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Directed regioselective ortho,ortho’ -magnesiations
of aromatics and heterocycles using sBu,Mg in
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Aryl azoles are ubiquitous as bioactive compounds and their regioselective functionalization is of utmost

synthetic importance. Here, we report the development of a toluene-soluble dialkylmagnesium base

sBu,Mg. This new reagent allows mild and regioselective ortho-magnesiations of various N-arylated

pyrazoles and 1,2,3-triazoles as well as arenes bearing oxazoline, phosphorodiamidate or amide directing

groups. The resulting diarylmagnesium reagents were further functionalized either by Pd-catalyzed
arylation or by trapping reactions with a broad range of electrophiles (aldehydes, ketones, allylic halides,
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acyl chlorides, Weinreb amides, aryl halides, hydroxylamine benzoates, terminal alkynes). Furthermore,

several double ortho,ortho’-magnesiations were realized in the case of aryl oxazolines, N-aryl pyrazoles

DOI: 10.1039/d1sc01777b
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Introduction

The directed magnesiation of arenes and heteroarenes is an
important synthetic tool for the preparation of polyfunctional
aryl- and heteroaryl-magnesium organometallics." Mixed
magnesium and lithium amides R,NMgX-LiCl are usually the
most efficient reagents for such metalations.” Recently, we have
examined the regioselective metalation of various pharmaceu-
tically relevant aryl azoles such as 1.*> We found that standard
metal amides such as LDA or TMPLi (TMP = 2,2,6,6-tetrame-
thylpiperidyl) gave the lithiated products 2 with poor regiose-
lectivity, due to a competitive deprotonation at the 5-position of
the triazole ring of 1. The best result was achieved in toluene*
using the alkylmagnesium amide TMPMgBu® prepared from
commercial Bu,Mg, which provided after cross-coupling with
aryl bromides various products of type 3. Although this base was
highly regioselective in toluene, an excess of ArBr was required
to compensate the formation of the Ar-nBu side-product, orig-
inating from a faster cross-coupling of the nBu moiety
compared to the metalated azole 2 (Scheme 1).
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as well as 2-aryl-2H-1,2,3-triazoles by simply repeating the magnesiation/electrophile trapping sequence
allowing the preparation of valuable 1,2,3-functionalized arenes.

While commercially available Bu,Mg contained a 60 : 40
mixture of nBu,Mg and sBu,Mg, we have found only small
amounts of the branched coupling side-product Ar-sBu, sug-
gesting that the secondary alkyl moiety was reacting much
slower than the primary one.

(a) Previous work:

TMS, TMS, T™S
ZFNN TMPMgBuU / NN J NN
5N\ - 1) ZnClI, -
\ N Z;A B s N +  nBu-Ar
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X =TMP, Bu
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E', E% aldehydes, ketones, allylic halides, acyl chlorides, Weinreb amides, aryl halides (Negishi cross-coupling).

Scheme 1 (a) Regioselective magnesiation and subsequent Negishi
cross-coupling of aryl azoles (1) using TMPMgBuU in toluene/hexane.
(b) Regioselective magnesiation and ortho,ortho’-functionalization of
arenes and heteroarenes using sBu,Mg in toluene.
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Herein, we report the preparation of sBu,Mg,* which avoided
these side reactions and significantly increased the metalation
scope. Thus, we showed that sBu,Mg was an improved mag-
nesiation reagent, which allowed a highly ortho-regioselective
magnesiation of arenes 4 bearing various directing groups (DG),
leading after trapping of the resulting diarylmagnesium species
5 with various electrophiles E' to products of type 6. These
polyfunctional arenes were in several cases magnesiated again
using sBu,Mg producing, after addition of a second different
electrophile E, valuable 1,2,3-polyfunctional arenes of type 7.

Results and discussion

The reaction of sBuMgCl in diethyl ether with sBuLi (1.0 equiv.)
in cyclohexane at 25 °C (2 h) gave, after solvent evaporation
under vacuum, redissolution in toluene and filtration, a 0.43-
0.48 M solution of sBu,Mg in 96% yield.”*

In preliminary experiments, we have observed a smooth
magnesiation of oxazoline 8a with a toluene solution of 0.6
equiv. of sBu,Mg leading to the diarylmagnesium 9a (Table 1). A
full conversion to the diarylmagnesium species was achieved
within 1 hour and the iodolyzed product 10a was isolated in
80% yield (entry 1). sBu,Mg gave also good results in cyclo-
hexane or THF, albeit in lower yields (entries 2 and 3). cHex,Mg
in toluene delivered the desired product 10a in only 46% yield
and other bases such as Ph,Mg, (TMSCH,),Mg and tBu,Mg or
sBuMgCP’ did not give any conversion (entries 4-8).

