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Electronic structure methods based on quantum mechanics (QM) are widely employed in the

computational predictions of the molecular properties and optoelectronic properties of molecular

materials. The computational costs of these QM methods, ranging from density functional theory (DFT)

or time-dependent DFT (TDDFT) to wave-function theory (WFT), usually increase sharply with the system

size, causing the curse of dimensionality and hindering the QM calculations for large sized systems such

as long polymer oligomers and complex molecular aggregates. In such cases, in recent years low scaling

QM methods and machine learning (ML) techniques have been adopted to reduce the computational

costs and thus assist computational and data driven molecular material design. In this review, we

illustrated low scaling ground-state and excited-state QM approaches and their applications to long

oligomers, self-assembled supramolecular complexes, stimuli-responsive materials, mechanically

interlocked molecules, and excited state processes in molecular aggregates. Variable electrostatic

parameters were also introduced in the modified force fields with the polarization model. On the basis of

QM computational or experimental datasets, several ML algorithms, including explainable models, deep

learning, and on-line learning methods, have been employed to predict the molecular energies, forces,

electronic structure properties, and optical or electrical properties of materials. It can be conceived that

low scaling algorithms with periodic boundary conditions are expected to be further applicable to

functional materials, perhaps in combination with machine learning to fast predict the lattice energy,

crystal structures, and spectroscopic properties of periodic functional materials.
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1 Introduction

High-throughput computations have played important roles in
material design in recent years.1–3 The prediction of the struc-
tures and properties of newly designed materials is useful to
guide molecular syntheses and device fabrication.4–6 For
example, theoretical computations have been employed to
assist designing layered and inorganic crystals,7 two-
dimensional materials,3 energy-related materials,5,8 functional
organic materials,6,9 and polymeric materials.10 Both quantum
mechanics (QM) and classical molecular mechanics (MM)
based molecular simulations are widely employed to compute
the material with oligomer/cluster models or periodic boundary
conditions (PBCs). PBC calculations are widely applied to
atomic and molecular crystals and covalent-bonded three- or
two-dimensional inorganic materials.3,7 For many molecular
materials (e.g., organic materials with large p-conjugation cores
or polymeric materials),6,9,10 QM calculations with a PBC model
are still very expensive, due to their large sized cell boxes, and
only PBC MM calculations are affordable for high throughput
calculations. However, in order to compute the electronic
structure properties (such as optical, electrical, or magnetic
properties) of materials, to obtain a more accurate material
structure or to benchmark the empirical intermolecular
potentials, density functional theory (DFT) or even more accu-
rate ab initio electron correlation methods using a cluster model
(or a PBC model for molecular materials with small molecules)
are required.11,12

DFT scales as O(N3-4) with the number of electrons, N,
increased and is expensive for large-sized complex material
systems.13 To accelerate the design of new materials, a high-
throughput screening scheme by integrating multi-scale calcu-
lations is employed in computational materials, in which the
expensive QM calculations are the bottleneck in the whole
Shuhua Li received his Ph.D. in
physical chemistry from Nanjing
University in 1996 and then
worked at Nanjing University
and Texas A&M University as
a postdoctoral researcher. Then
he began to work at Nanjing
University as an associate
professor (2000–2002) and
professor of chemistry (since
2002). He has received the Pople
Medal of Asian Pacic Associa-
tion of Theoretical and Compu-

tational Chemists (2008) and the First Prize of Natural Science
Award from the Chinese Ministry of Education (2019). In 2017, he
was elected as a member of the International Academy of Quantum
Molecular Science. His research interests focus on the development
of novel multi-reference and linear scaling electronic structure
algorithms and the computational design of new chemical
reactions.

14988 | Chem. Sci., 2021, 12, 14987–15006
computational processes. Conventional QM methods are not
available for molecular material systems with thousands of
atoms. Higher-level wave function-based electron correlation
calculations are even more expensive. The development and
implementation of low or even linear scaling QM methods are
hence very urgent for material design. The realization of low-
scaling DFT or electron correlation calculations is one of the
core challenges in the quantum chemistry community in the
last two decades. Due to the difficulty in the theoretical treat-
ment of the ground sate and excited states of p-electron delo-
calized and metal-containing systems, application examples of
low or linear scaling methods to materials are far fewer than the
computations of water clusters and proteins, as shown in Table
S1.† Several low-scaling strategies, such as density matrix-
based, local correlation, and fragment-based methods, were
used to predict the ground-state energies, structures, and
molecular properties of large systems. For example, a local
correlation cluster-in-molecule (CIM) method was used to
predict the binding energies in aqueous zinc-organic
batteries;14 a divide-and-conquer method was developed to
optimize the molecular geometries of conjugated oligomers;15

density-functional perturbation theory (DFPT) was employed to
compute the polarizabilities of large organic molecules;16

a generalized energy-based fragmentation (GEBF) method was
used to predict the infrared (IR) and nuclear magnetic reso-
nance (NMR) spectra of large supramolecular coordination
complexes.17

For characterizing the electronic structure features in pho-
tophysics and photochemistry, fragment-based methods have
been successfully applied in accurately calculating excited
states in large systems and condensed phases at a high QM
level, ranging from simulating optical spectra of aggregation-
induced emission (AIE) in molecular crystal materials18 to
elucidating excitonic interactions in the Fenna–Matthews–
Jing Ma received her PhD (1998)
degree in Theoretical Chemistry
from Nanjing University, China.
She was a JSPS fellow (1998–
2000) at Gifu University, Japan.
Aer that she began to work at
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professor of chemistry (since
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Outstanding Young Chemist
Award of Chinese Chemical

Society and Chinese Young Women Scientists Awards. Her
research is concentrated on electrostatic polarization in low-
scaling QM calculations and force eld simulations of oligomers
and stimuli-responsive materials with unique optical and elec-
trical properties. Recently she also showed interest in material
datasets and data-driven material design.
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Fig. 1 Schematic illustration of the increasingly important role played
by the low-scaling QM calculations, the improved force fields and
machine learning methods in the prediction of material properties
from ground states to excited states and from static properties to
dynamic processes.

Review Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
N

ov
em

be
r 

20
21

. D
ow

nl
oa

de
d 

on
 1

/1
1/

20
26

 5
:3

6:
04

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Olson complex (6853 atoms).19 In addition, ab initio exciton
models can be used for the low-cost study of various excited
state processes in complex environments, e.g., optical genera-
tion of long-range charge-transfer states in electron donor/
acceptor heterojunctions20 and singlet ssion in crystalline
tetracene.21 Moreover, novel low-scaling quantum dynamics
methods like time-dependent density matrix renormalization
group (tDMRG)22 and multi-conguration time-dependent
Hartree (MCTDH)23 were recently employed for the accurate
simulation of real-time nonadiabatic dynamics24,25 and ultrafast
one- or two-dimensional electronic spectroscopy with vibra-
tional resolution26,27 in complicated systems with a large
number of nuclear and electron degrees of freedom, helping
build a bridge between theory and experiment in photophysics
and photochemistry.

Driven by the fast development of computer science and
articial intelligence, as well as the availability of massive data,
efficient data-mining techniques, especially machine learning
(ML) approaches, have been widely used in materials
science.28–32 The amount of ML-related literature is growing
explosively. It is impossible to give a complete list of all those
publications, and in Table S2,† we collect some representative
applications of ML models in materials. For instance,
combining experiments with microscopic structural descriptors
and/or computational simulations, quantitative structure–
property relationship (QSPR) models can be derived for pre-
dicting a variety of properties of materials.33,34 Furthermore,
such predictive models can be combined with virtual screening
by high throughput computations to accelerate the discovery
and development of new functional materials with favourable
properties and provide insight into the factors governing these
properties.35,36 On the other hand, ML techniques enabled
numerous advances for simulating materials previously out of
reach due to the computational complexity of traditional
electronic-structure methods. Those exciting advances include
constructing ML-based force elds (FFs),37 speeding up excited
state calculations,38 predicting spectroscopy properties,39 and
computer-aided synthesis planning.40

In this review, we will emphasize on computational and data
driven molecular material design assisted by low scaling QM
calculations and machine learning based on examples from the
authors as well as other groups (see Fig. 1). We begin by intro-
ducing low scaling ground-state quantum mechanics for the
computations of molecular materials, including polymer olig-
omers, supramolecular complexes, and electrode materials.
Then, to treat the excited states in optoelectronic materials, we
present low scaling excited-state QM and quantum dynamics
(QD) methods and use them to describe microscopic photo-
physical mechanisms in organic semiconductors. In combina-
tion with the low-scaling QM calculations, the improved force
elds with the polarizable partial charges or fragment dipole
moments are applicable to the simulations of dynamic confor-
mational changes in stimuli-responsive monolayers41 or [2]-
rotaxane.42 Furthermore, we introduce the applications of
explainable models and deep learning methods to the designs
of organic solar cells43 and predictions of molecular or material
properties. The efficiency of building the force elds from the
© 2021 The Author(s). Published by the Royal Society of Chemistry
low scaling QM-based on-line machine learning force eld is
also discussed.44,218 Finally, the perspective discusses some
directions for further improvement and proposes future lines of
this exciting and quickly developing eld.
2 Low scaling QM methods for large-
sized molecules and aggregates
2.1 Low scaling calculations of ground-state energies and
properties

