin member
secured for biological testing, we turned our attention toward
the dankastatin family given that our initial screening of cycli-
zation conditions turned up conditions to favor this scaffold.
Chlorinated dankastatin members (see 12–14), however, are
produced with two different isomeric cis-decalin frameworks.
Notably, in dankastatin A (12) the tertiary alcohol and neigh-
boring proton (see C-4 and C-9) are on opposite faces as
compared to dankastatins B (13) and C (14). In analogy to work
in Fig. 3C, treating 18 with KHMDS/MeOH generated
compound 37 and not the dankastatin A-type cis-fused skeleton
35 (Fig. 4A). We presume that in the cyclization of 18, an axial
conguration of the amide side chain (see 34 vs. 36), disfavors
formation of 35.14 Again, this raises the question as to how the
dankastatin A-type skeleton is prepared in nature. Fortunately,
isomer 37 does however, bear resemblance to dankastatins B
and C, thus offering a potential pathway to these targets
(Fig. 4B).

Dankastatin C, a more recently isolated member of the
dankastatin family,4c possesses a structure suggestive of
a hydration event on a biosynthetic intermediate akin to
Fig. 5 Total synthesis of dankastatin B.

© 2021 The Author(s). Published by the Royal Society of Chemistry
chloroenone 37. In order to synthesize this structure, subtle
adjustments were made to the conditions for the intramolecular
oxa-Michael addition. Sodium methoxide was utilized as base
with MeOH as solvent and the reaction mixture maintained at
�20 �C for a prolonged period—long enough for the double
MeOH adduct (38) to be the major product but without signif-
icant bicyclo[3.3.1]nonane formation. If KHMDS was used as
base, bicyclo[3.3.1]nonane-containing products predominated.
Through this process, 38was formed as a single diastereomer in
42% yield along with 20% of 37. Finally, Boc deprotection of 38
with TFA, followed by coupling with side chain 32 (HATU,
DIPEA) forged dankastatin C (14).

Unlike dankastatin C, and in fact the majority of other
tyrosine-derived alkaloids from Gymnascella, dankastatin B (14)
features an alcohol, rather than aldehyde, oxidation state at C-1.
To access this natural product, Boc-tyrosine methyl ester (24)
was dichlorinated (SOCl2, HOAc) and reduced with DIBAL to
yield 40 (Fig. 5). With 40 in hand, we sought to nd suitable
oxidative dearomatization conditions that were compatible with
the free hydroxy group. Aer some exploration, success was
realized using singlet oxygen-based conditions (O2, TPP, hn) in
the presence of cesium carbonate (see inset). The yields of this
process were initially quite low (entries 1–3), but in the presence
of PPh3 the dankastatin core (see 42) could be formed directly,
Chem. Sci., 2021, 12, 8884–8891 | 8887
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Fig. 6 Aranorosin as a possible biosynthetic precursor to chlorinated alkaloids from Gymnascella sp.

Fig. 7 Anti-triple negative breast cancer (231 MFP) activity of select
electrophilic alkaloids from Gymnascella sp.
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albeit in low yield (entry 4). Interestingly, in addition to 42, we
observed a minor isomer (iso-42) which corresponds to the
dankastatin A scaffold (dr � 1.6 : 1). Through reductant and
temperature optimization (entries 5–11), we found that high
yields of dienone 41 (70%) could be obtained using an electron-
decient phosphine (P(3,5-(CF3)2C6H3)3) at low temperature.
Isolated 41 could then be converted to 42 under basic condi-
tions (KHMDS) in 78% yield. While this sequence requires two
steps, the yield (78%) and diastereoselectivity (dr ¼ 8 : 1) were
substantially higher than the one-pot transformation. Depro-
tection of 42 (TFA) and coupling with acid 32 yield dankastatin
B (13).

