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Various computational methods have been developed for quantitative modeling of organic chemical
reactions; however, the lack of universality as well as the requirement of large amounts of experimental
data Here, we present DeepReac+, an efficient and universal
computational framework for prediction of chemical reaction outcomes and identification of optimal
reaction conditions based on deep active learning. Under this framework, DeepReac is designed as
a graph-neural-network-based model, which directly takes 2D molecular structures as inputs and

limit their broad applications.

automatically adapts to different prediction tasks. In addition, carefully-designed active learning
strategies are incorporated to substantially reduce the number of necessary experiments for model
training. We demonstrate the universality and high efficiency of DeepReac+ by achieving the state-of-
the-art results with a minimum of labeled data on three diverse chemical reaction datasets in several
scenarios. Collectively, DeepReac+ has great potential and utility in the development of Al-aided
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Introduction

Synthetic organic chemistry is a cornerstone of several disci-
plines and industries,"® such as chemical biology, materials
science and the pharmaceutical industry. Due to the complex
and nonlinear nature of organic chemistry, organic synthesis is
frequently described as an art that must be routinely practiced
for several years to be mastered.*® As a key aspect of the
synthetic methodology, the optimization of reaction conditions
is often driven by chemical intuition, which can be biased by
personal preferences and chemical education.®® Within
a modern chemistry setting, the reaction performance,
including yield and selectivity (chemo-, regio-, diastereo- and
enantioselectivity), can be controlled by dozens of variables,
such as the leaving groups, (co-)catalysts, temperature, solvents,
and additives. The combinatorial fabrication of these factors
can produce a large reaction space to be explored, which is
known as combinatorial explosion, making it impractical and
challenging for chemists to assess all available options to
identify the optimal reaction conditions. A growing number of
researchers and companies have recognized this issue, and
various systematic synthesis techniques have been developed
with the aid of high-throughput experimentation® and flow
chemistry.'>"
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chemical synthesis. DeepReac+ is freely accessible at https://github.com/bm?2-lab/DeepReac.

While such synthesis techniques enable standardization and
parallelization, an exhaustive search of the entire reaction space
is impossible as it is too large. Artificial intelligence technolo-
gies such as various machine learning models, which have been
successfully applied in similar scenarios, including virtual
screening," ¢ material discovery,"”>° molecular design,*>* and
synthesis planning,” were rapidly introduced to predict
potential reaction outcomes before experimentation.**?
However, two limitations exist for current computational
approaches: (1) there is a lack of universality and generalization
in the modeling of various sorts of chemical reactions. For
different reaction mechanisms or prediction tasks, researchers
have to design different customized reaction descriptors based
on certain scientific hypotheses. These handcrafted descriptors
are subject to a limited application scope as well as the bias of
specific designers. There is no guarantee that enough task-
related information will be considered and represented well,
which is a well-known bottleneck of traditional machine
learning. A recent report shared the same concern, in which
a universal version of molecular fingerprints was developed to
achieve state-of-the-art predictive performance in three
different chemical reaction prediction tasks.*® Although the
combined molecular fingerprints contain more structural
information, the feature dimension of a single molecule is up to
71 374. For a complex organic reaction containing multiple
components, i.e. 4 components, the feature dimension of the
reaction can reach tens of thousands. In addition, the random
forest model which achieved state-of-the-art predictive perfor-
mances has 5000-10 000 decision trees. The above two points
make the approach require high demanding computing
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resources. (2) Another challenge is that current methods still
need a large amount of data to train the model for high
predictive performance. To reduce the cost and accelerate the
optimization process, active strategies need to be comprehen-
sively investigated to selectively explore the reaction space with
reduced cost and time. As an efficient optimization algorithm,
Bayesian optimization has been used in reaction condition
optimization to reduce the number of experiments.** It typically
consists of two major steps: (1) construct a surrogate to the
underlying black box function; (2) propose new parameter
points for querying the function based on this probabilistic
approximation. Although Bayesian optimization is a powerful
tool, its application might be limited due to its surrogate
models. While several different models have been proposed to
be the surrogate, including random forests,> Gaussian
processes***” and Bayesian neural networks,**** not all models
can meet the requirement and serve readily as a surrogate.
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Moreover, just as the above-mentioned point, the effect could be
compromised without carefully designed descriptors.

The first chemical reaction representation issue could
potentially be addressed by applying graph neural networks
(GNNs). With the rapid development of deep learning tech-
niques in recent years, GNNs have recently become one of the
main research focuses in view of their powerful ability to model
graph-structured data.***' Graph structures prevail in society
and nature, especially in biology and chemistry, where GNNs
have been applied and have made remarkable achieve-
ments.*** Due to their capacity to directly model molecular
structures, GNNs have obtained better performance on different
prediction tasks, including biological activity, toxicity and
quantum chemical properties, than traditional shallow-
learning-based approaches that use manually designed
descriptors derived from molecular structures.**** Thus, we
hypothesize that GNNs could also be applied well to the