Therefore, a range of oxazolines (8a-d) were magnesiated
selectively on the aryl ring and the resulting diarylmagnesiums
(9a-d) underwent Negishi cross-couplings,'® copper-catalyzed
allylation or acylation,' in situ Sonogashira cross-coupling™ or
trapping reactions with tetrachlorodibromoethane or dicyclo-
propylketone, leading to the mono-ortho substituted oxazolines
10b-j in 68-98% yield (Scheme 2).

Most of the C-H activation methods currently available for
the arylation of aryl azoles were performed by using transition

Table 1 Magnesiation of oxazoline 8a using various magnesium
reagents in various solvents at 25 °C

MeMe /_“éeMe /_’geMe
O_N reagent (0.6 equiv) O N l’ O N
N solvent, 26 °C, 1h Mg |
oo g
8a 9a 10a
Entry Reagent Solvent Yield®
1 sBu,Mg Toluene 91% (80)°
2 sBu,Mg THF 73%
3 sBu,Mg Cyclohexane 64%
4 cHex,Mg Toluene 46%
5 tBu,Mg Toluene 0%
6 (TMSCH,),Mg Toluene 0%
7 Ph,Mg Toluene 0%
8 sBuMgCl? Ether/toluene 0%

“ Calibrated GC-yield using undecane as internal standard. * 1.2 equiv.
of sBuMgCl were used. ¢ Isolated yield.
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Scheme 2 Regioselective magnesiation of oxazolines 8a—-d with
sBu,Mg leading, via diarylmagnesium species 9a—d, to functionalized
oxazolines 10b—j. ? All yields refer to isolated compounds. © Magne-
siation conditions. © The reaction was catalyzed by CuCN-2LiCl
(20 mol%). ¢ Obtained after transmetalation with ZnCl, (1.1 equiv.) and
a palladium-catalyzed cross-coupling with [PdCl(dppf)] (5 mol%, dppf
= diphenylphosphinoferrocene) and an aryl halide (0.83 equiv.). ¢
Obtained after transmetalation with ZnCl, (1.1 equiv.), subsequent
iodine quench (1.1 equiv.) and Sonogashira cross-coupling with Cul
(4 mol%), Pd(dba), (3 mol%, dba = dibenzylideneacetone), tri-(2-furyl)-
phosphine (6 mol%) and phenylacetylene (1.3 equiv.).

metal catalysts and suffered from the unwanted formation of
symmetrical bis-arylated products and the selective preparation
of unsymmetrical ortho-ortho’-bis-functionalized" aryl azoles
remained challenging." We have found that various oxazolines
10g-j were again magnesiated at 40-60 °C with sBu,Mg in
toluene (Scheme 3)."* The intermediate diarylmagnesium
species were further functionalized by a copper-catalyzed ally-
lation, Negishi cross-coupling, cobalt-catalyzed electrophilic
amination® and iodolysis furnishing the desired products 11a-
ein 74-93% yield. Interestingly, magnesiation of 10j followed by
trapping with benzaldehyde and subsequent treatment with
6 M HCI provided lactone 11f in 56% yield."”

To demonstrate the versatility of the oxazoline directing
group, the strongly sterical hindered ortho,ortho’-functionalized
oxazoline 11b was successfully converted to the corresponding
nitrile 11g using thionyl chloride and DMF*® in 92% yield
(Scheme 4).*

We then turned our attention to the magnesiation of various
N-aryl pyrazoles (12a-c). sBu,Mg proved also to be an excellent
base for the regioselective magnesiation of N-aryl pyrazole 12a,
affording the corresponding bis-arylmagnesium species 13a

Chem. Sci., 2021, 12, 8424-8429 | 8425
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Scheme 3 Regioselective magnesiation of mono-functionalized
oxazolines 10g-j, leading to ortho,ortho’-functionalized oxazolines
11a—f. ? All yields refer to isolated compounds. ? Magnesiation
conditions. © The reaction was catalyzed by CuCN-2LiCl (20 mol%).
9 Obtained after transmetalation with ZnCl, (1.1 equiv.) and a palla-
dium-catalyzed cross-coupling with [PdCl,(dppf)] (5 mol%) and an aryl
iodide (0.83 equiv.). € Obtained after transmetalation with ZnCl, (1.1
equiv.) and a cobalt-catalyzed electrophilic amination with CoCl,
(5 mol%) and morpholino benzoate (1.2 equiv.). © Obtained after
addition of benzaldehyde (1.2 equiv.) followed by treatment with 6 M
HCL