The understanding of ground-state molecular structures, non-
covalent interactions or binding energies, and various molec-
ular properties is crucial in the rational design of molecular
materials, including oligomers, monolayers on surfaces,
molecular crystals, etc. Due to the large size of molecular
materials (e.g., polymers and molecular aggregates), empirical
force elds are usually employed in their simulations. However,
the force eld parameters are not always transferable for all the
studied materials, especially for charged and p-conjugated
polymers. Quantum mechanics calculations are hence required
to predict molecular structures and to describe intermolecular
interactions without the pre-determination of empirical
parameters. DFT is widely used in computational material elds
due to the balance between computational cost and accuracy.
The lack of long-range attractive terms for describing non-
bonded interactions is one of the limitations of some DFT
functionals in describing the noncovalent intermolecular
interactions in molecular aggregates and super-molecular
assembly. To overcome the difficulties and to improve the
performance of DFT methods, some functionals, such as
B97D3 45 and uB97XD,46 were developed to take noncovalent
interactions into account. Furthermore, more accurate inter-
action energies could be obtained by ab initio electron correla-
tion methods, such as second-order Møller–Plesset
perturbation theory (MP2) and coupled cluster (CC) theory.
However, the conventional electron correlation methods are
very expensive for large sized systems due to their high
Chem. Sci., 2021, 12, 14987–15006 | 14989
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computational scaling with the number of basis functions, Nb,
or electrons. For example, the scalings of MP2 and CC singles
and doubles (CCSD) methods are O(Nb

5) and O(Nb
6), respec-

tively. The gold standard CCSD with perturbative triples
corrections [CCSD(T)] method even scales as O(Nb

7). To alleviate
such high computation scales, low (or even linear) scaling
quantum chemistry methods were developed for the fast
ground-state calculations of large systems.47–49

In general, there exist two categories of linear or low scaling
algorithms, including “rst-principles” methods and fragmen-
tation methods. The “rst-principles” methods are further
classied in two groups, i.e., linear Hartree–Fock (HF) and DFT
algorithms and local correlation methods. In the rst-principles
based linear or low scaling HF and DFT methods, efficient
algorithms are employed to compute integrals or matrix
elements. For example, integral screening,50 fast multipole
method (FMM),47 order-N exchange method,51 and LinXC
scheme52 are employed to compute two-electron integrals,
Coulomb matrices, exchange matrices, and exchange–correla-
tion density functional quadrature, respectively. The density
matrix search (DMS) approach53 is used to avoid the diagonal-
ization of the Fock matrix. In the local correlation method, the
electron correlation equations are approximately solved in the
representations of the localized molecular orbital (LMO) or
atomic orbital (AO) by neglecting the correlation between
spatially distant orbitals. The local correlation method (Fig. 2)
was rst proposed by Pulay et al. at the MP2 level,54 and
generalized by Werner et al. at the CCSD level.55 In the last two
decades, the local correlation methods were further developed
by various groups.48,56–60 For example, in the CIM approach60–62

developed by us, the correlation energy contributions of occu-
pied LMOs can be approximately obtained from various clus-
ters, each of which consists of only a subset of occupied LMOs
and corresponding unoccupied orbitals and atomic basis. In
summary, chemical intuition is not involved in the “rst-prin-
ciples” methods and the corresponding program could be
a black-box for users. Recently, analytic energy gradients were
implemented in the CIM approach, which enables the geometry
optimization of large systems with up to 174 atoms.63 The
dataset of CIM-MP2 or CIM-CCSD binding energies of super-
molecules and molecular aggregates was also reported,64

providing the benchmark data for DFT functional and force-
eld validations. However, high-order analytical energy
Fig. 2 Two kinds of linear scaling methods for large sized systems:
local correlation methods and fragmentation methods.

14990 | Chem. Sci., 2021, 12, 14987–15006
derivatives with respect to nuclear coordinates or external
electronic (or magnetic) elds are still hard to obtain for the
local correlation methods because of requirements of some
special integrals.

On the other hand, fragmentation methods provide a more
efficient way to compute the energy or electronic structure
properties of large sized systems. In this category, density-
matrix based fragmentation and energy-based fragmentation
approaches were developed. The density-matrix based frag-
mentation approach was rst proposed by Yang and co-workers
in the divide-and-conquer (DC)method at the DFT level,65which
was signicantly extended by Nakai and co-workers to various
ab initio electron correlation levels.66,67 Within the framework of
the density-matrix based approaches, the total density matrix of
a target system is obtained from the density matrices or
molecular orbitals (MOs) of subsystems. Then, the total ground
energy or molecular properties of the total system are computed
from the approximate total density matrix. Various density
matrix based approaches were also developed, such as the
adjustable density matrix assembler (ADMA) method,68 the
elongation method,69 and the molecular fractionation with
conjugated caps (MFCC) approach.70 The LMO assembler
(LMOA) method71 has been proposed with the total density
matrix being assembled by the LMOs of the central region of
subsystems or electrostatically embedded subsystems.72

However, the density-matrix based methods for large systems
require high computational costs of integrals and large
resources (memory or disk) for the entire system.

In comparison with density-matrix based approaches,
energy-based fragmentation approaches (Fig. 2) need less
computational cost and fewer resource requirements for the
total system, because in such methods the total ground-state
energy (or energy derivatives) of a target system is directly rep-
resented as the combination of the corresponding energies (or
energy derivatives) of various subsystems.73 Those subsystems
could be calculated at both DFT and post-Hartree–Fock levels
with existing quantum chemistry packages. In addition, the
calculations of subsystems could be coarse-grain paralleled and
distributed in different computer nodes, and each subsystem
could be ne-grain paralleled with processors within a node.
The theoretical framework of molecular fragments was
employed to develop QM-based force elds for the simulations
of liquids and solutions in the effective fragment potential74

method and explicit polarization75 method, respectively. Based
on many-body expansion, Kitaura and co-worker proposed the
fragment molecular orbital (FMO) method,76 in which orbitals
are employed to saturate the dangling bonds. Energy-based
fragmentation methods for the ground-state calculations of
large sized molecules are independently proposed by three
groups77–79 in 2005. To take long-range electrostatic interactions
into account for long oligomer systems with the charged group,
we developed an electrostatically embedding scheme by placing
point charges at the charge centres in each subsystem calcula-
tion.80 Furthermore, by introducing background point charges
on those atoms outsides the subsystems, we further proposed
the GEBF approach.81 Thus, in our GEBF approach, the ground-
state energies (or energy derivatives) of a target molecule could
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Illustration of the GEBF method and its application to long polymer oligomers.

Review Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
N

ov
em

be
r 

20
21

. D
ow

nl
oa

de
d 

on
 1

/1
1/

20
26

 5
:3

6:
04

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
be represented as the linear combination of the corresponding
energy (or energy derivatives) of a series of electrostatically
embedded subsystems (Fig. 3). In fact, this is a very crucial step
in making the linear-scaling fragmentation method applicable
to material systems, since many functional materials are highly
polar or charged and hence responsive to the stimuli of electric,
light, pH and temperature changes. By improving the frag-
mentation schemes or the constructions of subsystems, the
GEBF approach was further applied to a broad range of complex
systems with polar or charged groups including polymer olig-
omers, molecular clusters, ionic liquid clusters, biological
systems, and supramolecular complexes.82,83 Other energy-
based fragmentation methods, such as the generalized MFCC
method,84,85 the molecular tailoring approach,86 the molecules-
in-molecules (MIM) method,87 the generalized many-body
expansion method,88 have also been developed. To better
correlate with experimentally observable properties, the energy-
based approaches have been applied to study the relative
stabilities and molecular spectroscopic properties (IR/Raman
and NMR spectra) of large systems at the levels of HF, DFT,
and post-HF methods.73,82,83,89,90

