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design with 3D pharmacophoric
constraints†

Fergus Imrie, a Thomas E. Hadfield,a Anthony R. Bradleyb

and Charlotte M. Deane *a

Generative models have increasingly been proposed as a solution to the molecular design problem.

However, it has proved challenging to control the design process or incorporate prior knowledge,

limiting their practical use in drug discovery. In particular, generative methods have made limited use of

three-dimensional (3D) structural information even though this is critical to binding. This work describes

a method to incorporate such information and demonstrates the benefit of doing so. We combine an

existing graph-based deep generative model, DeLinker, with a convolutional neural network to utilise

physically-meaningful 3D representations of molecules and target pharmacophores. We apply our

model, DEVELOP, to both linker and R-group design, demonstrating its suitability for both hit-to-lead

and lead optimisation. The 3D pharmacophoric information results in improved generation and allows

greater control of the design process. In multiple large-scale evaluations, we show that including 3D

pharmacophoric constraints results in substantial improvements in the quality of generated molecules.

On a challenging test set derived from PDBbind, our model improves the proportion of generated

molecules with high 3D similarity to the original molecule by over 300%. In addition, DEVELOP recovers

10� more of the original molecules compared to the baseline DeLinker method. Our approach is

general-purpose, readily modifiable to alternate 3D representations, and can be incorporated into other

generative frameworks. Code is available at https://github.com/oxpig/DEVELOP.
Introduction

Drug design optimises molecules through a multi-step, iterative
process in order to achieve a desired biological response. The
size of the search space1 and discontinuous nature of the opti-
misation landscape2 are two key factors contributing to the
difficulty of this problem and, as a result, currently molecular
design is typically led by human experts.

Machine learning models for molecule generation3–5 offer an
alternative approach to human-led design or rules-based
transformations.6,7 Despite recent success,8 for these methods
to be broadly adopted in drug discovery, more control over the
generative process is required, including the ability to incor-
porate prior knowledge.

In the hit-to-lead (or lead generation) and lead optimisation
stages of drug discovery, the goal is to improve one, or several,
properties. This is typically achieved by modifying an existing
molecule rather than designing a compound from scratch. Such
ment of Statistics, University of Oxford,

x.ac.uk

xford Science Park, Oxford OX4 4GE, UK

tion (ESI) available. See DOI:

the Royal Society of Chemistry
modications can be broadly categorised into one of two
scenarios: linker design and scaffold elaboration.

Linker design is a general problem in drug discovery
capturing a wide range of tasks where the goal is to design
a molecular scaffold that incorporates two (or more) specic
substructures. Three key applications that can all be considered
as linker design are scaffold hopping,9,10 fragment linking,11,12

and PROTAC design.13,14 Examples of these design tasks are
shown in Fig. 1a–c.

In contrast to linker design which is tasked with discovering
molecular cores, scaffold elaboration proposes molecules
incorporating these privileged substructures. Scaffold elabora-
tion covers a broad range of medicinally important scenarios,
such as R-group optimisation15 and fragment growing12,16

(Fig. 1d and e). R-group optimisation is utilised in almost all
drug discovery projects to improve the potency, selectivity, and
other properties of a molecule during lead optimisation and
characterise the structure–activity relationship (SAR) of
a molecular series, while growing is the primary method for
elaborating fragment hits.

Recently, several deep learning methods have been proposed
to address these design challenges. We previously published the
rst application of deep learning for molecular linker design
(“DeLinker”),17 reporting substantial improvement over a data-
base-based approach, the previous de facto computational
Chem. Sci., 2021, 12, 14577–14589 | 14577
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Fig. 1 Design tasks considered in this work. (a–c) cover linker design, specifically (a) scaffold hopping, (b) fragment linking, and (c) PROTAC
design. (d and e) scaffold elaboration, namely (d) R-group optimisation and (e) fragment growing. Components of the ligand that are modified or
added in the design process are shown in red.
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View Article Online
method for this task, by including basic structural information.
Yang et al.18 have since proposed an alternative model (“Synta-
Linker”) based on the transformer architecture and a SMILES-
based representation. Their model did not incorporate struc-
tural information but instead included 1D molecular patterns
capturing factors such as the shortest linker bond distance.

Deep learning approaches have also been proposed for
scaffold elaboration. Graph-based approaches were proposed by
Lim et al.19 and Li et al.20 The scaffolds employed in both
methods do not have explicit attachment points. As such, these
methods are primarily applicable to the general generation of
molecules with a privileged scaffold or substructure, rather than
tasks such as R-group design. In contrast, Arús-Pous et al.21

developed a preprocessing formulation to permit a SMILES-
based approach that requires specic attachment points to be
dened.

In both linker design and scaffold elaboration, some
knowledge about the desired modication is typically avail-
able;22 this can either be derived from the protein binding site
in the case of structure-based design,23 or from other molecules
in ligand-based drug discovery.24 In either case, this informa-
tion has strong 3D dependencies which should be taken into
account. However, currently this information, which is crucial
to successful compound design, is typically not utilised by
generative models.25

None of the existing machine learning models for linker
design or scaffold elaboration effectively utilise structural
information, with DeLinker the only framework explicitly
incorporating any 3D information in the form of the distance
between the starting substructures and their relative orienta-
tions. While this minimal parametrization had a substantial
impact on the quality of the generated molecules,17 much of the
key information about the characteristics of the binding site is
not taken into account in the generative process.