2:1 SOCI, : DMF
L,
reflux, 2 h Me

S8

MeM
—Me oMe
O N OMe O
S O
11b 11g: 92%@

Scheme 4 Transformation of ortho,ortho’-functionalized oxazoline
11b to the corresponding nitrile 11g. ? Isolated yield.

after 0.5 h at 40 °C. After addition of benzaldehyde or Weinreb
amide MeCON(OMe)Me, alcohol 14a and ketone 14b were ob-
tained in 74-86% yield (Scheme 5). Copper-catalyzed allylation
with 3-bromocyclohex-1-ene produced the pyrazole 14¢ (90%
yield). Interestingly, N-aryl pyrazoles 12b and 12c¢ although
bearing relatively acidic protons at the heterocyclic ring were
selectively magnesiated at the ortho-position of the phenyl ring.
In particular, unsubstituted pyrazole 12c was metalated in 94%
yield and >98 : 1 : 1 selectivity, as determined by deuterolysis of
areaction aliquot.”® These results further confirm the key role of
the coordination at the N(2)-atom of the pyrazole to direct the
metalation selectively on the aryl ring in a non-polar solvent like
toluene. Thus, the functionalized pyrazoles 14d-f were obtained
after Negishi cross-coupling with 5-bromopyrimidine, 5-bro-
mobenzo[d][1,3]dioxole or addition of furfural in 64-90% yield.
We also achieved an unsymmetrical ortho,ortho’-functionaliza-
tion and mono-substituted pyrazole 14f was selectively magne-
siated at 60 °C (0.5 h) and trapped by Negishi cross-coupling
with  6-iodoquinoline and 4-iododibenzo[b,d|thiophene
providing the products 15a-b in 67-84% yield (Scheme 6).

8426 | Chem. Sci, 2021, 12, 8424-8429

Scheme 5 Regioselective magnesiation of N-aryl pyrazoles 12a—-c
with sBu,Mg leading, via diarylmagnesium species 13a-c, to func-
tionalized N-aryl pyrazoles 14a—f. ¢ All yields refer to isolated
compounds. ® Magnesiation conditions. © The reaction was catalyzed
by CuCN-2LiCl (20 mol%). 9 Obtained after transmetalation with ZnCl,
(1.1 equiv.) and a palladium-catalyzed cross coupling with [PdCl,(dppf)]
(5 mol%) and an aryl bromide (0.83 equiv.).

The functionalization of less common heterocycles is of key
importance for pharmaceutical applications.”* Thus, the met-
alation of symmetrical 2-aryl-2H-1,2,3-triazoles 16a-b was then
investigated (Scheme 7).>>** After metalation of 16a with 0.6
equiv. of sBu,Mg for 15 min at 40 °C, the resulting bis-
arylmagnesium species 17a was then trapped with furfural,
affording the functionalized 1,2,3-triazole 18a in a 68% yield.
Further trapping reactions such as Negishi cross-coupling,
copper-catalyzed allylation and oxidative alkynylation with
(phenylethynyl)lithium** lead to 2-aryl-1,2,3-triazoles 18b-d in
52-66% yield. Similarly, 1,2,3-triazole 16b was readily magne-
siated at 25 °C (0.5 h) as shown by the quantitative formation of
a single regioisomer by NMR-analysis of a deuterolyzed reaction
aliquot.*® Further quenching reactions of 17b like thio-
methylation and allylation furnished triazoles 18e—f in 82-91%
yield. A second functionalization was performed on N-aryl

1) sBu,Mg (0.8 equiv)
toluene, 60 °C, 0.5 h
2) ZnCl; (1.1 equiv)

I3 toluene: THF U\
’N oluene: ‘N
N O °> 0°C,05h N O O>
o 3) Arl (0.83 equiv) Ar o
[PACly(dppf] (5 mol%)
toluene:THF
14f 55°C. 18 h 15a-b: 67-84%°
B B
/ N ~ N N

15a: 84%!°! 15b: 67%!