\ S

Fig.1 Schematic workflow of the DeepReac+ framework. (A) Architecture of the DeepReac model. The Lewis structures of organic components
are used directly as inputs and encoded as feature vectors by the Molecule GAT module. If there are some components which can't be rep-
resented by graphs, they are encoded as feature vectors by an embedding layer. Then, a reaction graph is constructed, and all the feature vectors
are fed into the Reaction GAT module to model the interactions among the reaction components. Finally, a Capsule module is used to aggregate
all the information to produce task-related reaction representations that will be used by sampling strategies. (B) Illustration of the diversity-based
sampling strategy. The blue and red circles indicate labeled data points belonging to two different classes, while the gray circles indicate
unlabeled data points. The unlabeled data points marked by green circles are candidates according to the diversity-based sampling strategy. (C)
Illustration of the adversary-based sampling strategy. The blue and red circles indicate labeled data points belonging to two different classes,
while the light circles indicate unlabeled data points. The unlabeled data points marked by orange circles are candidates according to the
adversary-based sampling strategy. The orange arrows indicate adversarial samples of the labeled data points. Note that these two illustrations
use the classification problem as an example just for clarity and to make the strategies easier to be understood. The ideas behind them are also
applied easily to the regression problem as reported in this paper. GAT, graph attention network.
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quantitative modeling of reaction outcomes. Such a model
would directly take the (2D) Lewis structure of the reaction
components as input and automatically extract task-related
information in a representation learning way, which is ex-
pected to achieve a universal and generalized prediction
performance for different types of chemical reactions.
Regarding the second issue, active learning®*** seems to be
another promising solution besides Bayesian optimization.
Instead of training a learning algorithm with large amounts of
data to build static models, active learning can yield similarly
competitive performance using only a fraction of the training
data selected by a certain strategy, and it has been applied in
several fields, including drug discovery,**® material design,
molecular dynamics,®**® and protein production optimization.*®
It is noteworthy that not all data are equally valuable to the
model, and similar training entries may be so redundant or
uninformative that it is cost inefficient to label them.®” This is of
great significance in chemical reaction modeling scenarios,
which can actively select valuable samples to conduct experi-
ments to save time and costs. Given a certain sampling strategy,
active learning enables a model to selectively explore the sample
space and select certain informative training data that largely
improve the model performance.

We therefore present DeepReac+ (Fig. 1), which is an effi-
cient and universal computational framework for the prediction
of chemical reaction outcomes and selection of optimized
reaction conditions, which particularly addresses the two
aforementioned issues. It should be noted that for clarity,
DeepReac+ is referred to as a computational framework, which
contains the deep learning model DeepReac specifically
designed for chemical reaction representation learning, and
then an active learning strategy is applied to improve the model
performance and save costs. The main contributions of Deep-
Reac+ are as follows: (a) under the framework of DeepReac+,
DeepReac is designed as an efficient graph-neural-network-
based representation learning model for chemical reaction
outcome prediction, where the 2D structures of molecules can
serve as inputs for feature representation learning and subse-
quent prediction with a universal and generalized prediction
ability. Such a model can handle any reaction performance
prediction tasks, including those for yield and stereoselectivity.
For some reaction components which are inappropriate or even
impossible to be presented by a graph structure, we apply
a mechanism-agnostic embedding strategy, which further
broadens the application scope of DeepReac. (b) An active
learning strategy is proposed to explore the chemical reaction
space efficiently. Such a strategy helps to substantially save
costs and time in reaction outcome prediction and optimal
reaction condition searching by reducing the number of
necessary experiments for model training. Unlike the tradi-
tional uncertainty-based sampling strategy applied in active
learning, two novel sampling strategies are presented based on
the representation of the reaction space for reaction outcome
prediction, i.e., diversity-based sampling and adversary-based
sampling. While the former is novel in the context of reaction
outcome prediction, the latter is a generally new sampling
strategy in the wider context of cheminformatics. In addition,
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two other sampling strategies, i.e., greed-based sampling and
balance-based sampling, are proposed for optimal reaction
condition searching. Finally, the performance of DeepReac+ is
evaluated comprehensively based on three recently reported
chemical reaction datasets covering different reaction mecha-
nisms, predictive targets and synthesis platforms. The effi-
ciencies of the proposed sampling strategies are also
investigated and validated to (a) substantially improve the
chemical reaction outcome prediction performance and (b)
rapidly and precisely identify the optimal reaction conditions.

Results and discussion
The general framework of DeepReac+

DeepReac+ consists of two main parts: a deep-learning model
DeepReac for chemical reaction representation learning as well
as outcome prediction and an active sampler for experimental
design. The architecture of the DeepReac model is shown in
Fig. 1A, whose core module is a GNN. To the best of our
knowledge, this is the first application to utilize a GNN for
quantitative modeling of chemical reaction outcomes. A prob-
able obstacle is that the size of the current reaction outcome
datasets can only reach a few thousand data points, which
encourages overfitting during the training of a deep learning
model. To reduce the risk of overfitting, DeepReac is carefully
designed by making the inductive bias conform to the under-
lying and universal principles of chemical reactions.®® The
following model design principles are considered: (a) for most
organic reactions, especially complex reactions, intertwined
interactions within multiple components have a decisive
impact on the reaction outcome. For example, a transition-
metal-catalyzed organic reaction consists of several elemen-
tary reactions that connect to each other to form a catalytic
cycle.®® The molecules in each step influence each other and the
resulting intermediates of each step ultimately determine the
performance of the entire reaction. Therefore, the interactions
between reaction components should be modeled explicitly. (b)
Moreover, since interaction patterns are flexible with regard to
different reaction mechanisms and predictive targets, Deep-
Reac should be able to focus on specific interactions related to
the tasks of interest in an adaptative way.