The electronic structure calculations of condensed-phase
systems (such as solids, surfaces, and liquids) play important
roles in materials science. However, the traditional periodic
DFT calculations using plane waves (or Gaussian-type atomic
orbitals), which are widely used for condensed phase systems,
are much more expensive than the non-periodic DFT calcula-
tions of molecules or clusters with similar sizes due to the large
number of Bloch vectors under PBCs. On the other hand, due to
the dependence of exchange–correlation functionals, DFT
© 2021 The Author(s). Published by the Royal Society of Chemistry
calculations may not be accurate enough to describe the relative
stabilities of polymorphs, which are usually in the range of 1–
2 kcal mol�1. Ab initio electron correlation methods could
systematically provide more accurate relative energies.
However, periodic electron correlation methods are extremely
expensive and are only applicable to model condensed phase
systems with several small molecules in a unit cell, even for the
PBC-MP2 method. Using the localized Wannier functions in the
occupied space, local correlation methods were applied to
periodic systems. Those methods include the incremental
method,91 the local MP2 method,92 the divide-expand-
consolidate method,93 the PBC-CIM method,94 and so on. In
the PBC-CIM method developed in our group, the correlation
energy per unit cell of a periodic system can be expressed as the
summation of the correlation contributions of occupied
orbitals within a series of nite-sized clusters.94 Fragmentation
methods have also been extended to periodic systems. In such
methods, the unit cell energy of a periodic system could be
represented as the summation of n-fragment (n ¼ 1, 2, .)
energy terms, which could be approximately obtained from the
calculations on nite molecular clusters. For instance, the
systematic molecular fragmentation and hybrid many-body
interaction model could predict the lattice energies or lattice
structures of covalent crystals or organic molecular crys-
tals.216,217 A fragment-based QM approach has been used to
estimate the lattice energy of benzene crystals at a high-level
electron correlation level.95 To take the long-range electro-
static interactions in the innite crystal environment into
account, we have developed a PBC-GEBF method.96,97 In the
approach, the ground-state energy or energy derivatives of
Chem. Sci., 2021, 12, 14987–15006 | 14991
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Fig. 4 Schematic illustration of (a) LE-GEBF subsystems, (b) REM
wavefunction, and (c) DMRG wavefunction. The rectangle in (b)
denotes a molecular fragment or block and jj0

i i and
��j*

i

�
are the

wavefunctions of its ground and excited states respectively with Ci

being the configuration coefficient. The circle in the bottom denotes
a molecular orbital or a vibrational mode, and jnii represents its local
basis with Ani being MPS matrices.
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a periodic system can be evaluated as a linear combination of
ground-state energies or energy derivatives of various small
nonperiodic subsystems. Here, each subsystem is embedded in
the electric eld generated by a nite array of background point
charges. The PBC-GEBF approach could be employed to predict
the lattice energies, crystal structures, and spectroscopic prop-
erties of various molecular materials and solutions at various
DFT and electron correlation levels.83

Besides the above-mentioned linear scaling DFT and
wavefunction-based methods, semiempirical QM methods
could also greatly speed up QM calculations by using some
empirical parameters to save the computation time of evalu-
ating two-electron integrals. The widely used semiempirical QM
methods include Austin model 1 (AM1),98 parametric method 6
(PM6),99 DFT tight-binding methods such as density functional
tight-binding (DFTB)100,101 and extended tight-binding (xTB)102

methods. Furthermore, linear scaling semiempirical QM
methods could be applied to treat even larger systems. For
example, the FMOmethod has been implemented at the level of
DFTB with the third-order expansion (DFTB3), called FMO-
DFTB3, which is more than 40 times faster than full DFTB3
for calculating a cellulose sheet containing 1368 atoms.103 Nakai
and co-workers have developed the DC-DFTBmethod for the on-
the-y molecular reaction dynamics simulations of a cubic
water box with 256 000 water molecules.104
2.2 Low scaling excited-state quantum mechanics and
quantum dynamics methods

The fundamental physics and chemistry of many optical func-
tional materials ranging from optoelectronic devices to photo-
catalysts are governed by light initiated excited-state processes,
including photon absorption, radiative and radiationless relaxa-
tion, excited-state energy transfer, excited-state charge transfer,
etc. Understanding the properties of electronically excited states
is impossible to be accomplished without valuable help from
quantum chemical and quantum dynamics calculations.
However, these theoretical methods for electronic excited states
are usually very expensive because their computational costs
grow even much faster with the increasing system size than that
of ground-state quantum chemical calculations. The upper limit
for the applicability of the most common excited-state electronic
structure method, time-dependent density functional theory
(TDDFT), or even simpler conguration interaction singles (CIS)
method, if no further approximations are introduced, is only
about 150–200 atoms.105 Therefore, the high demand for inter-
preting experimental excited-state phenomena and the recent
fascinating progress in time-resolved spectroscopy called for the
development of novel excited-state theoretical methods for large
systems, which was an active research eld of quantum chem-
istry in the last decade.

One of the widely used strategies to reduce the costs of
excited-state calculations is to utilize local excitation approxi-
mation (LEA), in which electronic excitation is restricted to only
one specied chromophore. By using various types of localized
molecular orbitals, including regional LMOs (RLMOs), natural
transition/localized orbitals and absolutely LMOs (ALMOs), to
14992 | Chem. Sci., 2021, 12, 14987–15006
constrain the spatial region of the local excitation, LEA was
successfully implemented at the levels of TDDFT and CIS.106–109

In recent years, the great success of linear-scaling
fragmentation-based approaches in describing the ground-
state also motivated its straightforward extension to excited-
state calculations through a combination with LEA.18,110,111 As
shown in Fig. 4a, Li et al. also extended the GEBF method to the
local excitation GEBF (LE-GEBF) method.83,111 In this method,
the localized excited-state energy of a target system can be
represented as the combination of the excited-state energies of
active subsystems and the ground-state energies of inactive
subsystems with an overcounting correction of electrostatic
interactions. The LE-GEBF method is employed to describe the
solvatochromic shis of acetone in different solvent environ-
ments and the electron absorption spectra of green uores-
cence protein (GFP).83,111 Besides the above mentioned
fragmentation schemes, the embedding algorithms which
incorporate a high-level calculation in the active region of
interest and a low-level calculation on its environment are also
employed for unravelling the excited-state properties of large
systems such as GFP.112 Recently, quickly developed machine
learning techniques were also suggested by Chen et al. to be
used to further reduce the computational costs of low-level
quantum chemical calculations of the large inert regions
surrounding the photochemically active space in embedding
algorithms.113

Another widely used strategy for low-scaling ground-state
calculations, local correlation approximation (LCA), is also
applied for describing the excited states of large systems.
Taking advantage of the locality of a reduced density matrix
gained by the DC method, linear scaling was achieved for
TDDFT by using orthogonal atomic orbitals (OAOs) or non-
© 2021 The Author(s). Published by the Royal Society of Chemistry
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orthogonal LMOs (NOLMOs).114,115 Liu and coworkers116 later
developed another linear-scaling TDDFT scheme by making full
use of a simple pre-screening of the particle–hole pairs in the
fragment LMO (FLMO) representation. Similarly, LCA has been
also incorporated into various wavefunction theory (WFT)
methods, such as equation-of-motion CCSD (EOM-CCSD),117

second-order approximate coupled-cluster singles and doubles
(CC2),118 multi-reference singles and doubles conguration
interaction (MRSDCI),119 and CIS120 as well as symmetry adapted
cluster conguration interaction (SAC-CI).121 Nakai and
coworkers used standard DC-based approaches to evaluate the
dynamical polarizability and then described the excited states
as the poles of dynamical polarizability.122,123 It has been
successfully implemented from the TDDFT level to the coupled
cluster linear response (CCLR) level.

At the same time, excitonic models are oen used in
computational materials science or photochemistry for the
qualitative/semi-quantitative investigation of various optoelec-
tronic processes in condensed phases, ranging from photo-
absorption/emission, excited-state energy transfer to singlet
exciton ssion and exciton dissociation.124–131 However, the
choice of the parameter values in the excitonic models is usually
dependent on the experimental tting or simple quantum
chemical estimation for classical coulombic electrostatic inter-
actions between different chromophores. Obviously, the
construction of the excitonic model is non-trivial when each
chromophore has more than one excited state involved in the
system's optoelectronic process or the short-distance inter-
chromophore exchange interaction is non-negligible, and this
will greatly decrease the accuracy of the model and also severely
restrict the model's application range. In order to better
describe the inter-chromophore interactions, Bloch's effective
Hamiltonian theory132 can be adopted in conjunction with the
numerical renormalization group (NRG) for large correlated
systems. Using this strategy, Morningstar and Weinstein133

proposed the contractor renormalization group (CORE)
method, in which the general excited-states of the whole system
are considered as an assembly of numerous single or multiple
local block excitations, and Malrieu and coworkers134 suggested
the renormalized excitonic model (REM) to approximate the
whole system's low-lying excited states as linear combinations
of only single local excitations (Fig. 4b). With this approxima-
tion, the dimensions of the effective Hamiltonian matrix of the
whole system can be reduced greatly from dN to d � N, where
d is the number of local states and N is the total number of
blocks. Since 2012, our group has been implementing REM at
the ab initio level in conjunction with full CI (FCI), CIS, SAC-CI
and TDDFT using orthogonal LMOs (OLMOs) and block
canonical molecular orbitals (BCMOs).135–137 The tests of
hydrogen chains, polyene, polysilenes, water chains, and
benzene aggregates as well as general aqueous systems with
polar and nonpolar solutes indicate that the ab initio REM
method can give good descriptions of excitation energies for the
lowest electronic excitations in large systems with economic
computational costs.

