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Copper(i) ketimides in sp®> C—H aminationt
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Commercially available benzophenone imine (HN=CPh,) reacts with B-diketiminato copper(i) tert-

butoxide complexes [Cu'l-O'Bu to form isolable copper(i) ketimides [Cu"]-N=CPh,. Structural

characterization of the three coordinate copper(i) ketimide [MesNN]Cu—N=CPh, reveals a short Cu-
Nietimige distance (1.700(2) A) with a nearly linear Cu—N-C linkage (178.9(2)°). Copper(i) ketimides [Cu'"l-
N=CPh, readily capture alkyl radicals R* (PhCH(")Me and Cy’) to form the corresponding R—N=CPh,
products in a process that competes with N—N coupling of copper(i) ketimides [Cu"]-N=CPh, to form
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the azine Ph,C=N-N=CPh,. Copper(i) ketimides [Cu"]-N=CAr, serve as intermediates in catalytic sp>

C-H amination of substrates R—H with ketimines HN=CAr, and ‘BuOO'Bu as oxidant to form N-alkyl
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Introduction

Transition metal-catalysed sp® C-H amination protocols have
gained immense attention in the synthetic community over the
past couple of decades.™ A majority of these protocols proceed
via metal-nitrene** [M]=NR or metal-amide [M]-NR'R”
intermediates.® Extensive studies on such intermediates and
underlying mechanisms have paved the way towards more
efficient sp®> C-H amination protocols.

Related metal-ketimide [M]-N=CR'R” intermediates,
however, have received less attention in C-H amination chem-
istry. The strong metal-Nyetimide interaction makes ketimides
effective spectator ligands. For instance, ketimides stabilize
high valent homoleptic Mn(v),” Fe(iv)®* and Co(iv)° complexes
(Fig. 1a). In some cases, ketimides can also form via nickel and
copper arylimido/nitrene intermediates [M]=NAr via C-C
coupling at the para-position of the aryl nitrene ligand (Fig. 1b).
While this reactivity was initially uncovered with nickel B-
diketiminato complexes,* reversible C-C bond formation/
cleavage in related copper complexes provides access to
terminal copper nitrenes [Cu]=NAr that participate in sp® C-H
amination.'*?

Fewer examples of ketimides exist, however, in which the
ketimide ligand serves as a reactive functional group in discrete
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ketimines R—N=CAr,. This protocol enables the use of unactivated sp3 C-H bonds to give R—=N=CAr,
products easily converted to primary amines R—NH via simple acidic deprotection.

13

transition metal complexes.”® Metal ketimide intermediates
have been proposed in several Pd-catalysed cross-coupling
reactions of aryl (Fig. 1c)" and alkyl halides (Fig. 1d)" with
benzophenone imine. Cu-catalysed photoredox cross-coupling

Isolated ketimides of first row transition metals

a  ‘BuC=N ,N=C’Bu2
"M M = Mn, Fe, Co
7N\ .
Bu,C=N N=C'Bu, Hayton 2010 - 2013
b R
2 [M]:N =
R
M=Ni, Cu  Ni: Stephan 2007 Cu: Warren 2017; Betley 2019

Reactions proceeding via proposed metal-ketimides

Pd(OAC),
¢ ArX + H-N=CPh, Ar-N=CPh,
BINAP
X =0OTf,Br, I Buchwald 1994
(Cy,'BuP),PdHBr
d RyC-Br + H-N=CAr, ————= > R;C-N=CPh,
Ar = 3-(trifluoromethyl)phenyl Hartwig 2016
R4C-C(0)O-Phth + H-N=CA Cu(MeCN),PFs R3C-N=CPh
e : - -N=CAr. 3C-N=CPh,
: ? " [Ir(dtobpy)(ppy)IPFg
Ar = 3-(trifluoromethyl)phenyl Blue LED Hu 2018
Cul
Me4Phen HCI (a
f RH  + H-N=CPh, 4 RN=cPh, FCI o
BuOO'Bu
benzylic Kramer 2019
CuBr.SMe, / py / O,
g 2 H-N=CAr, or Ar,C=N-N=CAr,