To satisfy the above principles, the graph attention network
(GAT) is designed as a core building block in DeepReac.”®”> This
graph-based attention network structure explicitly enables the
model to leverage rich information by aggregating and propa-
gating information through the attention mechanism, which
focuses on the task-related part of the graph. The nodes attend
to their neighbor's features and dynamically learn the edge-
weight proportions with neighbors according to their impor-
tance, which enables the GAT to generalize to unseen graph
structures. As shown in Fig. 1A, GAT modules are deployed in
two steps: in the first step, the GAT module is utilized to encode
2D molecular structures of the reaction components as feature
vectors, which is denoted as Molecule GAT; in the second step,
each component is treated as a virtual node and connected to
form a reaction graph whose node features come from the first
step; each edge represents an interaction between two linked
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reaction components. The second GAT module is then utilized
to deliver messages between the reaction components, which is
denoted as the Reaction GAT. The weight of each edge can be
learned according to the specific tasks. In addition, some
reaction conditions are inappropriate or even impossible to be
presented by the graph structure, including inorganic additives,
special reaction media and so on. In these cases, mechanism-
agnostic embeddings will be used to represent them and they
are introduced into Reaction GAT along with the outputs of
Molecule GAT, which means that we only need the types of the
inorganic components.

Furthermore, to avoid the loss of reaction information and
alleviate the need for training data, we introduce the Capsule
module to aggregate the feature vectors of the reaction
components after message passing. Unlike most deep learning
architectures, capsule networks” have achieved outstanding
performance for small-sample learning in the fields of life
sciences.”*”® As the core element, the capsule is a new type of
neuron that encapsulates more information than common
pooling operations by computing a small vector of highly
informative outputs rather than taking only a scalar output. The
dynamic routing mechanism, which can be viewed as a parallel
attention mechanism, allows the network to attend to some
internal capsules related to prediction. Therefore, we introduce
a capsule layer as the output module to learn a task-related
representation of the entire reaction (Fig. 1A). Eventually, the
resulting reaction features are used to perform regression tasks,
and they play a crucial role in the active learning framework.

Representation-learning-based active learning strategies
presented in DeepReac+

Another key point designed in DeepReac+ is the active learning
strategy, which can be applied to select the training data and
substantially reduce the number of experiments to be con-
ducted. With a well-designed sampling strategy, DeepReac is
able to achieve satisfactory prediction performance rapidly
through iterative retraining after every inclusion of a small
number of selected experiments (Fig. 1). As a core of active
learning, the sampling strategy is designed to distinguish more
valuable data from other data. Traditional strategies of active
learning are uncertainty-based strategies,” which are often
called “curious”, i.e., the unlabeled data are predicted, and
those with a lower prediction confidence have priority in being
labeled. However, deep learning models tend to be so over-
confident about their predictions that the corresponding
uncertainty estimation is very difficult and unreliable.” Thus,
due to their powerful representation learning ability, we
designed two representation-based sampling strategies, i.e.,
diversity-based sampling and adversary-based sampling (Fig. 1B
and C). With the reaction features automatically learned by
DeepReac, we can determine the similarity between experi-
ments with regard to specific tasks, which lays the foundation
for the two strategies. In the diversity-based strategy, unlabeled
data that have the least similarity to the labeled data should be
labeled first (Fig. 1B). The intuition behind this strategy is that
diverse data can provide the model with a global view of the
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reaction space and improve its generalization capability. In fact,
the distance to available data in the latent space can be used
empirically as a measure of uncertainty,” which means the
diversity-based strategy belongs to uncertainty-based strategies
in a broad sense. However, in order to distinguish it from other
methods of uncertainty estimation, “diversity-based” is used to
describe this strategy. Adversarial samples, which were recently
proposed in the machine learning community,**®* generally
mean that a small perturbation in the sample can cause
prediction failure. This phenomenon is common in chemistry,
as a minor transformation of the molecular structure, including
substituted atoms and reversed chiral centers, can cause
significant changes in the properties. Thus, the adversary-based
strategy designed in DeepReact indicates that unlabeled data
should be labeled first if there is a large difference between its
prediction and the ground-truth value of highly similar labeled
data (Fig. 1C). The intuition behind this strategy is that seeing
these experimental data on the “cliffs” in the reactivity land-
scape can make the model robust.

Benchmark datasets

We chose three datasets (Scheme 1) to test our DeepReac+
framework. To validate the versatility of our solution, these
three datasets cover different kinds of reactions and predictive
targets.

Dataset A. This dataset comes from Doyle et al. (Scheme 1A).°
To investigate the inhibitory effect of the isoxazole group in the
Buchwald-Hartwig C-N coupling reaction, robot-enabled high-
throughput reaction screening was performed, which consisted
of 15 aryl halides, 23 additives, 4 Pd catalysts and 3 bases, giving
a total of 4608 reactions. To predict the yields of these reactions,
the atomic, molecular and vibrational descriptors of each
component were extracted and concatenated as reaction
features. Then, a random forest model trained with these
labeled data was found to obtain the highest predictive
performance.