On the other hand, the accurate theoretical interpretation of
ultrafast time-resolved excited-state spectroscopy experiments
© 2021 The Author(s). Published by the Royal Society of Chemistry
relies on full quantum dynamics simulations for the investi-
gated system, which is also computationally prohibitive for
realistic molecular systems with a large number of electronic
and/or vibrational degrees of freedom. To tackle this so-called
curse of dimensionality, many low-scaling quantum dynamics
methods using different approximations have been proposed.
Among them, tensor product methods138 recently attracted
much research interest. For example, MCTDH23 adopts a Tucker
decomposition139 scheme to decompose a high-order tensor
with a high rank into a set of matrices and one small Tucker
core tensor with the same order but a low rank, and accordingly
it can be also considered as a high-order single value decom-
position (HOSVD).140 However, the Tucker core still suffers from
the curse of dimensionality for higher orders, which has been
partly overcome by introducing multi-layer MCTDH (ML-
MCTDH)141 using a hierarchical Tucker (HT) decomposition. On
the other hand, the tensor train decomposition (TT; in the
mathematical literature)142 or the equivalent matrix product
state representation (MPS; in the physical literature)143 used in
the density matrix renormalization group (DMRG)144,145 provides
an alternative decomposition algorithm, which decomposes
a high-order tensor with a high rank into a product of many
local low-order tensors with a one-dimension (1D) topology
(Fig. 4c). ML-MCTDH and tDMRG22 have been successfully
applied to simulate the dynamics of excited-state energy or
charge transfer and the absorption and uorescence spectra of
molecular aggregates,26,27,146–152 demonstrating the great poten-
tial for exploring the quantum dynamics of excited-state
processes in large chemical systems.

In addition, there also exist various semiempirical excited-
state QM methods, such as time-dependent DFTB (TDDFTB)
method153 and xTB based simplied Tamm–Dancoff approxi-
mation (sTDA-xTB) method.154 A spin-ip TDDFTB (SF-
TDDFTB) method is developed to fast determine S0/S1
minimum energy conical intersection (MECI) structures.155 In
2019, Nakai and co-workers implemented a GPU-accelerated
DC-TDDFTB method, which could reproduce the experimental
absorption and uorescence spectra of 2-acetylindan-1,3-dione
in explicit acetonitrile solution.156

It is not straightforward to precisely compare the accurate
and costs of various low scaling QM methods because there
usually exist some adjustable parameters for achieving the
balance between the accuracy and computational costs. Also,
those methods may show different performances for various
types of large subsystems. Collins and Bettens have made some
comparisons between several typical energy-based fragmenta-
tion methods in their review.73 It shows that the absolute errors
in the total energies are usually several kJ mol�1 for medium-
sized systems and more than 10 kJ mol�1 for large-sized
systems such as proteins. By taking the long-range electro-
static interactions into accounts, the computational accuracies
are improved for a broad range of large systems, especially for
polar or charge systems. Furthermore, for the relative energies
(such as binding energies or reaction barriers), which are of
chemical interest, the errors are smaller due to the error
cancellation. For example, for ten host–guest complexes, the
maximum error of the GEBF-DFT binding energies is only
Chem. Sci., 2021, 12, 14987–15006 | 14993
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4.4 kJ mol�1, and the maximum error for the relative binding
energy between two complexes with the same host molecules is
only 0.9 kJ mol�1.157 In local correlation methods, there are
some direct comparisons for same large systems.158,159 For
example, Li and co-workers have compared resolution-of-
identity MP2 (RI-MP2) and CIM-RI-LMP2 methods, which
shows that the CIM approach gives better accuracies and effi-
ciencies for quasi one-dimensional peptides.158 Neese and co-
workers have compared the accuracies and efficiencies
between the domain based local pair-natural orbital (DLPNO)
and CIM calculations at the MP2 and CCSD(T) levels for large
systems up to 2380 atoms.159 It shows that their efficiencies are
similar, while the DLPNO total energy is more accurate for 3-
dimensional systems. For a tight CIM parameter, the accuracies
of CIM and the DLPNO energy are very close.159 In addition, the
fragmentation or local correlation methods are developed to
reproduce the corresponding traditional QMmethods, and thus
their accuracies also depend on the levels of DFT or electron
correlation methods. In comparison with “rst-principles” DFT
methods, DFTB is a semiempirical DFT-based method and
additional empirical dispersion corrections need to be added
for systems with weak interactions.101

Codes of low scaling ground- and excited-state QM methods
are developed by several groups and available in several pack-
ages. Some packages are specically designed for low scaling
QM methods, such as ONETEP160 and HONPAS161 based on
localized Wannier functions, LSQC162 (including GEBF and
CIM), etc. In addition, some low scaling methods, such as FMO,
DC, and CIM, are available in the exited GAMESS package;163

local MP2 and CCSD(T) are implemented in the Molpro
program;164 DLPNO and CIMmethods are included in the ORCA
program.165 For periodic systems, low scaling DFT codes are
available in Crystal,166 CP2K,167 etc. The specic packages for
DFTB, such as DFTB+168 and xTB,102 were also widely used to
predict the energy and properties of some complicated systems.
3 Applications of low scaling QM
methods to complex molecular
material systems

In this section, some applications of the methods mentioned in
Section 2 are discussed. A thorough overview of the several
hundred or even more applications of applying low-scaling QM
methods and ML to molecular materials is certainly out of the
scope of this review. Also, there exist many methods for inor-
ganic or nanomaterials. As early as 2014, Yang and co-workers
have employed a density matrix trace correcting (TC) purica-
tion method to compute various electronic properties of
hexagonal graphene nanoakes with up to 11 700 atoms.169

Recently, Hu and co-workers have applied pole expansion and
selected inversion (PEXSI) to calculate the electronic structures
of boron nitrogen nanotubes.170 Our aim is not only to show the
potential and applicability of different methods and techniques
and, by discussing some representative calculations, but also to
help the reader to select an appropriate approach for particular
molecular material systems.
14994 | Chem. Sci., 2021, 12, 14987–15006
3.1 Polymeric oligomers

Fragmentation based linear scaling methods can treat polymeric
oligomers in a direct and economic way. For s-bonded oligomer
chains, such as the widely used polyethylene (PE) and poly(-
ethylene oxide) (PEO) systems, each repeat unit or several repeat
units can be taken as a fragment (Fig. 3).44,171 Such a fragmenta-
tion scheme also works well for the p-conjugated chains like
polyacetylene and polyuorenols but the p-bonds cannot be cut
during the fragmentation.172,173 An auto fragmentation program
was implemented for more complicated molecular aggregate or
biological systems with a pre-setting truncate distance for
building the subsystems in GEBF calculations.174

The combined quantum mechanics and molecular
mechanics (QM/MM) method is an efficient method for
studying macromolecules in solutions, in which the solute is
usually treated by the QM method. The high computational
scaling of the QM method is still a bottleneck of QM/MM
simulations for macromolecules which require a large QM
region. To overcome this difficulty, we have developed a frag-
ment QM/MM method by combining GEBF-based QM and MM
calculations for the Born–Oppenheimer molecular dynamics
simulations of dilute solutions of macromolecules.171 As for the
two selected representative systems, PEO is a water-soluble
polymer with extensive industrial applications, and PE is
a very important polymer in the plastic industry. GEBF-based
QM/MM optimization and MD simulations were performed
for PEOn (n ¼ 6–20) and PEn (n ¼ 9–30) in aqueous solutions. As
expected, the longer oligomer chains have larger chain exi-
bility and curling occurs in some local parts of the long s-
bonded oligomer chains.171

p-Conjugated polymers are relatively more rigid than s-
bonded oligomers. The high extent of electron delocalization in
p-conjugated aromatic rings brings about the unique optical
and electronic properties of various functional material mole-
cules. In addition, the highly directional noncovalent interac-
tions play important roles in the self-assembly behaviour of p-
conjugated polymers to fabricate organogels and thin lms. We
take oligouorenols, (R)-PFOHn (n ¼ 4 and 8) where R ¼ H
(unsubstituted) or OC8H17 (substituted), for side chains as an
example. GEBF-B3LYP with the 6-31+G(d) basis set was
employed to optimize the oligouorenols.173 Furthermore, the
packing structures for (R)-PFOHn in crystals, amorphous solids
and solutions were investigated by polymer consistent force
eld (PCFF) based MD simulations. Then, for the MD sampled
congurations, the ultraviolet/visible (UV/VIS) absorption
spectra were computed by the TDDFT and FLMO based TDDFT
(FLMO-TDDFT) method.116 The results show that the planar p-
conjugated conformations could lead to a red shi in the
absorption spectra upon increasing the concentration of solu-
tion. The aggregation-induced red-shi of oligouorenols and
the blue-shi of oligothiophenes were rationalized in a unied
way.173 Aggregated-conguration engineering could be used to
tune the optical properties of electronic devices based on p-
conjugated systems.