Scheme 6 Regioselective magnesiation of mono-functionalized N-
aryl pyrazole 14f with sBu,Mg leading to ortho,ortho’-functionalized
N-aryl pyrazoles 15a—b. ? All yields refer to isolated compounds.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Scheme 7 Regioselective magnesiation of 2-aryl-2H-1,2,3-triazoles
16a-b with sBu,Mg leading, via diarylmagnesium species 17a-b, to
functionalized 2-aryl-2H-1,2,3-triazoles 18a—f. ¢ All yields refer to
isolated compounds. ® Magnesiation conditions. ¢ Obtained after
transmetalation with ZnCl, (1.1 equiv.) and a palladium-catalyzed
cross-coupling with [PdCly(dppf)] (5 mol%) and an aryl halide (0.83
equiv.). ¢ Obtained after transmetalation with CuCN-2LiCl (1.2 equiv.)
and subsequent addition of (phenylethynyllithium (2.0 equiv.), fol-
lowed by addition of chloranil (1.3 equiv.). € The reaction was catalyzed
by CuCN-2LiCl (20 mol%).

triazoles 18d-f using again sBu,Mg in toluene, followed by
quench with a different electrophile (E*) (Scheme 8). We
observed a complete magnesiation of 18d with sBu,Mg within
15 min at 40 °C and a subsequent reaction with benzaldehyde
produced the mixed bis-functionalized 1,2,3-triazole 19a in 42%
yield. Similarly, 18e and 18f were magnesiated under the

7\ 7\
N, N 1) sBu,Mg N. N
N (0.6 equiv) N
E1 —_— EZ E‘\
| N toluene, 25-40 °C ‘ A
X 10-20 min X
R 2) E2 (1.2 equiv) R
18d-f 19a-f: 42-88%"
NN NN NN
HO N N HO N
- = | SMe ~ SMe
\_o
cl cl cl cl
cl
19a: 42% 19b: 88% 19c: 82%
(40 °C, 15 min)[®! (25 °C, 10 min)<! (25 °C, 10 min)!
7\ 7\ I\
N. N N, N N/‘ ,\N
N N = N
g _ W*ﬁltf\/ g P
O HO
Cl Cl Cl Cl cl Cl

19d: 70%
(40 °C, 20 min)dl

19e: 70%
(40 °C, 20 min)el

19f. 71%
(40 °C, 20 min)>

Scheme 8 Regioselective magnesiation of mono-functionalized 2-
aryl-2H-1,2,3-triazoles 18d—-f with sBu,Mg leading to ortho,ortho’-
functionalized 2-aryl-2H-1,2,3-triazoles 19a—f. ¢ All yields refer to
isolated compounds. ® Magnesiation conditions. € The regioselectivity
was determined by crystal structure analysis, see ESI.¥ ¢ The reaction
was catalyzed by CUCN-2LiCl (20 mol%). € The reaction was catalyzed
by Cul (10 mol%). © Obtained after transmetalation with ZnCl, (1.1
equiv.) and a palladium-catalyzed cross-coupling with [PdCly(dppf)]
(5 mol%) and an aryl bromide (0.83 equiv.).
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standard conditions and the resulting bis-arylmagnesium
species were trapped with a different electrophile (E®) leading
to a range of unsymmetrical functionalized 1,2,3-triazoles 19b-f
in 70-88% yield.

Finally, we examined the metalation of 1-aryl-1H-1,2,3-tri-
azoles such as 20a-e and found that sBu,Mg led to a highly
regioselective magnesiation at the ortho-position of the aryl ring
in toluene (25-40 °C, 0.5-1 h), affording the bis-aryl-magnesium
species 21a in 75% yield and 97 : 3 regioselectivity (Scheme 9).>°

This new metalation procedure occurred twice as fast as the
previously reported TMPMgBu base.? 1,2,3-Triazoles 22a and
22b were isolated in 93% and 67% yields respectively after
Negishi cross-couplings with only 0.83 equiv. of aryl bromide.?
Copper-catalyzed acylation™ with benzoyl chloride lead to
products 22¢ and 22d in 55-58% yield and quenching with
various aldehydes afforded compounds 22e-h in 69-80% yield.

Remarkably, sBu,Mg was also an excellent base for the
magnesiation of various arenes bearing directing groups such
as a tertiary amide or phosphorodiamidate (23a—j; Scheme 10).>
The addition of sBu,Mg to the aromatic amide 23a in toluene
led to a clean magnesiation within 0.5 h at room temperature.
The resulting diarylmagnesium species 24a was then further
allylated with allyl and cyclohexenyl bromides, leading to 25a
and 25b in 62% and 71% yield respectively. Copper-catalyzed
acylation of 23a with thiophene-2-carbonyl chloride or trap-
ping with furfural furnished the ketone 25¢ (64% yield) and the
lactone 25d (76% yield).>® Similarly, the amides 23b-f afforded
with the same magnesiation/trapping sequence the polyfunc-

tional amides (25e-i) in 61-72% yield. Various
T™MS T™MS TMS,
N sBu,Mg N N
N (0.6-0.8 equiv) Y E N