There have been several recent approaches proposed to
generate molecules from 3D representations.26–31 In particular,
Skalic et al.26 generated molecules from a 3D representation of
14578 | Chem. Sci., 2021, 12, 14577–14589
a seed ligand. However, their approach requires a known active
molecule, only provides 3D information implicitly to seed their
model, and offers no further control over generated
compounds. As a result, their generative model recovered fewer
than 2% of seed molecules. This idea was extended in Skalic
et al.27 to generate the ligand representation from the protein
target. While this alleviates the need for a known active, it is not
possible to use prior knowledge to inuence the ligand repre-
sentation. Finally, in concurrent work to this paper, both
Ragoza et al.28 and Masuda et al.29 generate molecules by
adopting an autoencoder framework to rst generate atomic
densities, before using a tting procedure to convert the
continuous 3D grids to discrete molecular structures.

All prior approaches utilising 3D representations attempt to
generate entire molecules and do not readily incorporate expert
knowledge. While this is arguably the end-goal for molecular
design, in practice this limits the applicability of such methods.
In particular, it prevents their use in later stage drug discovery
where there is signicant prior knowledge that could and
should inform compound design.

In this paper, we propose DEVELOP (DEep Vision-Enhanced
Lead OPtimisation), a graph-based generative model that uses
a convolutional neural network (CNN) to incorporate physically-
meaningful 3D structural information, here provided as 3D
pharmacophores,32 a general and widely-used representation in
cheminformatics. Our model is applicable to a wide variety of
design tasks in the hit-to-lead and lead optimisation stages of
drug discovery, covering linker design and scaffold elaboration.
Importantly, the richer representation of the binding site
readily and naturally allows the incorporation of domain
knowledge and signicantly improves the quality of generated
compounds. On a challenging test set derived from PDBbind,
our model improves the proportion of generatedmolecules with
high 3D similarity to the original molecule by over 300%. In
addition, DEVELOP recovers 10� more of the original mole-
cules compared to the baseline DeLinker method.
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Overview of DEVELOP. The starting structures and 3D pharmacophore map are converted into a graph representation and a voxel grid,
respectively. These are fed into GNN and CNN encoders, respectively. The featurisations are combined and decoded by a GNN-based decoder.
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Methods

This work describes DEVELOP, a deep learning approach
combining GNNs and CNNs for molecular linker design and
scaffold elaboration. We extend current molecular generative
methods to incorporate physically-meaningful 3D structural
information, enabling prior knowledge to be readily incorpo-
rated and allowing greater control of the generative process by
domain experts. Our underlying model is based on Imrie et al.,17

which built on the generative process introduced by Liu et al.33

that constructs molecules “bond-by-bond” in a breadth-rst
manner. Here we outline the generative process and describe
how 3D structural information is incorporated (Fig. 2).
Generative process

To perform the generative tasks considered in this manuscript,
DEVELOP takes as input (i) the chemical structure of either the
substructures that are to be linked or the molecular scaffold
that is to be elaborated and (ii) a 3D structure of the partial
molecule and the desired pharmacophoric features. The input
to DEVELOP can be seen in Fig. 2 for both linker design and
scaffold elaboration.

Pharmacophores are a widely-used representation in chem-
informatics.32 They are designed to capture the key chemical
interactions that allow ligands to bind to macromolecular
targets, such as hydrogen bonds, charges, or lipophilic contacts.
© 2021 The Author(s). Published by the Royal Society of Chemistry
Pharmacophores can be derived both from other molecules
(ligand-based) and inferred or proposed based on the protein
target of interest (structure-based), making this representation
broadly applicable. In this work, we utilised 3D pharmaco-
phores derived from the ground truth molecules.

Due to their prevalence and importance in drug discovery,
the pharmacophores included in our representation were
hydrogen bond donors, hydrogen bond acceptors, and aromatic
systems. Pharmacophores were determined according to the
default RDKit denitions. Our framework is readily extendable
to additional pharmacophores, or alternate structural
representations.

To generate new molecules, rst, a graph representation of
the starting substructure(s) is constructed and nodes are
encoded using a gated graph neural network (GGNN)34 in line
with Imrie et al.17 The 3D structure of the starting molecular
fragment(s) and desired pharmacophores is voxelised to
construct a 3D grid, with atoms and pharmacophores adopting
a Gaussian representation centered at their input coordinates35

(Fig. 2). Input structures are augmented via random trans-
lations of up to 1.0 Å and random rotations. The voxel grid
representation is passed into a 3D convolutional neural network
composed of three 3 � 3 � 3 convolutional layers with ReLU
activation, each followed by a 2 � 2 � 2 max pooling layer, with
the nal convolutional layer followed by a global max pooling
operation. We then apply dropout with probability 0.2 before
a fully-connected layer produces the 3D structural encoding.
Chem. Sci., 2021, 12, 14577–14589 | 14579
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For linker design, the distance and angle between the start-
ing substructures has been shown to provide a useful
constraint.17 However, this representation is not readily
extendable to scaffold elaboration, and thus this information is
only provided for linker design. The 3D structural encoding is
concatenated with the distance and angle information (in the
case of linker design) and a 1D count vector representing the
number of each pharmacophoric feature that should be present
in the generated molecule. This forms the structural informa-
tion, D, used by the decoder to generate molecules.