Pd catalysts (10 mol%)
Additives (1 equiv)

e
@0@@

Bens:

Me
> THP~\ g O X
N= N

Bases (1 5 equlv)

Pd(OAc), (6.25 mol%)
Ligands (12.5 mol%)

Bases (2.5 equiv)

Solvents
Oy _Ph Oy Ph
T 56 CPA catalysts (2 mol%) N g
S +  R- £ S.
toluene Y R
Ar Ar

Scheme 1l Datasets of different reaction types. (A) C—N cross coupling
reactions of 4-methylaniline with various aryl halides by Doyle et al.®
The predictive target is the yield. (B) Suzuki—Miyaura cross-coupling
reactions of various aryl boronic acids with various electrophiles by
Sach et al** The predictive target is the yield. (C) Asymmetric N,S-
acetal formation using CPA catalysts by Denmark et al.®* The predictive
target is the enantioselectivity. The reaction variables are highlighted in
red. The details of data preprocessing can be found in the ESI.{

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Dataset B. This dataset comes from a recent publication by
a Pfizer team (Scheme 1B)."* With the aid of flow chemistry,
a high-throughput reaction screening of the Suzuki-Miyaura
C-C coupling reaction was performed, which consisted of 11
reactants, 12 ligands, 8 bases and 4 solvents, giving a total of
5760 reactions. The predictive target is the reaction yield. No
machine learning model was reported in the original study and
a machine learning exploration of this dataset was reported by
Cronin and coworkers.?** They used one-hot encoding to encode
the reactions and trained a two-layer neural network, which is
also known as a multilayer perceptron, to predict the reaction
yields. Since some inorganic bases are included in the dataset,
an embedding layer will be used to encode them.

Dataset C. This dataset comes from Denmark and coworkers
(Scheme 1C).* Unlike the above two tasks, the predictive target
of this dataset is the stereoselectivity of asymmetric N,S-acetal
formation reactions using chiral phosphoric acid (CPA) as the
catalyst. A reaction screening was performed, consisting of 43
CPA catalysts, 5 N-acyl imines and 5 thiols, giving a total of 1075
reactions. The average steric occupancy (ASO), based on DFT-
computed 3D representations of multiple conformers, was
developed to represent the catalysts. The weighted grid point
occupancies, in combination with calculated electronic
parameters, were used as reaction features to predict enantio-
selectivity (AAG in kecal mol™'), and a support vector machine
model trained with the labeled data was reported to perform
best. It should be noted that the label here is not referred to
absolute stereoselectivity, which includes magnitude and sign,
but is just its magnitude.

Chemical reaction outcome prediction by DeepReac without
an active learning strategy

We first tested the predictive performance of DeepReac in
a normal setting and compared it with the following baseline
models: (1) mean; (2) median; (3) the best models reported in
the original studies; (4) multiple fingerprint feature (MFF)
combined with the random forest model, which achieved the
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state-of-the-art performance on Dataset A & C.** To make
a statistically valid comparison, five-fold cross-validation was
conducted on the three datasets. As shown in Table 1, DeepReac
achieved better performance in all tasks. It should be noted that
the only inputs needed for DeepReac are 2D molecular struc-
tures or types of reaction components, regardless of the reaction
mechanisms and predictive targets, while elaborately designed
and calculated descriptors are required to meet certain
hypotheses related to specific tasks. For example, the design of
reaction descriptors of Dataset A takes account of the *C-3
nuclear magnetic resonance (NMR) shift (where the asterisk
indicates a shared atom), lowest unoccupied molecular orbital
(LUMO) energy, and *O-1 and *C-5 electrostatic charges of
isoxazole additives. It's clear that the same calculation method
can't be directly used on Dataset B or C which don't even have
isoxazole additives as the reaction component. Therefore, the
advantage clearly implies that DeepReac can be utilized effec-
tively in a variety of predictive tasks involving organic reactions
with its universal representation learning ability. While the MFF
is also a universal representation of reactions, its application
may be hindered by the requirement of high demanding
computing resources. For instance, it spent about 24 hours for
a round of cross validation on Dataset A when DeepReac only
spent about 4 hours with the same computational device.
Additionally, we conducted an ablation study to validate the
necessity of the modules of DeepReac, especially the Reaction
GAT module and Capsule module. We designed three ablation
test scenarios: (1) DeepReac_noG: DeepReac without the Reac-
tion GAT module; (2) DeepReac_noC: DeepReac without the
Capsule module; and (3) DeepReac_noGC: DeepReac without
both the Reaction GAT module and Capsule module. These
tests were then performed on the three datasets. Various
degrees of decline in the predictive performance were observed
for all ablated models, especially for the model lacking both
modules (Table 1), which means that a simple concatenation of
the molecular feature is not enough for the representation of
the reaction. Absence of the Capsule module didn't cause
a dramatic decline on Dataset A & B but on Dataset C, implying

Table 1 Performance of DeepReac and other models on regression prediction for three benchmark datasets?