The successful application of proposed biomimetic strate-
gies in the synthesis of dankastatin and gymnastatin alkaloids
sheds some light on how nature might make these natural
products and the challenges it faces and/or solves in doing so.
Yet problems we encountered in our pursuit of gymnastatin G
and dankastatin A led us to consider alternative hypotheses for
the origins of these chlorinated alkaloids derived from tyrosine.
Specically, we were drawn to the bis-epoxyketone-containing
natural product aranorosin (15), which is not halogenated,
but bears clear structural, and likely biosynthetic, similarities to
3–14.4d Notably, the a-chloroenone in gymnastatin A and the
epoxyketone in aranorosin are of the same oxidation level and
we wondered if nature might use nucleophilic, chloride-
mediated chemistry and not electrophilic chloronium-induced
reactions in the construction of this alkaloid family.15,16

Commercially available aranorosin reacted with LiCl (1.5
equiv.) at room temperature in THF, forming a variety of chlo-
rinated products under very mild conditions (Fig. 6).17 Notably,
gymnastatin G (11) and 1-epi-gymnastatin G (33) were isolated
from the reaction mixture in 23% combined yield, presumably
through an aldol reaction of intermediate 46. In addition, two
more natural products, namely aranochlor A (44) and arano-
chlor B (43), which are oxidized variants of gymnastatins D (6)
and E (7) respectively, were also formed in the reaction (in 12%)
and can be viewed as links between gymnastatin A and
8888 | Chem. Sci., 2021, 12, 8884–8891
aranorosin.18 Notably, the two diastereomeric natural products
(presumably generated via E1cB reactions of 45 and 46) were
generated in nearly a 1 : 1 ratio—an apparent result of nonse-
lective epoxide opening; this observation echoes back to the two
diastereomeric skeletons of dankastatins found in nature. Also
detected was a small amount of unsaturated aldehyde 47,
a structure reminiscent of prior C–C cleavage products.12 While
we are unaware of 47 being a real natural product, it is inter-
esting to consider whether Gymnascella dankaliensis might
employ oxidized tyrosines as precursors to electrophilic small
molecules containing dehydroalanine-like motifs. In any event,
investigations into the enzymology surrounding gymnastatin
and dankastatin alkaloid biosynthesis is appealing.

With access to these natural products, which contain all of
the relevant structural types found in this family, we evaluated
their cytotoxicity against aggressive human triple negative
breast cancer cells (231MFP cell line) (Fig. 7).19 As noted, many
chlorinated tyrosine-derived alkaloids have shown strong anti-
cancer activity, although many of these studies have been
© 2021 The Author(s). Published by the Royal Society of Chemistry
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conducted in murine tumor cell lines.4 Dankastatin B exhibited
the highest potency (EC50 ¼ 0.6 mM) followed closely by ara-
norosin (EC50 ¼ 1.6 mM), gymnastatin A (EC50 ¼ 2.1 mM), and
nally dankastatin C (EC50 ¼ 5 mM). Interestingly, bicyclo[3.3.1]
nonane-containing gymnastatins Q and G, which notably also
contain only a single electrophilic site in the oxidized tyrosine
core, were far less active in this cellular context. Whether these
natural products have the same (or related) biological target
proles remains to be determined – work to address these
questions is currently underway and will be reported in due
course.

Conclusion

In summary, we have completed the rst total syntheses of
gymnastatin G and dankastatins B and C, and in the process,
explored stereochemical and structural questions surrounding
the origins of chlorinated, tyrosine-derived alkaloids. During
our studies, we discovered that very small and subtle changes to
abiotic reaction conditions could be leveraged to promote the
formation of either oxo-decalin or bicyclo[3.1.1]nonane motifs;
how nature modulates these product ratios remains an open
and interesting question. Additionally, an alternative biosyn-
thetic hypothesis for the origins of chlorinated gymnastatin
alkaloids from the well-known fungal metabolite aranorosin
was also presented; notably this pathway can circumvent certain
stereochemical problems associated with the abiotic Michael/
aldol cascade approach. Finally, as a result of these investiga-
tions, dankastatin B has emerged as a potent, and easily
synthesized, small molecule hit against triple negative breast
cancer.
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