From these embeddings, molecules are generated in line
with Imrie et al.17 The decoding process is initialised with the
node encodings together with a set of expansion nodes whose
feature vectors are drawn from the standard normal, N ð0; IÞ.
Each node is labeled with an atom type sampled from a classi-
er applied to the concatenation of the node encoding and the
structural information, D.

Molecules are constructed iteratively “bond-by-bond” from
this set of nodes. Aer each step, the node encodings are
updated by a decoder GGNN. Edges and their edge types are
chosen based on the feature vector for the (possible) edge
between node v and candidate node u given by

ft
v,u ¼ [t,stv,s

t
u,dv,u,H

0,Ht,D],

where stv ¼ [ztv,lv] is the concatenation of the hidden state of
node v aer t steps (ztv) and its atomic label (lv), dv,u is the graph
distance between v and u, H0 is the average initial representa-
tion of all nodes, Ht is the average representation of nodes at
generation step t, and D represents the structural information.

Our model is trained using the same loss function as Imrie
et al.17 which is similar to the standard VAE loss, including
a reconstruction loss and a Kullback–Leibler (KL) regularisation
term:

L ¼ Lrecon þ lKLLKL:

No extra terms are included to regularise the CNN encoding.
As a result, the CNN is trained to produce structural encodings
of the input structures and pharmacophoric representation that
help the network to minimize the overall loss. We use the same
hyperparameters for training as Imrie et al.17 (see ESI†). For
additional details regarding the underlying model see Imrie
et al.17

Data sets

Due to the lack of experimental data, we constructed sets for
training and evaluation from general molecular data sets using
standard transformations from matched-molecular pair anal-
ysis.36 For both linker design and scaffold elaboration, we used
the same underlying data and adopted the same process for
constructing datasets, with the main difference the trans-
formation used. For linker design, we enumerated all double
cuts of acyclic single bonds that were not within functional
groups, while for scaffold elaboration we performed single cuts.

The training sets were derived from the subset of ZINC37

selected at random by Gómez-Bombarelli et al.3 using the
14580 | Chem. Sci., 2021, 12, 14577–14589
fragmentation procedure described above. For linker design,
this results in ca. 418 000 fragment–molecule pairs and is the
same training set as Imrie et al.,17 while for scaffold elaboration
there are ca. 427 000 examples.

To evaluate our method, we constructed test sets for linker
design and scaffold elaboration from CASF-2016 (ref. 38) and
the PDBbind Rened Set39 (v. 2019) using the same fragmen-
tation procedure used to construct the training set. For both of
the CASF and PDBbind test sets, we only retained examples with
elaborations containing at least ve atoms. In addition, for the
PDBbind test sets, we ensured that the molecular elaboration
was unique and was not present in the training set. As a result,
the CASF test sets contain 188 and 143 examples for linker
design and scaffold elaboration, respectively, while the
PDBbind test sets contain 321 and 288 examples, respectively.
Due to the stricter inclusion criteria, the PDBbind test sets
represent a signicantly more challenging test than the CASF
sets and should better capture the ability of a method to
extrapolate to new linkers and elaborations.
Evaluation metrics

We assessed the generated molecules with a range of 2D and 3D
metrics, adopting a similar procedure to Imrie et al.17 We rst
checked the generated molecules for validity, uniqueness, and
novelty. A molecule is deemed “valid” if it contains the starting
substructure(s) and its SMILES representation can be parsed by
RDKit40 (i.e., satises atomic valency rules). Uniqueness
measures the proportion of distinct molecules generated.
Uniqueness was checked on a per-example basis to remove any
dependency between examples in the test set. Novelty assesses
the proportion of generated linkers or elaborations that were
not present in the training set. Low novelty indicates over-
tting41,42 and limits the application of suchmodels to scenarios
where a novel elaboration is required. However, higher novelty
is not always desirable, especially in the settings considered in
this manuscript, since in many cases common elaborations
found in the training set will be suitable. Formal details of the
calculation of these metrics are provided in the ESi.† We then
determined if the generated examples were consistent with the
2D property lters used to produce the training set. While it is
likely that there are many molecules that would full the
desired criteria of the user, the original molecule is a “true”
correct answer and represents the best single ground truth
available. As a result, a primary evaluation metric was the
recovery rate, which measures in how many cases the original
molecule was recovered by the generation process.

Molecules which passed the 2D property lters were assessed
on the basis of their 3D shape. We calculated 3D similarity by
scoring conformers of the generated molecules against the
original molecule using the same 3D shape and colour score
utilised in Imrie et al.,17 based on the methods described in
Putta et al.43 and Landrum et al.44 For both linker design and
scaffold elaboration, we primarily assessed the 3D comple-
mentarity of the generated molecular component only (i.e. the
linker or R-group) with the reference structure (SCRDKit gener-
ated). This score ranges between 0 (no match) and 1 (perfect
© 2021 The Author(s). Published by the Royal Society of Chemistry
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match). Scores above 0.6 indicate a good match, while scores
above 0.9 suggest an almost perfect match.