Dataset A Dataset B Dataset C

RMSE R? RMSE R? MAE R?
Mean 0.273 4 0.002 b 0.290 + 0.004 — 0.558 4+ 0.035 —
Median 0.276 =+ 0.003 —b 0.303 + 0.006 b 0.557 + 0.036 b
Previous work®8%844 0.073 4 0.004 0.919 4 0.010 0.180 4 0.004 0.354 4 0.034 0.186 + 0.010 0.822 + 0.020
MFF + RF>3¢ 0.071 + 0.004 0.924 + 0.009 — — 0.132 + 0.010 0.912 + 0.012
DeepReac 0.053 + 0.004 0.960 + 0.006 0.088 + 0.006 0.901 + 0.013 0.096 + 0.018 0.956 + 0.012
DeepReac_noG 0.134 + 0.011 0.674 + 0.067 0.171 + 0.008 0.467 + 0.072 0.178 + 0.021 0.852 + 0.026
DeepReac_noC 0.061 + 0.003 0.949 4 0.005 0.096 4 0.001 0.884 + 0.003 0.185 4 0.011 0.847 4+ 0.025
DeepReac_noGC 0.150 4 0.004 0.568 + 0.007 0.200 + 0.004 0.114 + 0.068 0.198 + 0.014 0.837 + 0.017

¢ Because the validation method is different from the original studies, we retrained these models and tested. Note that the retained models have
a slightly lower prediction performance than these methods reported originally. ” The R* values for the mean and median models turn out to be all
negative, which are not meaningful, so they were omitted. ¢ Since MFF didn't indicate how to encode inorganic compounds which are included in
Dataset B, we didn't train the MFF + RF model on this dataset. ¢ The values correspond to mean + standard deviation of the CV results. The best
results are given in bold. RMSE, root-mean-square error. MAE, mean absolute error, in kcal mol™". R?, coefficient of determination. MFF, multiple
fingerprint feature. RF, random forest. See also Fig. S12-S26.
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the effect of the capsule network on small-sample learning. This
result indicates that both the Reaction GAT module and the
Capsule module are likely to fit the inductive bias and guarantee
the predictive performance of DeepReac.

Chemical reaction outcome prediction by DeepReac with an
active learning strategy

After validating the predictive ability of DeepReac, the overall
effect of DeepReact, ie., the DeepReac model with an active
learning strategy, was examined. We tested two sampling
strategies based on the learned reaction representation,
including diversity-based sampling and adversary-based
sampling, by running simulations on the three datasets (the
detailed process is described in the Methods section of the
ESIT). In addition, a random strategy was used as the baseline.
Since the initial 10% training set is too small to perform
meaningful hyperparameter optimization, the same hyper-
parameters that achieve the best performance in most of the
splits on the three datasets were used to perform simulations on
all the three datasets for consistency. During simulation, the
predictive performance of DeepReac was recorded after each
retraining with a few selected data points. The results of 30
simulations on the three datasets are summarized in Fig. 2A-C.
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For each dataset, using only approximately 30-50% of the data,
the well retrained DeepReac achieved the same predictive
performance as that obtained using 70% training data without
active learning, which is shown as a dashed line. Compared
with the random sampling strategy, the two active learning
strategies can obtain a model with similarly good predictive
performance by using much less data on all three datasets. The
adversary-based strategy is slightly superior to the diversity-
based strategy.

Since various synthesis platforms can conduct different
number of experiments in one batch, we also tested the impact
of the number of candidates of each iteration on the effect of
sampling strategies. Taking the adversary-based strategy as an
example, we chose 10, 50 and 96 as the number of candidates
respectively and performed the same simulation. The results
are summarized in Fig. S17 and they indicate that the choice of
the number of candidates do not affect the upward tendency of
model performance.

To vividly demonstrate the capacity of the representation
learning of DeepReac and the difference between the sampling
strategies, we used the t-SNE (t-distributed stochastic neighbor
embedding) technique,® which is a technique for dimension-
ality reduction that is particularly well suited for the visualiza-
tion of high-dimensional data, to visualize the reaction features
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Fig. 2 Simulation results of three sampling strategies with DeepReac and other models on three benchmark datasets in library mode. The
aggregated results from 30 simulations show the average RMSE/MAE of DeepReac on Dataset A (A), Dataset B (B) and Dataset C (C) versus the
fraction of the chemical space explored; the filled areas around the curves are defined by the maximum and minimum values. The black line
indicates the random sampling strategy, the blue line indicates the diversity-based sampling strategy, and the red line indicates the adversary-
based sampling strategy. The horizontal dashed black line indicates the model performance achieved using 70% training data without active
learning. Since the hyperparameters used during simulation don't perform best on Dataset C, the MAE here is larger than that obtained during
cross validation. The aggregated results from 30 simulations showing the average RMSE/MAE of RF/MLP/SVM on Dataset A (D), Dataset B (E) and
Dataset C (F) versus the fraction of the chemical space explored; the filled areas around the curves are defined by the maximum and minimum
values. The black line indicates the random sampling strategy, the blue line indicates the diversity-based sampling strategy, and the red line
indicates the adversary-based sampling strategy. The horizontal dashed black line indicates the model performance achieved using 70% training
data without active learning. RMSE, root-mean-square error. MAE, mean absolute error, in kcal mol™ . RF, random forest. MLP, multilayer
perceptron. SVM, support vector machine.
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learned at different stages with each sampling strategy. Taking the samples based on the representation learned by DeepReac
Dataset A as an example, the reaction features were extracted to becomes increasingly regular, which means that the samples
be visualized when 10% and 30% of the data were used to train  with similar labels have similar representations. A comparison
the model, and the corresponding candidates according to each  of the candidates chosen by different sampling strategies shows
sampling strategy were marked (Fig. 3). The same 10% of the a certain degree of preference: the samples chosen by the
data were used to pretrain the model so the preferences of the random strategy are distributed over the whole reaction space
different sampling strategies could be clearly compared. From (Fig. 3A and B), while those chosen by the diversity and
the perspective of representation learning, along with the adversary-based sampling strategies tend to focus on some
improvement in the predictive performance, the distribution of  specific areas (Fig. 3C-F). Similar results were observed on the

