This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Copper(II) Ketimides in sp³ C-H Amination

Isuri U. Jayasooriya, Abdolah Saman (Gus) Bakhoda, Rachel Palmer, Kristi Ng, Nour L. Khachemoune, Jeffery A. Bertke, Timothy H. Warren

Commercially available benzophenone imine (HN=CPh₂) reacts with β-diketiminato copper(II) tert-butoxide complexes [Cu²⁺]:O'Bu to form isolable copper(II) ketimides [Cu²⁺]:N=CPh₂. Structural characterization of the three coordinate copper(II) ketimide [Me₃NN]Cu-N=CPh₂ reveals a short Cu-N_{substrate} distance (1.700(2) Å) with a nearly linear Cu-N-C linkage (178.9(2)°). Copper(II) ketimides [Cu²⁺]:N=CPh₂ readily capture alkyl radicals R• (PhCH•)Me and Cy• to form the corresponding R-N=CPh₂ products in a process that competes with N-N coupling of copper(II) ketimides [Cu²⁺]:N=CPh₂ to form the azine Ph₂C=N-N=CPh₂. Copper(II) ketimides [Cu²⁺]:N=CAr₂ serve as intermediates in catalytic sp³ C-H amination of substrates R-H with ketimines HN=CAr₂ and Bu₃O'Bu as oxidant to form N-alkyl ketimines R-N=CAr₂. This protocol enables the use of unactivated sp³ C-H bonds to give R-N=CAr₂ products easily converted to primary amines R-NH₂ via simple acidic deprotection.

Introduction

Transition metal-catalysed sp³ C-H amination protocols have gained an immense attention in the synthetic community over the past couple of decades. A majority of these protocols proceed via metal-nitrene or metal-amide intermediates. Extensive studies on such intermediates and underlying mechanisms have paved the way towards more efficient sp³ C-H amination protocols.

Related metal-ketimide [M]-N=CR′R″ intermediates, however, have received less attention in C-H amination chemistry. The strong metal-N_{ketimide} interaction makes ketimides effective spectator ligands. For instance, ketimides stabilize high valent homogeneous Mn(IV)⁷, Fe(IV)⁸ and Co(IV)⁹ complexes (Fig. 1a). In some cases, ketimides can also form via nickel and copper arylimido/nitrene intermediates [M]=NAr via C-C coupling at the para-position of the aryl nitrene ligand (Fig 1b). While this reactivity was initially uncovered with nickel β-diketiminato complexes, reversible C-C bond formation/cleavage in related copper complexes provides access to free copper nitrenes [Cu]=NAr that participate in sp³ C-H amination. Fewer examples of ketimides exist, however, in which the ketimide ligand serves as a reactive functional group in discrete transition metal complexes. Metal ketimide intermediates have been proposed in several Pd-catalysed cross-coupling reactions of aryl (Fig. 1c) and alkyl halides (Fig. 1d) with benzophenone imine. Cu-catalysed photoredox cross-coupling reactions of redox-active alkyl esters (Fig. 1e)⁶

Fig. 1. Transition metal ketimide complexes.

*Department of Chemistry, Georgetown University, Box 571227-1227, Washington, DC, 20057.
*Current Address: National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, United States.
Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x
and Cu-catalysed benzylic sp\(^3\) C-H amination of with benzophenone imine (Fig. 1f)\(^{17}\) are among other examples that may be mediated by metal-ketimide intermediates. Moreover, Stahl and colleagues have proposed copper(II) ketimides in the N-N oxidative coupling of imines Ar\(_2\)C=NH to azines Ar\(_2\)C=NN=NAr\(_2\) under aerobic or electrocatalytic conditions (Fig. 1g).\(^{18, 19}\)

Results and discussion

Synthesis and characterization of copper(II) ketimides

Monitored by UV-vis spectroscopy, addition of benzophenone imine (1 equiv.) to a solution of [Me\(_3\)NN]Cu-O\(^{-}\)Bu (2a) in toluene at -80 °C results in decay of the characteristic UV-vis absorption of 2a at 470 nm with growth of a new band at 570 nm (Figure S2). Performed on a preparative scale, this new species [Me\(_3\)NN]Cu-N=CPh\(_2\) (3a) may be isolated as dark purple crystals from pentane at -35 °C in 78% yield (Fig. 3a).