The focus of our analysis is based on SCRDKit generated as it
directly captures the chemical differences between the
proposed molecules. However, for linker design we also calcu-
lated the 3D metrics utilised in Imrie et al.17 (SCRDKit Molecule,
SCRDKit Fragments, RMSD) to ensure that the proposed linkers
satisfy the basic structural constraints. We did not use these
metrics in the scaffold elaboration experiments since the
conformation of the molecular core is typically largely unaf-
fected by its side chains.45

For each proposed compound, we generated 3D conformers
using RDKit,40 adopting the ltering and sampling procedure
proposed by Ebejer et al.46 To calculate SCRDKit generated, we
generated conformers in a constrained manner, biasing
conformations towards those that maintained the conforma-
tion of the starting structure(s). However, to mitigate the risk of
generating physically unrealistic structures, we removed high
energy conformers. We then scored all conformers, taking the
best score as the nal score for a particular molecule.

Comparison to other methods

For both linker design and scaffold elaboration, we compared
DEVELOP to DeLinker17 and a version of the DeLinker method
which is provided with the number of each pharmacophoric
feature that should be present in the generated linker (“DeLinker-
Counts”). The difference between DEVELOP and these two
baselines is the structural information, D, included in the feature
vector, ft

v,u. This comparison allowed us to assess directly the
impact of (1) including pharmacophoric constraints, and (2)
providing these constraints as a physically-meaningful 3D
structural representation rather than a 1D count vector.

We also compared our results to recent deep learning
methods for these design problems. For linker design, we
compared our method to SyntaLinker,18 while for scaffold
elaboration, we benchmarked against Arús-Pous et al.21 (“Scaf-
fold-Decorator”). Both methods adopt a SMILES-based formu-
lation and neither framework incorporates 3D information in
the design process. In both cases, we retrained these models on
the training sets described above using the open-source
implementations provided by the authors to ensure a fair
comparison between the methods tested. We adopted the same
settings and hyperparameters described in the original publi-
cations. The only deviation was the sampling strategy employed
for SyntaLinker: in themainmanuscript, we report results using
a sampling-based strategy; we have included a comparison
between beam search and random sampling in the ESI.†

Experimental setup

In all of our experiments, we used the same training sets (one
for linker design and one for scaffold elaboration) derived from
the ZINC data set to train all of the models considered. When
evaluating using the data sets derived from CASF and PDBbind,
we generated 250 molecules for each example for each of the
methods considered. For the graph-based models (DeLinker,
DeLinker-Counts, and DEVELOP), the number of atoms was set
© 2021 The Author(s). Published by the Royal Society of Chemistry
equal to the number of atoms in the original molecule. The
pharmacophoric information provided to DeLinker-Counts and
DEVELOP was derived directly from the ground truth molecule.
In the case of SyntaLinker, the model was provided with the
shortest linker bond distance.
Results and discussion

We validate the ability of our deep generative model (DEVELOP)
to perform linker design and scaffold elaboration using 3D
pharmacophoric information, reporting signicant improve-
ment over all other methods. Through the use of several
canonical examples, we demonstrate the impact of the phar-
macophoric constraints on the generated molecules. Several
examples of generated molecular groups can be found in Fig. 3.
We show a signicant improvement in the quality of generated
molecules in large-scale evaluations on test sets derived from
CASF and PDBbind, further demonstrating the importance of
including pharmacophoric information. Finally, we illustrate
the applicability of our approach to scaffold elaboration using
an R-group optimisation case study derived from the literature.
Importance of 3D pharmacophoric constraints

We assessed the impact of pharmacophoric constraints on the
generation process empirically using two canonical examples
for linker design and one example for scaffold elaboration
(Table 1). The examples were all chosen from the PDBbind test
sets (see Methods) and therefore none of the target elaborations
were included in the training set. We generated 1000 molecules
for each example using DeLinker, DeLinker-Counts, and
DEVELOP.

Only DEVELOP was able to recover both of the canonical
examples for linker design, with DeLinker not generating the
correct linker in either case. The difference between the
methods is further exemplied when considering geometric
isomers with the same chemical structure but possibly different
substitution patterns of the exit vectors and substituent.
DEVELOP frequently generated linkers matching the chemical
structure of the linker (41–47), while DeLinker did not produce
a single geometric isomer.

The improved performance of DEVELOP is also evident when
we assessed how many molecules included the desired phar-
macophoric pattern of the examples (aromatic ring with correct
substituent group). A signicantly larger proportion of the
generated molecules contained the desired pharmacophoric
features when the 3D information was provided (60–148,
DEVELOP) compared to not providing this information (13–14,
DeLinker) or providing only 1D pharmacophore counts (12–19,
DeLinker-Counts).

The largest difference in generated molecules occurred in
the phenol example, where only one geometric isomer was
generated by DeLinker and DeLinker-Counts combined
compared to 41 from DEVELOP. This is a particularly difficult
example for both DeLinker and DeLinker-Counts due to the
presence of a donor–acceptor group, but illustrates the neces-
sity of adopting a 3D representation.
Chem. Sci., 2021, 12, 14577–14589 | 14581
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Table 1 Impact of pharmacophoric constraints. Including 3D pharmacophoric information (DEVELOP) substantially improves the ability to
generate molecules with desired interaction patterns

Design task PDB ID Target elaboration Method Recovered No. geometric isomers No. include pharmacophores