A Random + 10% DatasetA B Random + 30% DatasetA
80 80
o
‘ . L. @ %
= @p ¢ q? & =

-20

-40

-60

-80

-80 -60 -40 -20 0 20 40 60 80

23

a0

20

Fig. 3 Visualization of representation learning for the DeepReac model with three sampling strategies on Dataset A. t-Distributed stochastic
neighbor embedding (t-SNE) of all reaction representations outputted by the Capsule module in the DeepReac model trained with 10% data. The
data points are colored according to the true yield, and the labeled points are indicated by black edges. The candidates selected by the random
sampling strategy (A), diversity-based sampling strategy (C) and adversary-based sampling strategy (E) are marked as grey stars. t-SNE of all
reaction presentations outputted by the Capsule module in the DeepReac model trained with 30% data in the active learning setting. The data
points are colored according to the true yield, and the labeled points are indicated by black edges. The candidates selected by the random
sampling strategy (B), diversity-based sampling strategy (D) and adversary-based sampling strategy (F) are marked as grey stars. See also Fig. S2—
S6.f
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other two datasets (Fig. S2 and S37) and confirmed further by
corresponding principal component analysis (PCA) which
preserves distances in the latent space vectors (Fig. S4-S67).

Comparison between DeepReac+ and traditional machine
learning models with active learning strategies in chemical
reaction outcome prediction

For a more objective and comprehensive comparison, we also
tested the two active learning strategies with traditional
machine learning models, including the random forest (RF),
multilayer perceptron (MLP) and support vector machine (SVM)
on Datasets A, B and C, respectively. Since the MFF approach
consumes a lot of computing resources, i.e. one training process
spends several hours on our servers, and simulation requires
dozens or hundreds of rounds of retraining, it's not practical to
use the MFF to perform simulation. The customized descriptors
(Datasets A & C) as well as one-hot encoding (Dataset B) were
used as the reaction features, and the simulation process
mentioned above was conducted on all three datasets (Fig. 2D-
F). According to the results, the diversity-based strategy is
inferior to the random strategy on Datasets A and C (Fig. 2D and
F), while there is no difference on Dataset B (Fig. 2E), indicating
that the effect of the diversity-based strategy is representation
dependent. Surprisingly, unlike the diversity-based strategy, the
adversary-based strategy is almost representation independent
as well as model independent since it performed best at all
times except in the early stage on Dataset B (Fig. 2E). It should
be noted that after repeated selective sampling by active
learning strategies, the remaining small amount of data will
have a strongly non-random distribution. Compared with
DeepReac+, traditional machine learning models seem to be
affected and behave strangely with a certain active learning
strategy, i.e. declining performance with more training data. A
possible reason is that the reaction representations are learnt
adaptively by DeepReac+, while descriptors are pre-defined
which could cause limited predictive ability on non-random
data distribution. By combining all the simulation results into
a summary (Table 2), it is clearly concluded that our proposed
DeepReac model equipped with an adversary-based sampling
strategy can take a single form of input to fit different reaction
mechanisms and predictive targets and can achieve better
performance with fewer samples, simultaneously exhibiting
versatility and efficiency.
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Performance of DeepReac+ and traditional machine learning
models with active learning strategies on unseen reaction
components

The above simulation can be named library mode, which means
that for a certain type of reaction, reaction components,
including substrates and reagents, to be screened have been
defined in advance. According to the results, active learning
achieves a good predictive ability on the whole library using
only a small fraction of data. However, sometimes substrates or
reagents are not easily available due to high cost or other
reasons. Thus, we also tested whether active learning can enable
the model to achieve generalized predictive ability when reac-
tions contain components unseen in the library. For consis-
tency, (co-)catalysts, which three datasets have in common, are
chosen as the reference. According to (co-)catalysts, all datasets
are divided into 4 sets since Dataset A contains only 4 catalysts
(Table S17). Three of them make up a library for screening and
the remaining one works as a validation set which can't be
sampled by active learning strategies. For convenience, we
named this simulation as “catalyst-unknown mode”. The cor-
responding results are summarized in Fig. 4A-C and S7-S9.7
Both diversity-based sampling and adversary-based sampling
have slight or even no advantage over random sampling
depending on different data splitting. This indicates that active
learning strategies work better in library mode and have limited
power to boost the generalized predictive ability of DeepReac. In
other words, active learning strategies can help the model to
generalize its predictive ability on unseen combinations rather
than unseen reaction components. We also tested the two active
learning strategies with traditional machine learning models in
catalyst-unknown mode. The corresponding results are
summarized in Fig. 4D-F and S7-S9.7 There was no difference
between the effects of sampling strategies. In addition, SVM
outperformed DeepReac on Dataset C whose size is the small-
est, indicating that the generalization ability of the deep
learning model will be compromised by small datasets.