- -

toluene, 25-40 °C N Mg

—_—
| 25 min-1 h | 2 |
X ¢ X
R R

20a:R=4-F 20d:R=H
20b:R =4-Cl 20e:R = 1,3-dioxo methylene

22a: 93% 22b: 67% 22c: 58% 22d: 55%

(25°C, 0.5 h)bd (25°C, 0.5 h)bd (40 °C, 0.5 h)led (40 °C, 1 h)ed
™S, ™S, ™S, ™S,
N N N N
T ! T !
N~ OH N~ OH N~ OH N OH OMe
0, Ph 0,
W W
0 Br
F cl o—/  Ome
22e: 80% 22f: 69% 229: 78% 22h: 80%
(40 °C, 1 h)lo! (25 °C, 0.5 h)l®! (40 °C, 0.5 h)l®! (25 °C, 1 h)lel

Scheme 9 Regioselective magnesiation of 1-aryl-2H-1,2,3-triazoles
20a—e with sBu,Mg leading, via diarylmagnesium species 21la-e, to
functionalized 1-aryl-2H-1,2,3-triazoles 22a—h. 7 All yields refer to
isolated compounds. ? Magnesiation conditions. ¢ Obtained after
transmetalation with ZnCl, (1.1 equiv.) and a palladium-catalyzed
cross-coupling with [PdCly(dppf)] (5 mol%) and an aryl halide (0.83
equiv.).? The reaction was catalyzed by CuCN-2LiCl (20 mol%). € The
regioselectivity was determined by crystal structure analysis, see ESI.{
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Scheme 10 Regioselective magnesiation of various arenes bearing an
amide or a phosphorodiamidate directing group as well as 1-propyl-
1,2,4-triazole 23a—k with sBu,Mg leading, via diarylmagnesium species
24a-k, to functionalized arenes 25a—o.  All yields refer to isolated
compounds. ® Magnesiation conditions. ¢ The reaction was catalyzed
by CuCN-2LiCl (20 mol%). 9R = P(O)(NMe,),. € Obtained after treating
25m with 2 M HCl in dioxane (105 °C, 1 h).
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Scheme 11 Synthetic transformations of magnesiated product 25b.
@ All yields refer to isolated compounds.

phosphorodiamidates (23g-j) were also metalated with sBu,Mg
at 40-60 °C (0.5-1 h) providing the diarylmagnesiums 24g-j,
which were trapped with a range of electrophiles (MeSSO,Me,
I,, cHexCHO and (BrCCl,),) furnishing the phenol derivatives
25j-m in 68-98% yield. Removal of the phosphorodiamidate
group” in 25m was achieved with a 2 M HCI treatment in
dioxane (105 °C, 1 h) leading to phenol 25n in 88% yield.
Interestingly, 1-propyl-1,2,4-triazole (23k) was magnesiated with
sBu,Mg and allylated with cinnamyl bromide providing the N-
heterocycle 250 in 86% yield.*®

We performed some further transformations leading to
polyfunctionalized 1,2,3-trisubstituted arenes to show the
utility of these magnesiations. The newly prepared amide 25b
was thus selectively reduced with Cp,Zr(H)CI*® (25 °C, 15 min) to
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the aldehyde 26a in 90% yield. A two-step transformation
consisting of a reduction with the complex borohydride LiH;-
BPyrr (Pyrr = pyrrolidino)® followed by a treatment with ethyl
chloroformate®' provided the benzylic chloride 26b in 85%
overall yield (Scheme 11).

Conclusions

In summary, we have developed a new preparation of sBu,Mg in
toluene and showed its utility for the directed magnesiation of
various aromatic and heterocyclic systems including pharma-
ceutically relevant N-arylated pyrazoles as well as N-arylated
1,2,3-triazoles. This method provides a unique access to varius
diarylmagnesium reagents in toluene. Furthermore, a range of
arenes bearing various directing groups such as an oxazoline,
phosphorodiamidate or an amide were magnesiated with
sBu,Mg. Remarkably, a second unsymmetrical ortho,ortho’-
functionalization was achieved in the case of aryl oxazolines, N-
aryl pyrazoles as well as N-aryl triazoles, leading to valuable
synthetic intermediates of potential pharmaceutical relevance.
Further investigations of the use of sBu,Mg as metalating agent
are currently underway in our laboratory.
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