Linker design

2FLR

DeLinker No 0 14
DeLinker-Counts No 1 12
DEVELOP Yes 41 148

5IWG

DeLinker No 0 13
DeLinker-Counts Yes 16 19
DEVELOP Yes 47 60

Scaffold elaboration 3HB4

DeLinker No 0 0
DeLinker-Counts No 0 0
DEVELOP Yes 3 7

Fig. 3 Common functional groups, their pharmacophoric representations, and example molecules generated by DEVELOP. Several of the most
common functional groups47 contained in the test sets were selected. The pharmacophoric representation for these examples together with
several of themolecules that weremost frequently generated by DEVELOP are shown. (a and b) Linker design: (a) amide (PDB ID 4GID), (b) aniline
(PDB ID 5IWG); (c and d) Scaffold elaboration: (c) amide (PDB ID 3P5O), (d) sulfone (PDB ID 4QD6).
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The scaffold elaboration example proved challenging for all
methods, primarily due to the size of the elaboration. Only
DEVELOP recovered the 3-methyl-benzamide elaboration, with
neither of the other two methods generating a single geometric
isomer. In addition, DEVELOP was the only method to generate
any elaborations containing the desired functionality of an
aromatic system with an amide side-chain.

These examples demonstrate the importance of including
pharmacophoric constraints for both linker design and scaffold
elaboration. In all cases, it was only possible to consistently
generate molecules with specic pharmacophoric proles when
3D pharmacophoric information was included.
Linker design experiments on large test sets

DEVELOP substantially outperformed all other methods on
both the CASF and PDBbind test sets, with signicant
14582 | Chem. Sci., 2021, 12, 14577–14589
improvements in both the number of true linkers recovered and
the proportion of generated molecules with high SCRDKit

generated. This was achieved with limited impact on the
uniqueness of the generated molecules and their ability to pass
basic 2D chemical lters (Tables 2, S4† and Fig. 4).

In comparison, SyntaLinker performed poorly in particular
as measured by the 2D metrics, producing weaker results than
were reported in its original publication.18 SyntaLinker
produced a low proportion of valid, unique, and novel mole-
cules, and did not recover any of the original molecules in the
PDBbind test set. Due to the comparatively weak results, we
focus the remainder of our analysis on the three graph-based
methods. For further discussion regarding SyntaLinker and
additional results, see the ESI.†

The proportion of valid molecules generated by the other
three methods was high in all cases (>90%) with similar
proportions of novel molecules proposed (69–71% on CASF,
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Linker design. PDBbind set results (see Methods, Evaluation
metrics for definitions of the metrics)

Metric SyntaLinker DeLinker DeLinker-Counts DEVELOP

Valid 65.4% 96.9% 90.2% 93.1%
Unique 9.0% 86.1% 77.8% 77.3%
Novel 9.9% 84.0% 87.6% 88.7%
Recovered 0.0% 1.9% 8.7% 22.4%
Pass 2D lters 95.1% 63.4% 59.5% 61.7%

SCRDKit generated
>0.6 13.4% 10.4% 19.8% 27.9%
>0.7 7.7% 4.2% 10.1% 14.8%
>0.8 4.8% 1.5% 4.4% 6.1%
>0.9 1.3% 0.4% 1.2% 1.5%
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Table S4;† 84–89% on PDBbind, Table 2). As is expected, as
more structural information was provided to the model, the
proportion of unique molecules decreased due to the
constraints on the generative process. However, 58% and 77%
of the molecules produced by DEVELOP on CASF and PDBbind,
respectively, were unique, demonstrating that the model still
samples from chemical space and has not experienced mode
collapse, degrading to a single or small number of solutions.

Incorporating pharmacophoric information substantially
increased the recovery rate of the original molecules. On the
CASF set, DEVELOP recovered 50% of the ground truth mole-
cules, compared to 30% for DeLinker and 42% for DeLinker-
Counts. The PDBbind set is particularly challenging with
DeLinker only able to recover 1.9% of the original molecules,
while a database-based method would not be able to recover
any, due to there being no overlap with the training set.
Including the count of each pharmacophore present in the
original linker increased the proportion recovered to 8.7%
(DeLinker-Counts). Crucially, providing this information as
a 3D structural representation offered a signicant benet over
simply providing the pharmacophore counts. On the PDBbind
test set, DEVELOP recovered 22.4% of the original molecules,
more than ten times as many as DeLinker and more than twice
as many as DeLinker-Counts (Table 2).
Fig. 4 Linker design. Number of original molecules recovered as the n
significantly more of the original molecules than both baselines for any

© 2021 The Author(s). Published by the Royal Society of Chemistry
A signicant improvement is also seen when assessing the
3D similarity of the generated linkers to the original ones.
DEVELOP improved the proportion of molecules with high
structural similarity (SCRDKit generated >0.8) by 300% and 39%
compared to DeLinker and DeLinker-Counts, respectively, on
the PDBbind test set (Table 2), with similar improvements on
the CASF set (Table S4†).

In addition to SCRDKit generated, we also calculated the 3D
metrics employed in Imrie et al.,17 namely SCRDKit Molecule,
SCRDKit Fragments, and RMSD. These metrics primarily capture
whether the molecular linker allows the original substructures
to adopt similar conformations, with the chemical features of
the linker having limited to no effect on this score. The linkers
generated by DEVELOP showed a substantial improvement on
CASF compared to both DeLinker and DeLinker-Counts (Table
S5†), while performing similarly on PDBbind (Table S6†).

As previously stated, these metrics primarily assess whether
the linker can allow the starting substructures to adopt the
required conformation. The additional information regarding
the desired linker chemistry may well not improve these scores,
even when linker quality is substantially improved.