As mentioned before, the introduction of background point
charge into subsystem calculations allows GEBF to give accurate
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Some supramolecular complexes, which were studied by the
GEBF approach for binding energies, including (Pn)N oligomer (N ¼
2,10,16), (NDI/MEL)6, [2]rotaxane, 5CPPA@8CPPA, 6CPPA@9CPPA,
BQ@amine macrocycle, GLH@amine macrocycle, C5H9OH@b-CD,
C8H15OH@b-CD, tetraphene@Ex2Box4+, chrysene@Ex2Box4+,
BuNH4

+@CB6, and PrNH4
+@CB6.
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results for charged or highly polar molecules. It can be
demonstrated by its application to ionically functionalized
polyacetylene analogues, such as poly(tetramethylammonium
2-cyclooctatetraenylethanesulfonate) (PA) and poly[(2-
cyclooctatetraenylethyl)trimethylammonium tri-
uoromethanesulfonate] (PC), which acted as active materials
sandwiched between two electrodes (gold nanoparticles). It is
very useful in the fabrication of various microelectronic devices,
such as light-emitting electrochemical cells and electric current
rectiers. In such devices, the polymer/electrode and polymer/
polymer interfaces are really complicated for theoretical simu-
lations. We have combined linear scaling DFT calculations and
molecular dynamics (MD) simulations to study the unusual
transport properties of an AujPCjPAjAu junction.172 The energy-
based fragmentation approach at the B3LYP/6-31G(d) level
was used to optimize the structures of the ionically function-
alized oligomers, nPA and nPC (n ¼ 1–8). The all possible cis-
congurations of 8PA and 8PC, with the counter ions residing on
the same sides of the polyacetylene backbones, are displayed in
Fig. 3. Through the oligomer extrapolation of the highest
occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO) energies of nPA and nPC as a function
of 1/n, the valence band (VB) and conduction band (CB) edges of
PA and those of PC were estimated, which are in qualitative
agreement with the PBC calculation results.172 The absence of n-
doping waves in the voltammetry data of PA in the experiment is
rationalized by its high reduction potential or the blocking of
effective interfacial electron transfer.

For other oligomers, many density-matrix based or fragment-
based linear scaling methods have been employed. For
example, Liang and Chen and co-workers have extended the
localized-density-matrix (LDM) method for the calculations of
nonlinear optical responses (second hyperpolarizability) in
large polyacetylene oligomers.175 Kobayashi and Nakai have
developed DC-HF and DC-MP2 methods for delocalized or
open-shell systems by determining the electrons automatically
with a universal Fermi level. Using the approach, the energies of
the B–N analogues of oligoacenes (BN-acenes) and their deriv-
atives are comparable with the corresponding conventional
values.176 Skylaris and co-workers have used linear scaling DFT
in the ONETEP program160 to compute the HOMO and LUMO
energies, and the band gap of some long chain oligomers of
organic photovoltaics with more than 1000 atoms.177
3.2 Supramolecular complexes and molecular aggregates

Two-dimensional self-assembledmonolayers and supramolecular
complexes are important ingredients in the construction of novel
smart electronic devices. The packing structures and properties of
those molecular aggregates are controlled by non-covalent inter-
actions, whose strength could be calculated by low-scaling QM
methods. There are numerous application examples in this
direction. Here, we just list some calculation results. Pentacene
(Pn) and its functionalized derivatives are widely used building
units in high-performance organic thin-lm transistors and
organic photovoltaics. We have computed the GEBF-MP2 binding
energies, Eb, of a series of pentacene (Pn)N aggregates, with up to
© 2021 The Author(s). Published by the Royal Society of Chemistry
Pn hexadecamer (N¼ 16), with the 6-31G(d) basis set (Fig. 5).178 In
the (Pn)16 aggregate, the van der Waals and p-stacking interac-
tions are dominant in the non-covalent binding with an Eb of
�20.54 kcal mol�1. In contrast, the molecular aggregates with
favourable hydrogen bonding (HB) networks usually have larger
binding strength. Such a kind of directional HB intermolecular
interaction could drive the formation of various packing patterns,
such as honeycomb networks, chessboard, and chiral supramo-
lecular structures on the surface or in solutions (Fig. 5). Taking
the naphthalene tetracarboxylic di-imide (NDI) and melamine
(MEL) binary system as an illustration, these two kinds of p-
conjugated molecules constitute a pair of building blocks for
constructing hexagonal close-packed architectures. The
counterpoise-corrected binding energy of the hexagonal NDI/MEL
network including six pairs of NDI/MEL dimers, (NDI/MEL)6, is
predicted to be �297.8 kcal mol�1 by GEBF-MP2/6-31G(d) calcu-
lations. The triple hydrogen-bonded network is consistent with
the image from the scanning tunnelling microscope (STM) on the
gold surface.179

In addition, the non-covalent interactions of supramolecular
host–guest complexes are the driving forces of the supramolec-
ular recognition and self-assembly formation. As a kind of
mechanically interlocked molecule being used in molecular
devices or nanoscale machines, [2]rotaxane is a <rodjring>
system consisting of a rod (an axle-shapedmolecule) and a ring (a
macrocyclic compound). The difference in the HB interaction
energies between the macrocycle and different binding sites in
the long rod of [2]rotaxane is employed to control the shuttling
movement.42 In order to accurately predict the binding energies
Chem. Sci., 2021, 12, 14987–15006 | 14995
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Fig. 6 The cluster-in-molecule approach and some studied supra-
molecular complexes. On the top, a cluster is represented in a dotted
rectangle, in which the central and environmental localized molecular
orbitals are denoted in red and yellow, respectively. The studied
supramolecular complexes include a molecular capsule, two L-alanine
ethyl ester hydrochlorides (pR-L-Ala-Oet and pS-L-Ala-Oet) in water-
soluble pillar[5]arene (WP5), ethanol@ZSM-5 zeolite, and two clusters
in a chemically self-charging aqueous zinc-organic battery, (1,5-
NAPD)7(Zn

2+)3 and (1,5-NAPD)7(K
+)6.
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of the supramolecular complexes, we have proposed an efficient
way for the constructions of GEBF subsystems to avoid the
selection of the whole macrocycle in terms of the cut-off distance
from the central guest species.157 In the new scheme, each large
primitive subsystem is converted into several overlapped smaller
primitive subsystems using an iterative algorithm. Then, the
primitive GEBF subsystem for a supramolecule is smaller than
before to achieve similar accuracy, and the subsystems in the
complex are very similar to those in the host. Thus, more accu-
racy binding energies could be obtained with smaller but
consistent subsystems.157 We have performed GEBF-M06-2X
calculations for ten host–guest complexes taken from the S30L
dataset,180 including [5]cycloparaphenyleneacetylene (5CPPA) in
8CPPA and 6CPPA in 9CPPA, benzoquinone (BQ) and glycine
anhydride (GLH) in the amine macrocycle, cyclopentanol
(C5H9OH) and cyclooctanol (C8H15OH) in b-cyclodextrin (b-CD),
tetraphene and chrysene in the Ex2Box4+ macrocycle, and
protonated butylammonium (BuNH4

+) and propylammonium
(PrNH4

+) in cucurbit[6]uril (CB6) (parts of which are listed in
Fig. 5).157 The GEBF approach could reproduce the conventional
DFT binding energy and relative binding energy (for two
complexes with the same or similar hosts) with the errors being
less than 1 kcal mol�1 and 1 kilojoule mol�1, respectively.