The X-ray crystal structure of [Me\(_3\)NN]Cu-N=CPh\(_2\) (3a) (Fig 3a) reveals the Cu-N\(_{\text{ketimide}}\) distance of 1.700(2) Å, significantly shorter than the Cu-N bond found in the copper(II) amide [Cl\(_3\)NN]Cu-NHAd (1.839(9) Å)\(^{23}\) and copper(II) anilide [Cl\(_3\)NN]Cu-NHAr\(_{\text{C13}}\) (1.847(3) Å).\(^{6}\) Copper(II) ketimide 3a possesses a nearly linear Cu-N3-C24 angle of 178.9(2)°. The short Cu-N\(_{\text{ketimide}}\) distance and linear Cu-N3-C24 angle support effective sp\(^3\)-hybridization at the ketimide N atom. These values remarkably differ from those in the homoleptic copper(I) ketimide [Cu-N=CPh\(_2\)] with bridging ketimide ligands that lead to a square-like tetrameric structure with Cu-N distances 1.847(2)–1.861(2) Å and Cu-N-Cu angles of 94.17(9)–98.25(9)°.\(^{27}\) To outline difference between coordination of anionic ketimide ligands and their neutral ketimine counterparts, we prepared the corresponding benzophenone imine adducts [Me\(_3\)NN]Cu(NH=CPh\(_2\)) \((4a)\) and [Cl\(_3\)NN]Cu(NH=CPh\(_2\)) \((4b)\) (Fig 3b). These copper(I) complexes
feature substantially longer Cu-N\text{ketimine} distances of 1.8940(14) and 1.8937(14) Å. These ketimine adducts 4a and 4b each exhibit a pronounced bend in the Cu-ketimide linkage with Cu-N-C angles of 132.68(12) and 130.25(12)° consistent with sp² hybridization at N.

UV-vis analysis of copper(II) ketimide \([\text{Me_2NN}]\text{Cu-N=CPH}_2\) (3a) reveals the presence of a single low energy absorption band at 570 nm (ε = 1910 M⁻¹ cm⁻¹) in toluene at room temperature. The EPR spectrum of 3a in a mixture of toluene and pentane at room temperature shows a signal centred at \(g_{\text{iso}} = 2.081\) with very well resolved coupling to \(^{63/65}\text{Cu} (A_{\text{Cu}} = 298.0\) MHz) and additional hyperfine modelled with three equivalent \(^{14}\)N nuclei (\(A_{\text{N}} = 35.0\) MHz) (Figure S13). The related copper(II) ketimide \([\text{Cl_2NN}]\text{Cu-N=CPH}_2\) (3b) prepared from \([\text{Cl_2NN}]\text{Cu-OBu\•} \) (2b) and \(\text{H=NCPH}_2\) exhibits a similar spectroscopic profile. The UV-vis spectrum of \([\text{Cl_2NN}]\text{Cu-N=Ph}_2\) (3b) exhibits a single absorption at 520 nm (ε = 3120 M⁻¹ cm⁻¹) in toluene at room temperature and possesses a similar isotropic EPR spectrum to that of 3a (Fig. S14). Unfortunately, the greater thermal sensitivity of \([\text{Cl_2NN}]\text{Cu-N=Ph}_2\) (3b) has precluded its crystallographic characterization.

DFT calculations reveal remarkably high unpaired electron density on the ketimide N atom of both 3a (0.58) and 3b (0.61) (Figs. 4 and S23). These values are significantly higher than values reported for related three coordinate β-diketiminato Cu(II) anilides \([\text{Cu}^\beta]\text{-NHAr} \) (0.23-0.25)\(^\text{a}\) and a copper(II) amide \([\text{Cu}^\beta]\text{-NHAd} \) (0.49).\(^\text{a}\) We rationalize this as a result of a 2-center 3-electron π interaction between the highest energy d orbital at the copper(II) center destabilized by the β-diketiminato N-donors and a p orbital of the sp-hybridized ketimide N atom (Fig. 4a). In addition, the orthogonal orientation of the Cu-N\text{ketimide} π-interaction relative to the conjugated ketimide N=CPH₂ π system further limits the delocalization of unpaired electron density away from the ketimide N atom (Figs. 4b and 4c).

Copper(II) ketimide reactivity: radical capture and N-N bond formation

The ability of many β-diketiminato copper(II) complexes to participate in catalytic sp² C-H functionalisation via radical relay (Fig. 2) encouraged us to assess the reactivity of copper(II) ketimides 3 towards alkyl radicals. We find that \([\text{Cu}^\beta\text{N}]\text{-CPH}_2\) species 3a and 3b capture alkyl radicals \(\text{R•}\) to provide the corresponding R-N=CPH₂ products (Fig. 5a). \([\text{Cu}]\) is anticipated to form in these radical capture reactions that correspond to step d in the radical relay catalytic cycle (Fig. 2). For instance, reaction of 3a and 3b with (E/Z)-azobis(α-phenylethane) at 90 °C that generates the benzylic radical \(\text{PhCH(\•)}\text{Me}\) upon heating provides the alkylated imine \(\text{PhCH(N=CPH}_2\)Me in 40% and 74% yields, respectively. Generation of \(\text{Cy•}\) radicals in the presence of 3a and 3b by heating \(\text{BuOO\•}\) in cyclohexane (via H-atom abstraction by \(\text{BuOO\•}\) radicals) provides \(\text{Cy-N=CPH}_2\) in 58% and 41% yields, respectively.