Identification of the optimal reaction conditions and starting
materials by DeepReac+

Identifying the optimal reaction conditions is always a crucial
goal of chemical synthesis. As an industry standard, design of
experiments (DOE) has been applied successfully to optimize the
reaction conditions including solvent, temperature, catalyst

Table 2 Summary of the expert annotation ratios of three different sampling strategies on three benchmark datasets®

Sampling strategy Random Diversity Adversary
Dataset A expert annotated (RMSE < 0.06) DeepReac 64.3% 35.3% 34.8%
RF >90.0% >90.0% 64.3%
Dataset B expert annotated (RMSE < 0.09) DeepReac 76.6% 35.6% 34.0%
MLP >90.0% >90.0% 88.8%
Dataset C expert annotated (MAE < 0.15) DeepReac >90.0% 55.5% 50.9%
SVM >90.0% >90.0% 64.8%

“ The best results are given in bold. The criteria of model performance on the three benchmark datasets are shown in parentheses. RMSE, root-
mean-square error. MAE, mean absolute error, in kcal mol ™ '. RF, random forest. MLP, multilayer perceptron. SVM, support vector machine.
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Fig. 4 Simulation results of three sampling strategies with DeepReac and other models on Group 1 of three benchmark datasets in catalyst-
unknown mode. The aggregated results from 30 simulations show the average RMSE/MAE of DeepReac on Dataset A (A), Dataset B (B) and
Dataset C (C) versus the fraction of the chemical space explored; the filled areas around the curves are defined by the maximum and minimum
values. The black line indicates the random sampling strategy, the blue line indicates the diversity-based sampling strategy, and the red line
indicates the adversary-based sampling strategy. The horizontal dashed black line indicates the best model performance achieved using all
training data without active learning. The aggregated results from 30 simulations showing the average RMSE/MAE of RF/MLP/SVM on Dataset A
(D), Dataset B (E) and Dataset C (F) versus the fraction of the chemical space explored; the filled areas around the curves are defined by the
maximum and minimum values. The black line indicates the random sampling strategy, the blue line indicates the diversity-based sampling
strategy, and the red line indicates the adversary-based sampling strategy. The horizontal dashed black line indicates the best model perfor-
mance achieved using all training data without active learning. RMSE, root-mean-square error. MAE, mean absolute error, in kcal mol L. RF,

random forest. MLP, multilayer perceptron. SVM, support vector machine. See also Fig. S7-S9.1

loading, etc.86-88 The response surface model is often used with
pre-defined optimal designs, i.e. fractional factorial designs, to
assist and guide experimenters during experimentation plan-
ning. However, this approach may not be implemented readily
for certain complex situations such as Dataset A which has 4
factors with 15, 23, 4 and 3 levels, respectively, according to the
terms of DOE. On the other hand, the exploitation strategy, also
known as the “greedy” strategy, has also been used to achieve the
goal,” which means that the sample predicted to be optimal
should be labeled first. However, this strategy is likely to cause
low predictive performance for the model, which in turn
compromises the sample selection process.”> We here propose
a balance-based strategy in which not only the adversarial
samples but also samples predicted to be high yield or stereo-
selective have a high priority in being labeled. To make the
simulation more practical, our goal is to optimize the yield of
specific products. Dataset A has five products in total and each
has 990 reactions whereas Dataset B has only one product. It
should be noted that the same product can be obtained by
different starting materials which only differ in the leaving group.
They will therefore be optimized at the same time. In view of the
number of products in two datasets, we designed two different
scenarios to do simulation, respectively:

(1) in Dataset A, we assume that the experimental data of one
product is used as historical data to identify the optimal

© 2021 The Author(s). Published by the Royal Society of Chemistry

reaction conditions of another. To be specific, Dataset A is
divided into 5 subsets according to the products (Table S27).
One of them works as the pretraining set to train an initial
DeepReac model which then searches the optimal reaction
conditions iteratively in another subset with a certain sampling
strategy. Each subset in turn works as the pretraining set.

(2) in Dataset B where only one product is involved, we
assume that there is no historical data, thus optimizing the
reaction conditions from scratch. To be specific, we randomly
select 96 experimental data at first to train an initial DeepReac
model, and search the optimal reaction conditions in the
remaining dataset with a certain sampling strategy. In each
iteration, 96 experimental data will be sampled. Thirty simula-
tions were conducted to test the effect of various sampling
strategies. For each scenario, we performed a statistical analysis
of the target value distribution of the candidates selected by the
different sampling strategies during the first five iterative
rounds (Fig. 5). It is clearly shown that both the greed-based and
balance-based strategies can recognize more conditions that
have high yields in the early stage of iteration than the other
strategies. However, from the perspective of improving the
predictive performance, the greed-based strategy is the worst,
which is in accordance with a previous report, and the balance-
based strategy is compromised but still acceptable (Fig. S107).
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Fig.5 Statistical analysis of the ground-truth distribution of the candidates of four sampling strategies in the first 5 rounds of iteration on Dataset
A & B. Each box plot shows the ground-truth distribution of the candidates of a certain sampling strategy in a round of iteration, which are
colored according to the strategy type. The quartiles are shown, and the outliers are marked as square points. The results of the first 5 rounds of
iteration are summarized for 5 subsets of Dataset A (A—E) and Dataset B (F).

In theory, it's also feasible to identify reaction conditions
that generate specific products with high stereoselectivity.
However, each product in Dataset C only has 25 experimental
data which is too few to obtain meaningful results. As an
alternative we did the simulation in library mode which means
that the goal of the optimization wasn't set to aim at specific
products. The statistical analysis of the target value distribution
of the candidates during the first five iterative rounds (Fig. S117)
shows similar results. Although it was less practical, it demon-
strated the broad application of active learning strategies.