In addition to binding energies and packing structures,
property predictions are highly desired for bridging the gap
between theoretical simulations and experimental measure-
ments of molecular aggregates. By combining GEBF-based ab
initio MD (AIMD) and polarizable force eld (polar FF)-based
MD simulations with variable charges, we investigated the
conformational changes and averaged NMR chemical shis of
[2]rotaxane in solution.42 The up-eld shis of NMR signals of
rod H-donors are induced by the dipole–dipole interactions
between the exible diethylene glycol chain of the ring and
polar acetonitrile solvents, which also leads to the inhomoge-
neous and directional distribution of the neighbouring
solvents. This implies that the interactions between the guest
and host or between solvent and solute play an important role
in designing novel interlocked systems.42 Recently, in order to
treat large systems in solution, the GEBF approach was
combined with a universal solvation model based on solute
electron density (SMD). The GEBF-SMD approach could
compute the solvation energies or predict the relative energies
of large systems in solutions.181 In addition, Ochsenfeld and
coworkers have employed a linear scaling DFT method to
investigate the inuence of intra- and intermolecular interac-
tions on the NMR chemical shis of supramolecular complexes,
in which a naphthalene-spaced tweezers molecule is taken as
the host with various aromatic, electron-decient guests.182

Vibrational circular dichroism (VCD) spectra are useful to
determine the chiral molecules by the analysis of differential
absorption between le- and right-circularly polarized infrared
radiation. The conventional QM calculations for the VCD
spectra of MD sampled molecular aggregates in amorphous
solids or solutions are limited to medium-sized clusters. The
GEBF approach was implemented to compute the VCD spectra
of (S)-alternarlactam aggregates at the B3PW91/6-31+G(d,p)
level, where the VCD signals are obtained from the rotational
14996 | Chem. Sci., 2021, 12, 14987–15006
strength of the GEBF subsystems.183 Hydrogen-bond interac-
tions dominate in the packing congurations at a low density
(0.5 g cm�3), and the GEBF calculated VCD spectrum is in good
agreement with the experimental result, with signal splitting in
C]O stretching vibrational regions.183

Another kind of low scaling method, the CIM approach,61,62

has also been applied to calculate the binding energies of
various supramolecular complexes, metal-containing molecular
aggregates and zeolites (Fig. 6).60,64 For example, the CIM-MP2
relative energies of different L-amino acid ethyl ester hydro-
chlorides (L-AA-OEt) in water-soluble pillar[n]arene WP5 were
obtained to describe different chiral conformations.184 To
understand the mechanism of a chemically self-charging
aqueous zinc-organic battery, which consists of a poly(1,5-
naphthalenediamine) (i.e., poly(1,5-NAPD)) cathode, a Zn-foil
anode and an alkaline electrolyte, the binding energies of
(1,5-NAPD)7 with different ions (H+, Zn+, and K+) were calculated
by CIM-RI-MP2 with the def2-TZVPD basis set.14 The high level
CIM-DLPNO-CCSD(T) binding energies were also obtained for
a molecular capsule with multiple hydrogen interactions. With
this binding energy as a reference, the results show that several
DFT functionals overestimate the binding energies. The
binding ability of trapping ethanol molecules in a ZSM-5 zeolite
cage is evaluated by CIM-DLPNO-CCSD(T) calculations, which
indicates that the M06-2X functional could provide an
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Polarization model for evaluating electrostatic interaction
energy with variable electrostatic parameters such as fragment-based

Review Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
N

ov
em

be
r 

20
21

. D
ow

nl
oa

de
d 

on
 1

/1
1/

20
26

 5
:3

6:
04

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
reasonable binding energy.64 In another way, Jorgensen and co-
workers have applied their Massively parallel divide-expand-
consolidate RI-MP2 (DEC-RI-MP2) to 1-aza-adamantane-trione
(AAT) supramolecular wires including up to 2440 atoms and
24 440 basis functions.185 Raghavachari and co-workers have
employed a multilayer MIM method to study of the energies of
foldamers and their complexes with anions. It demonstrates
that a two-layer MIM2 model, in which DLPNO-CCSD(T) and
DFT with Grimme's dispersion correction (DFT-D3) methods
are employed as high and low levels, respectively, could provide
accurate binding energies by taking long-range interactions
into account.186

To sum up, the improvement of fragmentation schemes and
the employment of local correlation methods could yield
accurate binding energies of large-sized supramolecular
complexes and molecular aggregates at the electron correlation
levels.
dipole moments coming from the fragmentation QM calculation and
its application to the simulation of a stimuli-responsive biotin-4KC
monolayer on gold surfaces under three different conditions: without
an external electric field (OC), upward (ON), and downward (OFF)
electric fields.
3.3 Stimuli-responsive monolayers

The ordered self-assembly of molecular monolayers on the
surface plays an important role in molecular electronics,
photonics, and optical devices. The introduction of stimuli-
responsive groups into monolayers is an efficient way to fabri-
cate novel smart sensors and drug release systems.41,187–191 An
electric eld could trigger the moment of the charged head
groups or molecular chains of monolayers deposited on
substrates. In some cases, the charged oligomer chains are
polarized under the electric eld. The polarizable force elds
are desired to give reasonable descriptions of the electric eld
driven switching process. GEBF was able to provide variable
partial charges or fragment dipoles in response to the confor-
mational changes.

As shown in Fig. 7, the energy-based fragmentation method
was used on biotin-4KC, i.e., a positively charged tetramer of
lysine (K) that is functionalized at one end with the bioactive
moiety biotin, which could bind with the neutravidin protein,
and at the other end with a cysteine (C), for binding to gold
substrates. An electro-switchable surface can be formed by
a binary mixed monolayer with biotin-4KC and a short chain of
an ethylene glycol-terminated thiol (i.e. (3-mercaptopropyl)tri(-
ethylene glycol), TEGT), which could ll the space around the
biotin-4KC and give enough room for biotin-4KC to switch its
backbone under electric eld stimuli. Based on the response of
a charged molecular backbone of biotin-4KC in such a mixed
self-assembled monolayer (SAM), the binding activity of
a ligand (biotin) to a protein (neutravidin) can be dramatically
changed. It was found that when an upward electric potential
(+0.3 V) was applied, high neutravidin protein binding was
observed (called ON), while the application of a downward
potential (�0.4 V) gave rise to the OFF state with a minimal
protein binding ability. Under open circuit (OC) conditions, the
protein binding capability was intermediated, lying between the
ON and OFF states. The electrostatic potential surfaces of OC,
ON, and OFF states indicate the high polarization of charge
distribution of the charged biotin-4KC chain under an external
electric eld. The biotin-4KC chain can be cut into ve
© 2021 The Author(s). Published by the Royal Society of Chemistry
fragments according to its constituent groups with each frag-
ment containing a lysine or biotin group, which is called frag-
ment I or fragment J, without the loss of generality. For MD
sampled congurations, the GEBF-M06-2X calculations were
carried out on-the-y to provide partial charges or fragment
dipole moments in a coarse-grained way for polarized force eld
simulations. For example, the electrostatic interaction energy
could be calculated from the dipole–dipole interaction,
Emmelectrostatics, between any two fragment dipoles, m!Frag

i and m!Frag
j ,

as shown at the top of Fig. 7. The updated electrostatic inter-
action energy is used to replace the xed charge electrostatic
term in the traditional force eld. It can be found from Fig. 7
that the application of polarizable force eld simulations under
upward and downward electric elds, respectively, demon-
strated the standing straight up (ON) and bending down (OFF)
of the biotin-4KC chain, reproducing well the experimental
observations.189

Polarizable FF models were also applied to simulate the
macrocyclic ring at different binding states of [2]-rotaxane, each
of which is set as the initial state for GEBF-M06-2X based AIMD
simulation to efficiently cut down the computational costs and
improve the performance of AIMD simulations.42
3.4 Excited state processes in molecular aggregates

One of the most fundamental issues in discussing about the
excited processes in molecular aggregated systems is to accu-
rately describe their absorption and emission spectra, which
requires an electronic structure calculation of excited states
and/or a Fourier transformation of time correlation functions
from a quantum dynamics simulation. In 2014, Ma and Troisi20

predicted direct photo-generation of long-range charge transfer
(CT) states in organic photovoltaics through a simulation of the
absorption spectra at a tetracene/perylene-3,4,9,10-
Chem. Sci., 2021, 12, 14987–15006 | 14997
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tetracarboxylic dianhydride (PTCDA) interface by using the
REM approach. This was later veried by the experimental
assignment of the full CT state absorption spectrum in micro-
crystalline rubrene/C60.192 Zhang et al.18 employed the electro-
statically embedded generalized molecular fractionation (EE-
GMF) method, a variant of MFCC, to predict the spectra of
a prototype AIE uorophore: di(p-methoxylphenyl)dibenzo-
fulvene (FTPE), nearly reproducing the experimental optical
spectra of FTPE in condensed phases.

Applying DMRG into ab initio quantum chemistry Hamilto-
nian can serve as an efficient and computationally accurate
method, for describing the excited state electronic structure
properties of strongly correlated systems that require large
complete active spaces (CASs) composed of up to 100 active
orbitals, which are not accessible by conventional multi-
congurational WFT methods. For example, in 2014 Sharma
et al.193 computed the individual ground- and excited-state
energy levels of [2Fe–2S] and [4Fe–4S] clusters by DMRG calcu-
lations with up to 36 active orbitals, suggesting that the low-
energy spectrum is very dense due to the presence of many d–
d excited states arising from both orbital transitions and spin
recouplings. This nding is later supported by indirect experi-
mental evidence from iron L-edge 2p3d resonant inelastic X-ray
scattering (RIXS).194 In 2019, Cho et al.195 further performed
ultraviolet (UV) absorption spectroscopy and stimulated X-ray
Raman spectroscopy (SXRS) for [2Fe–2S] complexes, which
complement each other by accessing different parts of the
electronic spectrum and together can effectively probe the
dense d–d electronic states in the Fe–S clusters. The simulated
spectra presented clear signatures of the theoretically predicted
dense low-lying excited states within the d–d manifold.
Furthermore, the difference in spectral intensity between the
absorption-active and Raman-active states provides a potential
mechanism to selectively excite states by proper tuning of the
excitation pump, to access the electronic dynamics within this
manifold.