To investigate whether the improvement in recovery rate is
due to the number of linkers generated, we generated 5000
examples for each pair of starting fragments and assessed in
how many cases the true linker was recovered (Fig. 4). The
improvement in recovery rate of DEVELOP persisted even as
substantially more linkers were generated. Aer several thou-
sand examples, the rate of recovery of additional linkers
decreased signicantly for all methods, but remained the
highest for DEVELOP. While increasing the number of samples
further would be likely to yield more linkers being recovered,
this effect may well be relatively small unless orders of magni-
tude more samples were generated. Fig. 4 demonstrates that
DEVELOP generates better linkers rather than simply producing
similar molecules to DeLinker.
Scaffold elaboration experiments on large test sets

Large-scale assessments on the CASF and PDBbind test sets
demonstrated that DEVELOP can effectively perform scaffold
umber of generated molecules is increased. DEVELOP recovers the
number of samples generated.

Chem. Sci., 2021, 12, 14577–14589 | 14583
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Table 3 Scaffold elaboration. PDBbind set results (see Methods, Evaluation metrics for definitions of the metrics)

Metric Scaffold-Decorator DeLinker DeLinker-Counts DEVELOP

Valid 99.9% 100.0% 100.0% 99.5%
Unique 23.4% 87.8% 81.6% 76.2%
Novel 2.0% 71.1% 79.2% 78.2%
Recovered 0.0% 1.0% 4.5% 15.3%
Pass 2D lters 98.9% 55.3% 47.8% 51.3%

SCRDKit generated
>0.6 4.3% 2.6% 4.6% 12.0%
>0.7 0.9% 0.7% 1.3% 4.3%
>0.8 0.3% 0.1% 0.4% 0.9%
>0.9 0.0% 0.0% 0.2% 0.1%
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elaboration, with similar trends as the linker design experi-
ments (Tables 3, S7† and Fig. 5).

Almost all molecules generated by the graph-based models
(DeLinker, DeLinker-Counts, and DEVELOP) are deemed valid
since chemical valency is enforced during generation (the very
small number of invalid molecules arises from cases where no
elaboration is proposed, Table 3). The majority of molecules
generated were unique, with uniqueness decreasing from 88%
for DeLinker to 76% for DEVELOP as more constraints were
provided. This was in line with expectations and mirrors the
linker design experiments, with all methods proposing a high
proportion of novel R-groups (43–55% on the CASF set, 71–79%
on the PDBbind set).

In line with the performance for linker design, including 3D
pharmacophoric information resulted in a substantially higher
proportion of the true elaborations being recovered. On the
CASF test set, DEVELOP recovered 59% of the ground truth
molecules compared to 34% for DeLinker and 45% for
DeLinker-Counts (Table S7†). On the PDBbind set, DEVELOP
recovered 15% of the original elaborations, an increase of more
than ten-fold compared to DeLinker (1.0%, Table 3). This
performance persisted as more molecules were generated
(Fig. 5). When 5000 elaborations were generated for each scaf-
fold, DEVELOP recovered 35% of the original molecules
Fig. 5 Scaffold elaboration. Number of original molecules recovered as t
significantly more of the original molecules than both baselines for any

14584 | Chem. Sci., 2021, 12, 14577–14589
compared to 16% when the 3D information was removed
(DeLinker-Counts) and only 7% when no pharmacophoric
information was included (DeLinker).

Finally, there was a substantial improvement in the 3D
similarity of the generatedmolecules to the original ones. Of the
elaborations which passed the 2D lters, 12.0% of those
generated by DEVELOP obtained an SCRDKit generated score of
greater than 0.6 compared to 2.7% and 4.6% obtained by
DeLinker and DeLinker-Counts, respectively.

Almost none of the molecules generated by any method for
the PDBbind test set achieved an SCRDKit generated score above
0.9. To reduce the impact of possible limitations of the
conformer generation process, we recalculated SCRDKit gener-
ated using generated conformers of the ground truth molecules
instead of the experimentally determined conformers (Tables
S9 and S8†). On the PDBbind set, the proportion of generated
molecules with SCRDKit generated >0.9 remained low for all
methods except DEVELOP, which increased to 1.5%. This
represents a sizeable improvement over the next best method
(DeLinker-Counts, 0.3%) and provides further validation of the
improved quality of molecules generated by DEVELOP
compared to the baselines.

Scaffold-Decorator produced signicantly fewer novel elab-
orations than either of the DeLinker models or DEVELOP, with
he number of generatedmolecules is increased. DEVELOP recovers the
number of samples generated.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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only 2–3% of generated elaborations not contained in the
training set (Tables 3 and S7†). As such, Scaffold-Decorator did
not recover any of the original elaborations in the PDBbind test
set, while on the CASF test set Scaffold-Decorator recovered only
19% of the original elaborations compared to 58% for
DEVELOP. In addition, Scaffold-Decorator generated a similar
proportion of elaborations that had high 3D similarity to the
original molecules as DeLinker, and was substantially out-
performed by both DeLinker-Counts and DEVELOP. This is
expected given the additional information available to both
models; however, it reinforces the importance of including
pharmacophoric information.
R-group optimisation case study

We further demonstrate the applicability of DEVELOP to R-
group optimisation via a case study derived from the litera-
ture. Borkin et al.48 developed a thienopyrimidine class of
compounds to block the protein–protein interaction between
menin and mixed lineage leukemia (MLL) fusion proteins. This
interaction plays an important role in acute leukemias with
MLL translocations, making this an important drug target. The
authors' previous work49 had led to the identication of a highly
potent menin–MLL inhibitor (IC50 ¼ 31 nM, GI50 ¼ 0.55 mM,
PDB ID: 4X5Z) but required further improvement of cellular
activity and drug-like properties to develop compounds with
potential therapeutic value. This was achieved via structure-
based optimisation of substituents introduced to the indole
ring (Fig. 6a).
Fig. 6 R-group optimisation case study. (a) Crystal structure (PDB ID 4X
most potent optimised compounds (PDB IDs left 5DB2, right 5DB3). The
optimised compound (green carbons, PDB ID 5DB3) and several com
hydrogen bonding interactions (dashed lines).