[Cu(NCMe),]PFg / py

Ar = 4-fluorophenyl electrolysis Stahl 2020

Fig. 1 Transition metal—ketimide complexes.
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reactions of redox-active alkyl esters (Fig. 1e)'® and Cu-catalysed
benzylic sp’® C-H amination with benzophenone imine
(Fig. 1f)"” are among other examples that may be mediated by
metal-ketimide intermediates. Moreover, Stahl and colleagues
have proposed copper(u) ketimides in the N-N oxidative
coupling of imines Ar,C=NH to azines Ar,C=N-N=CAr,
under aerobic or electrocatalytic conditions (Fig. 1g)."**°
Herein we describe discrete first-row transition metal-keti-
mide complexes intimately involved in C-H amination chem-
istry. Building upon the Kharasch-Sosnovsky reaction,**** we
previously demonstrated that copper(i) alkyl amides [Cu"]-
NHR',** anilides [Cu™]-NHAr,** and aryloxides [Cu"]-OAr*
serve as key intermediates in a radical relay protocol for sp* C-H
functionalisation (Fig. 2). Formed via acid-base®**** or trans-
esterification® reactions between [Cu"]-O‘Bu with H-FG or Ac-
FG reagents, these copper(u) complexes [Cu"]-FG capture sp*-
C radicals R" generated via H-atom abstraction from R-H to
furnish the functionalized product R-FG. We anticipated that

R2

cat. [Cu]

RH+LGFG—BU90BU _, grg

- ‘BuOH, - ‘BuOLG

[Cul

BuOOBu
‘BuOH

R
®
[Cu')-FG 3\ f
R-H *O'Bu

[Cu'}-OBu
©

LG-FG

[cul R?
1a:R'=Me R2=Me X=Me
1b:R'=Cl R2Z=H X=Me
1a: [Me;NN]Cu 1b: [CLLNN]Cu

This work

LG-FG = H-N=CPh,

‘BuOLG

Previous work
LG-FG = H-NR'R2, H-NHAr, Ac-OAr

Fig. 2 Mechanism of C—H functionalisation via B-diketiminato cop-
per(i) intermediates [Cu"]-FG.

a
[Cu']2 ([Cu] = 1a)
or

BuOOBY 5 (cu-oBu I-N=CPh,

HN=CPh
liiasi, WOITH
‘Bu

2a and 2b

3a and 3b
[Cull,(n-arene)

([Cu] = 1b)

X-ray of 3a

Fig. 3
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the relatively high acidity of the imine N-H bond?® coupled with
a preference for binding at copper with softer N-donors should
enable the formation of [Cu"]-N=CAr, species from [Cu"]-
O'Bu complexes and HN=CPh, allow for an examination of
copper(u) ketimides in C-H amination catalysis.

Results and discussion
Synthesis and characterization of copper(n) ketimides

Monitored by UV-vis spectroscopy, addition of benzophenone
imine (1 equiv.) to a solution of [Me;NN]Cu-O“Bu (2a) in toluene
at —80 °C results in decay of the characteristic UV-vis absorption
of 2a at 470 nm with growth of a new band at 570 nm (Fig. S27).
Performed on a preparative scale, this new species [Me;NN]Cu-
N=CPh, (3a) may be isolated as dark purple crystals from
pentane at —35 °C in 78% yield (Fig. 3a).

The X-ray crystal structure of [Me;NN]Cu-N=CPh, (3a)
(Fig. 3a) reveals the Cu-Nyetimide distance of 1.700(2) A, signifi-
cantly shorter than the Cu-N bond found in the copper(u)
amide [CI,NN]Cu-NHAd (1.839(9) A)** and copper(u) anilide
[CLNN]Cu-NHAr®'; (1.847(3) A).° Copper(u) ketimide 3a
possesses a nearly linear Cu-N3-C24 angle of 178.9(2)°. The
short Cu-Nyetimide distance and linear Cu-N3-C24 angle
support effective sp hybridization at the ketimide N atom. These
values remarkably differ from those in the homoleptic copper()
ketimide [Cu-N=CPh,], with bridging ketimide ligands that
lead to a square-like tetrameric structure with Cu-N distances
1.847(2)-1.861(2) A and Cu-N-Cu angles of 94.17(9)-98.25(9).%
To outline differences between coordination of anionic keti-
mide ligands and their neutral ketimine counterparts, we
prepared the corresponding benzophenone imine adducts
[Me;NN]Cu(NH=CPh,) (4a) and [CL,NN]Cu(NH=CPh,) (4b)
(Fig. 3b). These copper(1) complexes feature substantially longer
Cu-Nyetimine distances of 1.8940(14) and 1.8937(14) A. These
ketimine adducts 4a and 4b each exhibit a pronounced bend in
the Cu-ketimide linkage with Cu-N-C angles of 132.68(12) and
130.25(12)° consistent with sp> hybridization at N.