In recent years, the quick development of the time-
dependent series, such as tDMRG method, also promoted the
accurate theoretical simulations of spectroscopy in molecular
aggregates, especially for systems with strong electron-
vibration/phonon couplings. Ren et al.148 computed the
vibronically resolved linear absorption and uorescence spectra
of perylene bisimide (PBI) and distyryl benzene (DSB) aggre-
gates by using tDMRG at zero and nite temperature in
conjunction with a Holstein model Hamiltonian. The calcula-
tions on PBI molecular chains showed that the practical accu-
racy of tDMRG reaches that of ML-MCTDH at zero temperature.
The comparison with n-particle approximation methods on the
DSB crystal further shows that tDMRG is not only much more
accurate than these approximations but can also practically
handle the larger Hilbert spaces arising from increasing the
number of vibrational modes to model detailed spectral
features. Additionally, it was also shown that appropriate
vibronic features in the ultrafast electronic process can be ob-
tained by simulating the two-dimensional (2D) electronic
spectrum by virtue of the high computational efficiency of the
tDMRG method by Yao et al.,146 by taking an oligothiophene/
14998 | Chem. Sci., 2021, 12, 14987–15006
fullerene heterojunction as an example. Very recently, Gelin
and Borrelli further extended tDMRG to the simulation of the
time- and frequency-resolved uorescence spectra of the
Fenna–Matthews–Olson antenna complex at room temperature
with an account of nite time-frequency resolution in uores-
cence detection, orientational averaging, and static disorder.196

Unravelling the microscopic ultrafast dynamic conversion
processes in photophysics and/or photochemistry depends on
an accurate real-time QD simulation. For example, singlet
ssion (SF) is a spin-allowed photophysical process that
generates two triplet excitons from one singlet excited state and
has attracted a lot of research efforts in the past decade.197,198 In
recent years, various low-scaling full QD simulations based on
MCTDH, tDMRG, or tensor network state (TNS) have been
devoted to the theoretical study of both intermolecular and
intramolecular SF processes in different molecular crystals or
solutions.24,25,199 By employing MCTDH simulations, Tamura
et al.24 revealed that the slip-stacked equilibrium packing
structure in pentacene derivatives enhances ultrafast SF medi-
ated by a coherent super-exchange mechanism via higher-lying
CT states. By contrast, the electronic couplings for singlet
ssion strictly vanish at the C2h symmetric equilibrium p

stacking of rubrene. In this case, singlet ssion is driven by
excitations of symmetry-breaking intermolecular vibrations,
rationalizing the experimentally observed temperature depen-
dence. In addition, tDMRG simulations were also recently
adopted by Li et al.200 to obtain a general charge transport
picture for organic semiconductors with nonlocal electron-
phonon couplings (EPCs). By studying the EPC effect on the
carrier mobility, mean free path, optical conductivity, and one-
particle spectral function, they located the phonon-assisted
(PA), transient localization (TL), and band-like (BL) regimes
simultaneously on the transfer integral – nonlocal EPC strength
plane. They also identied an intermediate regime, where none
of the existing pictures is truly applicable, as a generalization of
hopping-band crossover in the Holstein model.
4 Machine learning for molecular
materials

The successful applications of low scaling QM calculations and
their hybridizations with molecular dynamics simulations in
the study of material systems have been collected in the above
subsections. Recently, the introduction of various material or
QM computation databases and ML methods has changed the
traditional “try and error”way to search for novel molecules and
materials with desired properties. There are a large number of
high throughput screening calculations and ML training and
prediction studies for various material systems, and we cannot
present all those studies in the review (Table S2†). We only lay
emphasis on some selected examples in the three categories of
ML methods, i.e., explainable models (with well selected
features),201 deep learning (with self-learned representations
without the predetermination of feature characters), and on-
line or transfer learning (with variable training data sets), as
shown in Fig. 8.
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Schematic illustration of explainable machine learning, deep learning, and on-line or transfer learning methods and their applications to
predict molecular or material properties.
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Driven by the development of computer science and articial
intelligence, as well as the availability of massive data and
efficient data-mining techniques, explainable ML approaches
have been widely applied in materials science, with an aim to
achieve explainable structure–property relationships with
several feature descriptors including structural descriptors (e.g.,
chain length of oligomers, pore size of zeolites, length/diameter
ratio of nanoparticles, etc.) and electronic structure descriptors
(e.g., dipole moment, polarizability, Frontier molecular orbitals,
etc., shown in Fig. 8) without losing the predictive accuracy. For
instance, explainable ML models have been learnt to construct
QSPR models for predicting different device performances of
organic solar cells (OSCs), providing useful suggestions con-
cerning the design of new functional organic materials with
desired properties, and contributing to the identication of new
OSC materials.202–206 In 2018, we identied 13 important struc-
tural and electronic structure descriptors to describe 280 donor
molecules by in-depth understanding of the microscopic
mechanism of OSCs.207 Among them, one is the structural
descriptor (number of unsaturated atoms, Natom), while others,
such as polarizability, vertical ionization potential, and hole–
electron binding energy, are related to the ground- and excited-
state properties obtained by quantum chemical calculations. A
range of ML algorithms including K-nearest neighbor (KNN),
random forest (RF), gradient boosting (GB), and articial neural
network (ANN) were used to construct regression models for
predicting power conversion efficiency (PCE). Both tree-based
models obtained remarkable predictive power with Pearson's
correlation coefficient (r) exceeding 0.78. In addition to
improving the overall performance of organic photovoltaics, it
is also necessary to meet the other requirements of specic
applications for devices, such as high open-circuit voltage (VOC)
for solar-fuel energy conversion and high short-circuit current
density (JSC) for solar window applications. To this end, we also
constructed ML models to predict the other three important
device parameters, VOC, JSC, and lled factor.208 On the basis of
an extended experimental data set of 300 donor molecules, the
predictive accuracy (r) of the GB model for VOC, JSC and lled
© 2021 The Author(s). Published by the Royal Society of Chemistry
factor reached 0.67, 0.66 and 0.71, respectively. Furthermore, we
performed high-throughput virtual screening of 10 170 mole-
cules using well-trained ML models.209 All candidates were
composed of 32 unique building blocks (four types of units,
donor (D), acceptor (A), p-spacer (S) and end-capping (C))
according to ten combinative ways (DA, ADA, DAD, DSA, DSASD,
ASDSA, CSDSC, CASDSAC, CDSASDC and CDSAC). In order to
derive design rules, an efficient group-combined pair and the
most favourable molecular combinations from building blocks
were obtained. In addition, the key factors required for highly
efficient molecules were claried. For instance, the energy
difference of LUMO+1 and LUMO of donors (DL), energy gap
(DH–L) and Natom of all high-performance dyes have the range
of <0.25 eV, <4.25 eV and >60, respectively. Explainable ML
methods have been used in many other kinds of materials, and
the readers could nd more examples in Table S2.†

The interplay between explainable ML models and experi-
ments is becoming more active. Experimental data are impor-
tant input to obtain an initial guess of descriptor sets, and
conversely, the built explainable QSPR model could help
experiments to gain inspiration for constructing the chemical
combination space of novel materials and fabrication of mate-
rials. For example, a new ML framework for simultaneously
optimizing D/A molecule pairs and device specications of
OSCs is proposed.210 The structural and electronic properties
were further combined with the device bulk properties, which
can be measured by atomic force microscope (AFM) experi-
ments. In this way, the built QSPR model achieved unprece-
dentedly high accuracy and consistency. A large chemical space
of 1 942 785 D/A pairs is explored to nd potential synergistic
ones. Favourable device bulk properties such as the root-mean-
square of surface roughness for D/A blends and the D/A weight
ratio are further screened by grid search methods. This showed
that ML can be effective not only for molecular screening but
also for experimental parameter optimization for OSCs, which
takes an important step further into the practical theoretical
guidance in materials engineering. Experimentally observed
scanning electron microscope (SEM) or transmission electron
Chem. Sci., 2021, 12, 14987–15006 | 14999
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microscopy (TEM) pictures are also useful to derive the
morphology descriptors of nanoparticles, from which various
explainable ML models such as light gradient boosted machine
(LightGBM), extreme gradient boosting (XGBoost), support
vector machine (SVM), and gradient boosting decision tree
(GBDT) could predict the surface energy aer being trained with
high throughput calculations on different size scales.211

Last but not the least, the synthetic accessibility of screened
candidates is an important target of material design. The
synthetic accessibility is assessed to identify new efficient and
synthetically accessible organic dyes for dye-sensitized solar
cells (DSSCs).43 The solubility and viscosity predictions are also
very useful for experiments to select appropriate solvents for
synthetic experiments. Feature engineering indicated that the
molecular size, shape and hydrogen bonding interaction are
efficient features to predict the liquid viscosity in a fast way
without much loss of accuracy.212