Discussions

So far, we have tested DeepReac+ in various situations and the
advantages of the computational framework have been indi-
cated. The form of input is universal and the model can adapt
rapidly to various types of reactions and predictive targets with
competitive performance. The number of new reactions keeps
growing rapidly. Not all reaction mechanisms have been rigor-
ously studied, which makes the design of descriptors more
difficult. DeepReact+ doesn't have such limitation and can
rapidly boost predictive performance as well as identify the
optimal reaction conditions with proper active learning strate-
gies, which is helpful to reduce the manpower and resources.
Recently automated experimentation platforms equipped with
robotics have been designed and implemented to boost
productivity and reproducibility as well as liberate the scientific
workforce from repetitive tasks.****-** The universality and high
efficiency of DeepReac+ gives us reasons to believe that it can be
embedded in such automated reaction systems and play an
important role. Nevertheless, there are also some limitations of

14468 | Chem. Sci, 2021, 12, 14459-14472

our proposed model, which remain to be addressed in the
future:

(1) We need to train corresponding models for different
reaction mechanisms. Namely, a model trained with data of one
type of reaction can't be used to predict the outcome of another
type of reaction. It's well known that the same group can have
a different role in different reaction mechanisms. Hence,
a model with “genuine” generalized predictive ability is
required to recognize both types of reaction mechanisms and
roles of various molecular structures under specific reaction
mechanism. The attempt has been made but not successful by
training on patent data.*

(2) For the unseen reaction components that can't be rep-
resented by the graph structure, our model has to be retrained
since they are only represented as one-hot encoding. It also
limits the application of our model on some reaction types
whose most components cannot trivially be expressed in terms
of graphs. That would involve many types of inorganic reactions
or reactions on surfaces or within materials. Hence, the most
suitable reaction type for DeepReac+ prefers two points: (a)
several reaction components, ie. (co-)catalysts, additives,
solvents and so on, are involved, which produces a huge reac-
tion space; (b) most of the components can be represented by
the graph structure. Moreover, since the advantage of active
learning here is to guide chemical synthesis by selecting infor-
mative experiments to be conducted, those who have no access
to new experiments will not benefit from the “+” in DeepReac+.
In other words, active learning will not reduce the number of
required data points if the experiments have already been per-
formed without the guidance of DeepReac+.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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(3) By comparing the results of three datasets, we found that
the performance of DeepReac+ is slightly inferior when the size
of the dataset is small, i.e. Dataset C. It's a well-known limita-
tion of the application of the deep learning technique.
Combined with quantum chemical descriptors or fingerprints,
the traditional machine learning models, i.e. random forest,
have an advantage in the low data regime. As shown in
a previous report®, it is likely that GNNs can be further
enhanced by relevant descriptors. Thus, the inclusion of
quantum chemical descriptors into DeepReac+ may be a future
solution. Another promising direction of improvement of
DeepReac+ is to pretrain the module encoding molecules on
a large-scale dataset, i.e. ZINC*® or QM9.”” Recently, several
unsupervised or transfer learning methods have been success-
fully applied to learn the universal representation of mole-
cules.”®* It would boost the performance of DeepReac+ in the
low data regime if the Molecule GAT module is replaced by such
pretrained networks.

(4) Continuous variables, such as temperature and the
amount of substrates or catalysts, have not been included in our
model. The main reason is the lack of large datasets where both
quantitative and qualitative variables are included as well as the
lack of experimental data for all combinations of these vari-
ables. Although it can't be validated so far, continuous variables
can be included easily in our model. For global continuous
variables, i.e. temperature and reaction time, an additional
feature vector representing them can be concatenated with the
output of the Capsule module. For continuous variables of the
individual reaction component, i.e. the amount of substrates or
catalysts, an additional feature vector representing them can be
concatenated with the output of the Molecule GAT module. In
summary, the architecture of DeepReac is quite flexible and
more types of variables can be included in the future.

Conclusions

In summary, to accelerate the automation of chemical
synthesis, a universal and generalized computational frame-
work, DeepReac+, is proposed to predict various reaction
performances, such as yield and stereoselectivity. Regardless of
the reaction mechanisms and predictive targets, DeepReac,
a GNN-based deep learning model, directly takes the 2D
molecular structures of organic components and types of
inorganic components as inputs without elaborate design or
calculations based on certain hypotheses. It learns the task-
related representations of the reaction conditions automati-
cally during training and achieves state-of-the-art predictive
performance on various datasets. Furthermore, we propose two
active learning strategies, diversity-based and adversary-based
strategies, to reduce the number of experiments necessary for
model training. Based on the reaction representations learned
iteratively by DeepReac, the two sampling strategies explore the
reaction space selectively and train the model with only a small
number of informative samples to achieve remarkable predic-
tive performance. It should be noted that adversary strategy-
based methods can be well applied to other common machine
learning models in addition to DeepReac. When the adversary-

© 2021 The Author(s). Published by the Royal Society of Chemistry
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based strategy is combined with the greed-based strategy,
reaction conditions that achieve high yield or stereoselectivity
can be identified more rapidly, and the predictive performance
of DeepReac can continue to increase at the same time. Hope-
fully, as a universal and efficient feedback framework, Deep-
React can facilitate the development of automated chemical
synthesis platforms,*®****% to enable cost reduction and
liberate the scientific workforce from repetitive tasks.
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