b
(Cull, ((Cu] = 12) 2TN=CPN2_ 5 [cuHN=CPhy)
or 4a and 4b
[Cu'ly(n-arene)
(ICul = 1b)

X-ray of 4a*THF

X-ray of 4b

(a) Synthesis and structure of copper(i) ketimides. (b) Synthesis and structure of copper(l) imine adducts.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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UV-vis analysis of copper(u) ketimide [Me;NN]Cu-N=CPh,
(3a) reveals the presence of a single low energy absorption band
at 570 nm (¢ = 1910 M~ ecm ™) in toluene at room temperature.
The EPR spectrum of 3a in a mixture of toluene and pentane at
room temperature shows a signal centred at gis, = 2.081 with very
well resolved coupling to ***°Cu (A¢, = 298.0 MHz) and addi-
tional hyperfine modelled with three equivalent **N nuclei (4y =
35.0 MHz) (Fig. S131). The related copper(u) ketimide [Cl,NN]Cu-
N=CPh, (3b) prepared from [C],NN]Cu-O‘Bu (2b) and HN=CPh,
exhibits a similar spectroscopic profile. The UV-vis spectrum of
[CL,NN]Cu-N=Ph, (3b) exhibits a single absorption at 520 nm (e
=3120 M~ ' em™ ') in toluene at room temperature and possesses
a similar isotropic EPR spectrum to that of 3a (Fig. S147).
Unfortunately, the greater thermal sensitivity of [CL,NN]|Cu-N=
Ph, (3b) has precluded its crystallographic characterization.

DFT calculations reveal remarkably high unpaired electron
density on the ketimide N atom of both 3a (0.58) and 3b (0.61)
(Fig. 4 and S23t). These values are significantly higher than
values reported for related three coordinate B-diketiminato
Cu(n) anilides [Cu™]-NHAr (0.23-0.25)° and a copper(u) amide
[Cu™-NHAd (0.49).>® We rationalize this as a result of a 2-center
3-electron 7 interaction between the highest energy d orbital at
the copper(n) center destabilized by the B-diketiminato N-
donors and a p orbital of the sp-hybridized ketimide N atom
(Fig. 4a). In addition, the orthogonal orientation of the Cu-
Nietimide T0-interaction relative to the conjugated ketimide N=
CPh, m system further limits the delocalization of unpaired
electron density away from the ketimide N atom (Fig. 4b and c).

Copper(u) ketimide reactivity: radical capture and N-N bond
formation

The ability of many B-diketiminato copper(u) complexes to
participate in catalytic sp*> C-H functionalisation via radical
relay (Fig. 2) encouraged us to assess the reactivity of copper(i)
ketimides 3 towards alkyl radicals. We find that [Cu"]-N=CPh,
species 3a and 3b capture alkyl radicals R* to provide the cor-
responding R-N=CPh, products (Fig. 5a). [Cu'] is anticipated to

2 32 —N Ph b
« %—8:< SOMO
y =Ncyn Ph
X A
'
—N Ph
“=N ¢y N Ph

. P

dy,

©  Ph © Ph | _© Ph
:N:< [Cu"]<—:N:< %«:N:<
* Ph Ph Ph
Cu-N o interaction Cu-N = interaction
(2c-3e)
sp-hybridized ketimide anion enables
Cu-N r interaction

spz-hybridized
ketimide anion

Fig. 4
0.001 isospin value).
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form in these radical capture reactions that correspond to step
d in the radical relay catalytic cycle (Fig. 2). For instance, reac-
tion of 3a and 3b with (E/Z)-azobis(a-phenylethane) at 90 °C that
generates the benzylic radical PhCH()Me upon heating
provides the alkylated imine PhCH(N=CPh,)Me in 40% and
74% yields, respectively. Generation of Cy’ radicals in the
presence of 3a and 3b by heating ‘BuOO’Bu in cyclohexane (via
H-atom abstraction by ‘BuO" radicals) provides Cy-N=CPh, in
58% and 41% yields, respectively.

Upon heating to 60 °C, copper(u) ketimides 3a and 3b
undergo N-N coupling to form benzophenone azine Ph,C=N-
N=CPh, isolated in 66% and 90% yields, respectively (Fig. 5b).
This represents a competing reaction for radical capture at
copper(u) ketimides 3a and 3b.

Copper (i) ketimides in sp> C-H amination

With a fundamental understanding of copper(n) ketimide
formation and reactivity, we explored these complexes in

a Radical capture by copper(ll) ketimides: C-N bond formation

[Cu'"-N=CPh,
Ph)\\ J

90 °C O. O/H
5 equiv.