© 2021 The Author(s). Published by the Royal Society of Chemistry
Following optimisation of several positions, the most potent
compound displayed almost a seven-fold improvement in
affinity in MLL-AF9 cells (GI50 ¼ 83 nM, PDB ID: 5DB3, Fig. 6b,
right), while other highly potent compounds demonstrated
favourable drug-like properties, such as signicant improve-
ments in selectivity, reduced lipophilicity, and bioavailability.

The most signicant modication to the original compound
was the optimisation of the hydrogen bond interactions with
Glu363 and Glu366 on menin. The indole nitrogen in the
original molecule was involved in a hydrogen bond with the side
chain of Glu363 but was partially solvent exposed and was not
forming interactions with Glu366 (Fig. 6a). This led the authors
to explore a variety of substituents containing hydrogen bond
donors. Two potent substitutions were an acetamide group
(Fig. 6b, le) and 4-methylpyrazole (Fig. 6b, right).

We investigated the ability of DEVELOP to propose R-groups
that met the design hypothesis described in Borkin et al.48 In
particular, we sought to design both aromatic and non-aromatic
hydrogen bond donor groups that were able to make similar
interactions to the R-groups that were experimentally tested. We
derived 3D pharmacophoric proles from the ligands in PDB
IDs 5DB2 and 5DB3 to serve as input to DEVELOP. For the
pharmacophoric prole derived from 5DB2, we generated 1000
R-groups with a maximum of four, ve, and six atoms, whilst for
the pharmacophoric prole derived from 5DB3 we generated
1000 molecules with a maximum of ve, six, and seven atoms.

DEVELOP successfully recovered both of the experimentally-
veried R-groups while generating many alternative molecules
5Z) of the initial complex bound to menin. (b) Structure of two of the
dashed lines represent key interactions. (c) Overlay of the most potent
pounds generated by DEVELOP (yellow carbons) that make similar

Chem. Sci., 2021, 12, 14577–14589 | 14585
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that could form similar interactions with menin. All methods
were able to recover the acetamide R-group (Fig. 6b, le).
However, DEVELOP produced substantially more examples that
matched the pharmacophoric prole (455) compared to both
DeLinker-Counts (327) and DeLinker (103). All methods were
also able to recover the 4-methylpyrazole R-group, although this
elaboration was only generated once by DeLinker and DeLinker-
Counts, compared to 61 times by DEVELOP. While generating
the same molecule a large number of times is not necessarily
desirable, the increased frequency of generation of the ground
truth elaboration in this case has several benets. First, the true
R-group is one of a limited number of elaborations that matches
the pharmacophores. Thus when this constraint is provided to
the model, we would hope that it generates molecules that meet
this constraint more frequently. Second, since all three gener-
ative models are stochastic, if a givenmolecule is only generated
a small number of times, there is the possibility this is due to
chance and this molecule would not be discovered in another
instance. To exemplify this point, we repeated the generation
step for the case study 10 times for each method and calculated
in how many cases we recovered the 4-methylpyrazole R-group.
In all cases, DEVELOP recovered the ground truth molecule,
whereas DeLinker and DeLinker-Counts only recovered the
ground truth in 5/10 and 4/10 cases, respectively. Finally, we
note that DEVELOP generated this elaboration with an overall
frequency of ca. 2% (61/3000), which represents a small fraction
of all generated molecules. In addition, 237 of the elaborations
generated by DEVELOP contained an aromatic system with
a donor group linked to the indole via a methylene group
compared to 50 for DeLinker and 11 for DeLinker-Counts.

We next sought to assess the alternatives to the pyrazole R-
group (Fig. 6b, right) that were proposed by DEVELOP. To
validate the molecules proposed by DEVELOP, we docked the
generatedmolecules containing an aromatic system and at least
one donor group using GOLD50 and checked whether the
docked pose formed hydrogen bonding interactions with
Glu363 or Glu366. Three elaborations, together with their
Murcko scaffolds, are shown in Fig. 6c (yellow carbons) over-
layed with the pyrazole R-group (green carbons). All of the
examples appear to t within the pocket and were able to form
hydrogen bonds with Glu363 or Glu366, consistent with the
stated design hypothesis.