Radical capture by copper(II) ketimides: C-N bond formation

\[
\text{PhN} \quad \text{90 °C} \quad \text{PhN} \quad \text{[Cu\text{Cu}^\beta\text{N=CPH}_2\]}
\]

5 equiv.

from 3a: 40% \(\text{from 3b: 74%}\)

N-N bond formation via copper(II) ketimides: azine formation

\[
2 \text{[Cu\text{Cu}^\beta\text{N=CPH}_2\] + Ph}_2\text{C=N-N=CPH}_2 \quad \text{18 h, 60 °C, phenylethane} \quad \text{[Cu\text{Cu}^\beta\text{N=CPH}_2\]}
\]

from 3a: 66% \(\text{from 3b: 90%}\)

Fig. 5. Reactivity of copper(II) ketimides. 2 equiv. diazene radical precursor.

Upon heating to 60 °C, copper(II) ketimides 3a and 3b undergo N-N coupling to form benzophenone azine \(\text{Ph}_2\text{C=N-N=CPH}_2\) isolated in 66% and 90% yields, respectively (Fig. 5b).
This represents a competing reaction for radical capture at copper(II) ketimides 3a and 3b.

Copper(II) ketimides in sp² C-H amination

With a fundamental understanding of copper(II) ketimide formation and reactivity, we explored these complexes in catalytic C-H amination via radical relay. Using ethylbenzene as a model R-H substrate, we screened a modest range of copper(II) β-diketiminato catalysts 1 that possess different electronic and steric properties (Table 1). The catalyst \{[Cl₃NN]Cu \} 1b provides the highest yield compared to more electron-rich \{1a and 1c\} and electron-poor \{1d\} catalysts. Increasing the BuOOBu oxidant amount does not significantly improve the yield. Lowering the temperature from 90 °C reduces the yield drastically (Table S1), possibly due to binding of the ketimine \(HN=CAr₂\) to the copper(II) catalyst (Fig. 3b) that inhibits \(^3\)BuOOBu activation. 2⁸

Table 1. Copper catalyzed C-H amination of ethylbenzene with benzophenone imine.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Entry</th>
<th>Catalyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[Me₂NN]Cu</td>
<td>1a</td>
<td>(Me, Me, Me)</td>
</tr>
<tr>
<td>2</td>
<td>[Cl₃NN]Cu</td>
<td>1b</td>
<td>(Me, Cl, H)</td>
</tr>
<tr>
<td>3</td>
<td>[Ph₂NN]Cu</td>
<td>1c</td>
<td>(Me, Pr, H)</td>
</tr>
<tr>
<td>4</td>
<td>[Cl₂N₂]Cu</td>
<td>1d</td>
<td>(CF₃, Cl, H)</td>
</tr>
</tbody>
</table>

Conditions: 50 equiv. R-H. All yields determined by \(^1\)H NMR.

While (1-(tert-butoxy)ethyl)benzene form in trace amounts via C-H etherification⁹ the azine \(Ph₂C=N=N=CPH₂\) is the main byproduct in these catalytic C-H amination reactions, representing non-productive consumption of H-N=CPH₂. In a previous study of C-H amination with anilines \(H₂NAr\) employing the \{[Cl₃NN]Cu/\(^3\)BuOOBu\} catalyst system, electron-poor anilines provided the highest yields in the face of competing diazene \(HN=NR₂\) formation. 2⁴ Copper(II) anilido intermediates \[\text{Cu}^{	ext{II}}\]-\(H₂NAr\) serve as intermediates in C-H amination with anilines \(H₂NAr\); those derived from electron-poor anilines \(H₂NAr\) (e.g. \(Ar = 2,4,6\)-Cl₃C₆H₃) proved more resistant to reductive bimolecular N-N bond formation. 6, 2⁴

To examine whether similar electronic changes in the ketimine \(H=NCPh₂\) could similarly promote more efficient catalysis, we explored two electron-poor ketimine derivatives \(H=NCPh₂\) in C-H amination (Table 2). Although the \(p-F\), substituted imine provides a higher C-H amination yield with cyclohexane (C-H BDE = 97 kcal/mol), 2⁹ the increase in yield is modest with the benzylc substrate ethylbenzene (C-H BDE = 87 kcal/mol). 2⁹ No significant differences were observed between benzophenone imine and the \(p-F\) substituted analogue.