N Ph
5 equiv.
/L - [cul N=CPh,
Ph”” “N=CPh, O/

from 3a: 40%? from 3a: 41%

from 3b: 74% from 3b: 58%

‘BuOOBu
-HOBu

b N-N bond formation via copper(ll) ketimides: azine formation

18 h, 60 °C
2 [Cu"}-N=CPh, —————> Ph,C=N=N=CPh,
3aor3b from 3a: 66% from 3b: 90%

Fig. 5 Reactivity of copper(i) ketimides. 2 equiv. diazene radical
precursor.

(a) Electronic structure of copper(il) ketimides. (b) SOMO and (c) spin density plot of copper(i) ketamide 3a (net spin a: blue, net spin B: red,
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catalytic C-H amination via radical relay. Using ethylbenzene as
a model R-H substrate, we screened a modest range of copper(i)
B-diketiminato catalysts 1 that possess different electronic and
steric properties (Table 1). The catalyst [CI,NN]Cu (1b) provides
the highest yield compared to more electron-rich (1a and 1c)
and electron-poor (1d) catalysts. Increasing the ‘BuOO‘Bu
oxidant amount does not significantly improve the yield.
Lowering the temperature from 90 °C reduces the yield drasti-
cally (Table S17), possibly due to binding of the ketimine HN=
CAr, to the copper() catalyst (Fig. 3b) that inhibits ‘BuOO‘Bu
activation.?®

While (1-(tert-butoxy)ethyl)benzene forms in trace amounts
via C-H etherification,?® the azine Ph,C=N-N=CPh, is the
main byproduct in these catalytic C-H amination reactions,
representing non-productive consumption of H-N=CPh,. In
a previous study of C-H amination with anilines H,NAr
employing the [Cl,NN]Cu/'BuOO'Bu catalyst system, electron-
poor anilines provided the highest yields in the face of
competing diazene ArN=NAr formation.** Copper(u) anilido
intermediates [Cu'"]-NHAr serve as intermediates in C-H ami-
nation with anilines H,NAr; those derived from electron-poor
anilines H,NAr (e.g. Ar = 2,4,6-Cl3C¢H,) proved more resistant
to reductive bimolecular N-N bond formation.***

To examine whether similar electronic changes in the keti-
mine H-N=CAr, could similarly promote more efficient catal-
ysis, we explored two electron-poor ketimine derivatives H-N=
CAr, (Ar = 4-CF;C¢H, and 4-FC¢H,) in C-H amination (Table 2).
Although the p-CF; substituted imine provides a higher C-H
amination yield with cyclohexane (C-H BDE = 97 kcal mol *),*®
the increase in yield is modest with the benzylic substrate eth-
ylbenzene (C-H BDE = 87 kcal mol™").?* No significant differ-
ences were observed between benzophenone imine and the p-F
substituted analogue.

While electron-poor imines can give somewhat higher C-H
amination yields, we most broadly examined the commercially
available H-N=CPh, to survey the scope of R-H substrates in
sp® C-H amination (Table 3). Ethers such as THF, 1,4-dioxane,
or even 12-crown-4 undergo C-H amination at the a-carbon in
relatively high yields (6a-6d). Amination of the benzylic
secondary C-H bonds in heteroaromatic substrates occurs (6f-
6g), though yields may be lower due to the possibility of

Table 1 Copper catalysed C-H amination of ethylbenzene with
benzophenone imine®

H N=CPh,
NH 5 mol% [Cu']
)L 1.2 equiv.'BUOOBuU
+ Ph” “Ph T 24h 90°C g2
-2 BUOH

Entry Catalyst (X, R', R?) Yield (%)
1 [Me;NN]Cu 1a (Me, Me, Me) 34
2 [CL,NN]Cu 1b (Me, Cl, H) 65
3 [‘Pr,NN]Cu 1¢ (Me, ‘Pr, H) 30
4 [CI,NNgg]Cu 1d (CF;, Cl, H) 42

“ Conditions: 50 equiv. R-H. All yields determined by '"H NMR
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Table 2 Copper catalysed C—H amination with benzophenone imine
derivatives®

NH 1 mol% [CI,NN]Cu (1b)
1.2 equiv.’BUOOBu
-H =N=
a * Ar)]\Ar -2'BUOH /24 h, 90 °C R N5 CAr
Yield (%)
N=CAr,
(oot
Entry Ar Ph
1 @é 44 (5a) 0 (5b)
2 Fﬁ@é 1 (5a-CF5) 6 (5b-CF;)
F § B g
3 36 (5a-F) 9 (5b-F)