Although the well-behaved features coming from explainable
ML methods could provide signicant insight for experimen-
talists in the rational design of different kinds of materials,
various deep learning methods have been introduced into
chemistry andmaterials science. In the implementation of deep
learning methods, we only need to input the information of
atoms, bonds, topology, etc., for each molecule. As mentioned
in the above subsection, the functions of novel optical materials
and electronic devices are correlated with the descriptors of
dipole moment, polarizability, energy levels of the HOMO and
the LUMO, and so on. In fact, the accurate prediction of the
HOMO and LUMO energy levels is still a big challenge for deep
learning methods. To improve the prediction accuracy of
HOMO and LUMO energy levels, we proposed an efficient multi-
level attention neural network, named DeepMoleNet, for
molecular systems to establish an implicit relationship between
the molecular structural information and 12 electronic struc-
ture properties including dipole moment, polarizability,
HOMO, LUMO, HOMO–LUMO gap, zero point vibration energy
(ZPVE), electronic spatial extent (<R2>), internal energy at zero
and room temperature (U0, U), enthalpy (H), free energy (G), and
heat capacity (Cv).213 In addition to these 12 quantum chemistry
properties, the atom-centered symmetry functions (ACSFs)214

descriptor is selected as the auxiliary prediction target.
Recently, a modied DeepMoleNet model was proposed to
study the relative stability of nanoparticles with the introduc-
tion of cut-off approximation for treating a complex system.211 It
can be expected that the multi-level attention neural network is
applicable to high-throughput screening of various chemical
species to accelerate the rational design of material candidates.

In addition to the above-mentioned property predictions,
machine learning methods have also been introduced in
quantum chemical study for the prediction of atomic forces and
energies, with the target of constructing accurate force elds
and complicated potential energy surfaces. Shen and Yang have
combined a QM/MM method and neural network (NN) for
direct MD simulations.215 The QM/MM-NN could approximately
reproduce the ab initio QM/MM simulated results by saving the
computational costs by about 2 orders of magnitude. An on-the-
y GEBF ML approach was developed to construct a machine
15000 | Chem. Sci., 2021, 12, 14987–15006
learning force eld for oligomers by employing a Gaussian
process without the need for data selection and parameter
optimization.44,218 In this approach, only those small GEBF
subsystems are employed to construct ML force elds auto-
matically and efficiently. Then, the total energy, gradients, and
molecular properties could be obtained from those of GEBF
subsystems. With the GEBF-ML force eld, long-time MD
simulations were performed on various PEn (n ¼ 20, 30, 40, 50).
The results show that the full QM energies, forces, and dipole
moments of those PE could be accurately reproduced with the
GEBF-ML force eld. Furthermore, the infrared spectra of PE6
obtained from the GEBF-MLMD simulations are also consistent
with those from the corresponding direct AIMD or experimental
results. However, the GEBF-ML MD simulations are several
orders of magnitude faster than the corresponding direct GEBF-
based AIMD simulations. Therefore, on-line and transfer
learning force elds could be used for studying the conforma-
tion changes or vibration and even electronic spectra of long
oligomers.

5 Conclusions

The development of low scaling QM methods and their
combination with multiscale models and machine learning
techniques has brought about fruitful applications in under-
standing the microscopic structure of polymeric oligomer
chains, self-assembled monolayers, supramolecular complexes,
and molecular aggregates in solution or solids and fast pre-
dicting various properties for speeding up material design.
There are still some challenges as summarized below.

It is well known that quantum mechanics and molecular
mechanics are the major tools employed in material design.
Especially, DFT is widely used to compute the energy, structure,
and more properties of various functional materials. However,
conventional DFT calculations are still very expensive for those
materials with large sizes due to their high scaling. The accu-
racies of DFT calculations are dependent on the choice of
functionals. There are two directions to improve DFT perfor-
mance for large sized systems. One blooming direction is to use
ML to develop more accurate DFT functionals. The generality
and transferability of trained models are crucial in this area,
which requires the state-of-the-art ML models and an accurate
benchmark data set for training and testing the ML derived
functionals. Thus, on the other hand, high-level electron
correlation methods are needed. But post HF methods are
infeasible for large-sized systems and high throughput calcu-
lations because of their even higher scaling than that of DFT.
For ground-state calculations, low scaling QMmethods, such as
fragmentation methods and local correlation methods, could
speed up DFT calculations and also enable the electron corre-
lation calculations of large systems.

We have illustrated the application of fragmentation
approaches to various materials, including polymer oligomers
in solutions or solids, supramolecular complexes and their
molecular self-assembled, stimuli-responsive materials on
surfaces and mechanically interlocked molecules. The frag-
mentation approaches are simple and effective, and could be
© 2021 The Author(s). Published by the Royal Society of Chemistry
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extended to various molecular or material properties with the
accuracies depending on the parameters for dening local
environments. However, for some complex systems such as
those containing highly twined, delocalized, or polarizable
functional groups, the fragments need to be manually dened.
Local correlation approaches could also be employed for the
calculations of relative or binding energies of supramolecular
complexes. More complicated materials which are difficult to be
treated by fragmentation approaches, such as metal oxides,
could be computed by the local correlation methods as a black-
box. Though analytic energy gradients and geometry optimiza-
tion are available in the local correlation methods, high-order
analytic energy derivatives are too complicated to be imple-
mented until now. Thus, the local correlation methods have not
been applied to molecular and material properties such as IR/
Raman and NMR spectroscopy, which are useful characteriza-
tion measurements for material systems. In addition, low
scaling QM algorithms need to be improved to treat more
complex systems at high QM levels. For example, two low
scaling algorithms under periodic boundary conditions, such as
PBC-GEBF and PBC-CIM methods, have been developed. These
methods are applicable to periodic systems and need to be
applied to more functional materials and interfaces. A low
scaling QM dataset, such as the GEBF database83 and ExL8
dataset,64 could provide high-accuracy post HF data for both
method validation and data driven molecular and material
design. More low-scaling QM computation data sets with a wide
range of chemical spaces are highly desired.

It has also been stressed that excited-state calculations and
dynamics are important for optical functional materials such as
optoelectronic devices and photo-catalysts. However, electronic
excited-state calculations are much more expensive than the
corresponding ground-state calculations. For the excited-state
calculations, local excitation or local correlation approxima-
tion based on localized molecular orbitals or molecular frag-
ments or excitonic models could be used to accelerate the
excited-state calculations. Tensor product methods were
employed to speed up the excited-state dynamics. Although the
applications of low scaling excited-state methods to investigate
the optoelectronic processes in organic photovoltaics have been
demonstrated, the further development of quantum dynamics
methodologies with an appropriate description of condensed
phase environments is highly desired. The collaboration with
experimental ultrafast multi-dimensional spectroscopy is also
very important to provide insight into the microscopic under-
standing of electron-vibration coherence.

The combination of low scaling QMmethods with force eld
based molecular dynamics simulations is still a practical way to
study the packing structures of very complicated molecular
aggregates in a condensed phase. The performance and trans-
ferability of the force eld parameters are the key issues in
material design. Electrostatics polarization could be accurately
described with the assistance of the low scaling QM calculations
of MD sampled congurations. However, for low-lying excited
states and proton transfer reactions, much more studies are
required to modify the force eld forms and introduce the new
idea.
© 2021 The Author(s). Published by the Royal Society of Chemistry
So, a more general way is to apply data-mining techniques
and machine learning algorithms to fast predict the energy,
force, structure, and properties of functional materials. By using
neural networks or other ML algorithms, the optical or electrical
properties of materials could be trained from QM computa-
tional or experimental databases with some structural descrip-
tors via feature learning. Then, force elds as well as material
properties could be directly predicted by the trainedMLmodels.
Furthermore, the molecular energies, forces, or electronic
structure properties such as HOMO and LUMO energy levels
could be directly trained by ML models such as a graph con-
volutional NN or Gaussian process with molecular descriptors
based on molecular geometries. Low scaling QM methods can
be expected to accelerate the computational data generation for
ML training. For example, an online transfer learning algorithm
was developed for predicting the force elds, conformational
structures, and IR spectra of polymer oligomers by training
GEBF subsystems only.44,218 In the future, the online machine
learning force eld should also be extended to periodic mate-
rials and interfaces by taking innite long-range electrostatic
interactions into accounts. Then, the lattice energy, crystal
structures, and spectroscopic properties of periodic materials
could be efficiently obtained to assist the design of novel
functional materials. Finally, the synthetic accessibility and
theoretically designed reaction pathway could guide the exper-
imental fabrications of materials, and in turn, the feedback
from experiments could be added into the material datasets to
update the ML models for the new design.
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C. Camacho, C. Cevallos, M. Y. Deshaye, T. Dumitrică,
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