Finally, we scored the generated molecules which satised
the specied pharmacophoric proles using the smina51 version
of AutoDock Vina.52 For the rst pharmacophoric prole,
around one third of the molecules proposed by all methods
obtained a predicted binding affinity greater than or equal to
the corresponding ground truth elaboration, leading to
DEVELOP proposing 152 such molecules, DeLinker 34 and
Delinker-Counts 115 (Fig. S8†). For the second pharmacophoric
prole, DEVELOP (171 from 237) signicantly more oen (both
as a proportion and in absolute terms) proposed molecules
which satised the second pharmacophoric prole and had
a predicted binding affinity at least as great as the ground truth
compared to DeLinker (17 from 50) and DeLinker-Counts (5
from 11) (Fig. S9†).
14586 | Chem. Sci., 2021, 12, 14577–14589
Conclusion

We have developed amethod that combines GNNs with CNNs to
incorporate 3D pharmacophoric constraints into molecular
generation. Our approach allows prior knowledge to be used to
control the design process and is readily extendable to alternate
3D structural representations.

We have demonstrated the applicability of our approach to
both linker design and scaffold elaboration, two general tasks in
the hit-to-lead and lead optimisation stages of drug discovery.

The experimental results show that our model signicantly
outperforms previous methods for these problems and demon-
strates the power of including pharmacophoric constraints as
a 3D representation as opposed to a 1D count vector.

While the quality of the generated compounds has increased
signicantly, the problem of selecting which ones should be
explored further remains a key consideration. Successful
application of generative models relies on their successful
integration into the broader drug discovery toolbox. An inter-
esting development in this direction is described in Green
et al.,53 who used CNNs to predict appropriate fragments given
the structure of a protein–ligand complex. While their work was
based on scoring a xed database of fragments, extending such
an approach to assess arbitrary elaborations could be readily
combined with our method to rank generated molecules.

While the focus of our work is generating molecules with
specic 3D characteristics, we do not directly assign atomic
coordinates during generation. The direct generation of 3D
molecular structures is an exciting development,54,55 but has only
recently begun to be applied to drug-like molecules56 while exist-
ing methods are not directly applicable to the settings considered
in this work. Extending our framework to generate atomic coor-
dinates directly is an avenue for future work. Similarly, while we
have shown encoding graph- and voxel-based representations
separately is effective, unifying both with a single encoder that is
3D-aware could provide further benet. Voxel grids also have
limitations stemming from their inherent approximation of 3D
structures and, when coupled with standard CNNs, are not
translational or rotation invariant. Although measures such as
random translations and rotations can largely mitigate these
effects, future work could incorporate techniques to eliminate
such effects entirely (e.g. Thomas et al.,57 Fuchs et al.58).

Finally, the pharmacophoric proles used for our experi-
ments were extracted from known molecules. While existing
molecules can oen be used as the basis for specifying desired
pharmacophoric proles in scaffold hopping or R-group opti-
misation, for fragment linking or elaboration a suitable ligand
might not be available to derive a pharmacophoric prole,
necessitating the manual specication of pharmacophoric
features by a human expert. Accurate prediction of useful
pharmacophoric features, directly from the protein structure or
by other means, is therefore an important next step.

Data availability

We believe that our method will allow greater synergy between
human design hypotheses and machine learning-based
© 2021 The Author(s). Published by the Royal Society of Chemistry
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molecular design. Code is available at https://github.com/oxpig/
DEVELOP.
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9 H.-J. Böhm, A. Flohr and M. Stahl, Scaffold Hopping, Drug
Discovery Today: Technol., 2004, 1, 217–224.

10 S. R. Langdon, P. Ertl and N. Brown, Bioisosteric
Replacement and Scaffold Hopping in Lead Generation
and Optimization, Mol. Inf., 2010, 29, 366–385.

11 O. Ichihara, J. Barker, R. J. Law and M. Whittaker,
Compound Design by Fragment-Linking, Mol. Inf., 2011,
30, 298–306.

12 R. J. Bienstock, in Fragment-Based Methods in Drug Discovery,
ed. A. E. Klon, Springer New York, New York, NY, 2015, pp.
119–135.

13 R. I. Troup, C. Fallan and M. G. J. Baud, Current strategies
for the design of PROTAC linkers: a critical review, Explor.
Targeted Anti-Tumor Ther., 2020, 1, 273–312.

14 J. Li and J. Liu, PROTAC: A Novel Technology for Drug
Development, ChemistrySelect, 2020, 5, 13232–13247.

15 R. Guha, in In Silico Models for Drug Discovery, ed. S.
Kortagere, Humana Press, Totowa, NJ, 2013, pp. 81–94.

16 B. Lamoree and R. E. Hubbard, Current Perspectives in
Fragment-Based Lead Discovery (FBLD), Essays Biochem.,
2017, 61, 453–464.

17 F. Imrie, A. R. Bradley, M. van der Schaar and C. M. Deane,
Deep Generative Models for 3D Linker Design, J. Chem. Inf.
Model., 2020, 60, 1983–1995.

18 Y. Yang, S. Zheng, S. Su, C. Zhao, J. Xu and H. Chen,
SyntaLinker: automatic fragment linking with deep
conditional transformer neural networks, Chem. Sci., 2020,
11, 8312–8322.

19 J. Lim, S.-Y. Hwang, S. Moon, S. Kim andW. Y. Kim, Scaffold-
based molecular design with a graph generative model,
Chem. Sci., 2020, 11, 1153–1164.

20 Y. Li, J. Hu, Y. Wang, J. Zhou, L. Zhang and Z. Liu,
DeepScaffold: A Comprehensive Tool for Scaffold-Based De
Novo Drug Discovery Using Deep Learning, J. Chem. Inf.
Model., 2020, 60, 77–91.
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