“ Conditions: 10 equiv. R-H, 1.2 equiv. ‘BuOO‘Bu, 1 mol% [CI,NN]Cu
90 °C, 24 h. Yields are determined by 'H NMR.

coordination of these substrates and/or products to the cop-
per(r) centre that can decrease the rate of reoxidation with
‘BuOO‘Bu.?® Aromatic substrates with benzylic C-H bonds
undergo C-H amination in moderate to high yields (6h-6k).
Cycloalkanes with stronger, unactivated sp> C-H bonds give

Table 3 Copper catalyzed sp> C—H amination with ketimines HN=
CArza

NH [CI,NN]Cu
1 1] H +
RH + A~ SAr —BUOOBY _ p_n=car, 595 roNHyCr
24h,90°C
Ar=Phor4-CF;CeH, .2 BLOH 6a - 6g 6h - 60

Products isolated as ketimines

Ef[j@[

6a. 68%? 6b. 50%? 6c. 46%?

% o o

6e. 32%?

Gd 38%

0~

6g. 43%?2
(29%)

6f. 31%2
(19%)

Products isolated as amine HCI salts

Salealsenes

6h. 42%" 6i. 40%" 6j. 42%> 6k. 51%"
H H
H
O Ai\// )
6l. 48%° 6m. 57%° 6n. 65%° 60. 38%°

¢ Conditions: 10 equiv. R-H, 1.2 equiv. ‘BuOO’Bu, 1 mol% [CI,NN]Cu,
90 °C, 24 h. ? Yields with HN=CPh,. ¢ Yields with HN=CAr’, (Ar' =
4-CF;CgH,). "H NMR yields (isolated yields) for 6f and 6g.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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moderate yields with electron-poor ketimine HN=CAr’, (Ar' =
4-CF3C¢H,) (61-60). The bicyclic eucalyptol undergoes C-H
amination in 32% yield (6e). These aminated products may be
isolated either as synthetically versatile protected primary
amines R-N=CPh, via column chromatography (6a-6g) or as
the primary ammonium salts [R-NH;]Cl via deprotection upon
simple acidic work up (6h-60) under mild conditions. The
potential to use recovered benzophenone from deprotection of
ketimine products and azine byproducts to regenerate the
Ph,C=NH starting material®** enhances the overall atom
economy of this amination protocol.

Conclusions

The isolation of mononuclear copper(u) ketimides [Cu"]-N=
CPh, reveals the role that they play as intermediates in sp® C-H
amination. These reactive intermediates readily form via acid-
base exchange between [Cu"]-O‘Bu and HN=CPh,, amenable
to spectroscopic and structural investigation. Importantly,
[Cu™]-N=CPh, complexes efficiently intercept alkyl radicals R’
generated via H-atom abstraction by ‘BuO’ from substrates R-H
that ultimately enable the C-H amination of unactivated sp*
C-H substrates. DFT analysis reveals a significant amount of
unpaired electron density at the ketimide N atom of 0.58 and
0.61 e~ for [Me;NN]Cu-N=CPh, (3a) and [C],NN]Cu-N=CPh,
(3b) (Fig. 4 and S237), respectively, opening a facile pathway for
C-N bond formation with radicals R* to form R-N=CPh,
products (Fig. 5a). Moreover, this spin density at the ketimide N-
atom likely facilitates N-N bond formation via copper(u) keti-
mides [Cu"]-N=CPh, to give the azine Ph,C=N-N=CPh,
(Fig. 5b), a competing pathway in sp® C-H functionalisation.
Use of the more electron-poor ketimine HN=CAr (Ar' = 4-
CF;CgH,) extends the scope of catalysis to unactivated sp®> C-H
bonds in cycloalkanes (Table 3; entries 6l-60). Nonetheless,
facile N-N bond formation also by copper(u) ketimides [Cu"]-
N=CAr, underscores the role that they may play in the (electro)
catalytic copper(n) promoted oxidative N-N coupling of benzo-
phenone imine to form benzophenone azine (Fig. 1g)."®

Experimental section

Detailed experimental procedures are provided in the ESI.}

Data availability

All synthetic procedures, characterization data, spectroscopic
data, computational data, supplementary figures and tables,
and detailed crystallographic information can be found in the
ESIL{ Crystallographic data are available via the Cambridge
Crystallographic Data Centre (CCDC): 1940417, 1945374,
1940418, 1945375, 1940420, 2035780.
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