While electron-poor imines can give somewhat higher C-H amination yields, we most broadly examined the commercially available \(H=NCPh₂\) to survey the scope of R-H substrates in sp² C-H amination (Table 3). Ethers such as THF, 1,4-dioxane, or even 12-crown-4 undergo C-H amination at the α-carbon in

Table 3. Copper catalyzed sp² C-H amination with ketimines H=NCPh₂.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ar</th>
<th>Entry</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>6a</td>
<td>6b</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>6c</td>
<td>6d</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>6e</td>
<td>6f</td>
</tr>
</tbody>
</table>

Conditions: 10 equiv. R-H, 1.2 equiv. \(^3\)BuOOBu, 1 mol% \{[Cl₃NN]Cu\}, 90 °C, 24 h. *Yields with \(H=NCPh₂\). ²Yields with \(H=NCPh₂\) \((Ar = 4-CF₃C₆H₄)\). ³H NMR yields (isolate yields) for 6f and 6g.
relatively high yields (6a - 6d). Amination of the benzylic secondary C-H bonds in heteroaromatic substrates occurs (6f - 6g), though yields may be lower due to the possibility of coordination of these substrates and/or products to the copper(II) centre that can decrease the rate of reoxidation with \(^1 \)BuOO\(^{3}\)Bu.\(^{28}\) Aromatic substrates with benzylic C-H bonds undergo C-H amination in moderate to high yields (6h - 6k). Cycloalkanes with stronger, unactivated sp\(^3\) C-H bonds give moderate yields with electron-poor ketimine \(HN=\text{C}Ar'\) (\(Ar' = 4\text{-CF}_3\text{C}_6\text{H}_4\)) (6l - 6o). The bicyclic eucalyptol undergoes C-H amination in 32% yield (6e). These aminated products may be isolated either as synthetically versatile protected primary amines R-N=CPh\(_2\) via column chromatography (6a - 6g) or as the primary ammonium salts [R-NH\(_2\)]Cl via deprotection upon simple acidic work up (6h - 6o) under mild conditions. The potential to use recovered benzophenone from deprotection of ketimine products and azide byproducts to regenerate the \(\text{Ph}_2\text{C}=\text{NH}\) starting material\(^{10}\) enhances the overall atom economy of this amination protocol.

Conclusions

The isolation of mononuclear copper(II) ketimides \([\text{Cu}^{II}]\)-N=\text{C}Ph\(_2\) reveals the role that they play as intermediates in sp\(^3\) C-H amination. These reactive intermediates readily form via acid-base exchange between \([\text{Cu}^{III}]\)-O\(^{3}\)Bu and HN=\text{C}Ph\(_2\), amenable to spectroscopic and structural investigation. Importantly, \([\text{Cu}^{II}]\)-N=\text{C}Ph\(_2\) complexes efficiently intercept alkyl radicals R\(^*\) generated via H-atom abstraction by \(^1\)BuO\(^{•}\) from substrates R-H that ultimately enable the C-H amination of unactivated sp\(^3\) C-H substrates. DFT analysis reveals a significant amount of unpaired electron density at the ketimide N atom of 0.58 and 0.61 e\(^-\) for \([\text{Me}_2\text{NN}][\text{Cu}-\text{N}=\text{C}Ph\(_2\)]\) (3a) and \([\text{Cl}_2\text{NN}][\text{Cu}-\text{N}=\text{C}Ph\(_2\)]\) (3b) (Figs. 4 and S23), respectively, opening a facile pathway for C-N bond formation with radicals R\(^*\) to form R-N=\text{C}Ph\(_2\) products (Fig 5a). Moreover, this spin density at the ketimide N-atom likely facilitates N-N bond formation via copper(II) ketimides \([\text{Cu}^{II}]\)-N=\text{C}Ph\(_2\) to give the azine \(\text{Ph}_2\text{C}=\text{N}=\text{N}=\text{C}Ph\(_2\)\) (Fig 5b), a competing pathway in sp\(^3\) C-H functionalisation. Use of the more electron-poor copper(II) ketimide \(HN=\text{C}Ar'\) (\(Ar' = 4\text{-CF}_3\text{C}_6\text{H}_4\)) extends the scope of catalysis to unactivated sp\(^3\) C-H bonds in cycloalkanes (Table 3; entries 6l - 6o). Nonetheless, facile N-N bond formation also by copper(II) ketimides \([\text{Cu}^{II}]\)-N=\text{C}Ar' underscores the role that they may play in the electrocatalytic copper(II) promoted oxidative N-N coupling of benzophenone imine to form benzophenone azine (Fig 1g).\(^{18}\)

Experimental section

Detailed experimental procedures are provided in the ESI.\(^+\)

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We are grateful to NSF (CHE-1665348 and CHE-1955942) for support of this work.

Notes and references