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Numerous challenges in science and engineering can be framed as optimization tasks, including the

maximization of reaction yields, the optimization of molecular and materials properties, and the fine-

tuning of automated hardware protocols. Design of experiment and optimization algorithms are often

adopted to solve these tasks efficiently. Increasingly, these experiment planning strategies are coupled

with automated hardware to enable autonomous experimental platforms. The vast majority of the

strategies used, however, do not consider robustness against the variability of experiment and process

conditions. In fact, it is generally assumed that these parameters are exact and reproducible. Yet some

experiments may have considerable noise associated with some of their conditions, and process

parameters optimized under precise control may be applied in the future under variable operating

conditions. In either scenario, the optimal solutions found might not be robust against input variability,

affecting the reproducibility of results and returning suboptimal performance in practice. Here, we

introduce Golem, an algorithm that is agnostic to the choice of experiment planning strategy and that

enables robust experiment and process optimization. Golem identifies optimal solutions that are robust

to input uncertainty, thus ensuring the reproducible performance of optimized experimental protocols

and processes. It can be used to analyze the robustness of past experiments, or to guide experiment

planning algorithms toward robust solutions on the fly. We assess the performance and domain of

applicability of Golem through extensive benchmark studies and demonstrate its practical relevance by

optimizing an analytical chemistry protocol under the presence of significant noise in its experimental

conditions.
I. Introduction

Optimization problems, in which one seeks a set of parameters
that maximize or minimize an objective of interest, are ubiq-
uitous across science and engineering. In chemistry, these
parameters may be the experimental conditions that control the
yield of the reaction, or those that determine the cost-efficiency
of a manufacturing process (e.g., temperature, time, solvent,
catalyst).1,2 The design of molecules and materials with specic
properties is also a multi-parameter, multi-objective optimiza-
tion problem, with their chemical composition ultimately
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governing their properties.3–7 These optimization tasks may, in
principle, be performed autonomously. In fact, thanks to ever-
growing automation, machine learning (ML)-driven experi-
mentation has attracted considerable interest.8–14 Self-driving
laboratories are already accelerating the rate at which these
problems can be solved by combining automated hardware with
ML algorithms equipped with optimal decision-making
capabilities.15–21

Recent efforts in algorithm development have focused on
providing solutions to the requirements that arise from the
practical application of self-driving laboratories. For instance,
newly proposed algorithms include those with favorable
computational scaling properties,22 with the ability to optimize
multiple objectives concurrently,23 that are able to handle
categorical variables (such as molecules) and integrate external
information into the optimization process.24 One practical
requirement of self-driving laboratories that has received little
attention in this context is that of robustness against variability
of experimental conditions and process parameters.

During an optimization campaign, it is typically assumed
that the experimental conditions are known and exactly repro-
ducible. However, the hardware (e.g., dispensers, thermostats)
© 2021 The Author(s). Published by the Royal Society of Chemistry
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may impose limitations on the precision of the experimental
procedure such that there is a stochastic error associated with
some or all conditions. As a consequence, the optimal solution
found might not be robust to perturbations of the inputs,
affecting the reproducibility of the results and returning
suboptimal performance in practice. Another scenario is when
a process optimized under precise control is to be adopted in
the future under looser operating conditions. For instance, in
large-scale manufacturing, it might not be desirable (or
possible) to impose tight operating ranges on the process
parameters due to the cost of achieving high precision. This
means that the tightly controlled input parameters used during
optimization might not reect the true, variable operating
conditions that will be encountered in production.

In general, it is possible to identify two main types of input
variability encountered in an experimental setting. The rst is
due to uncertainty in the experimental conditions that are
controlled by the researchers, oen referred to as the control
factors, corresponding to the examples discussed above. It can
be caused by the imprecision of the instrumentation, which
may reect a fundamental limitation or a design choice, and
could affect the present or future executions of the experimental
protocol. A second type of input variability that can affect the
performance of the optimization is due to experimental condi-
tions that the researcher does not directly control. This may be,
for instance, the temperature or the humidity of the room in
which the experiments are being carried out. While it might not
always be possible or desirable to control these conditions, they
might be known and monitored such that their impact on the
experimental outcome can in principle be accounted for.25 The
work presented here focuses on the rst type of variability,
related to control factors, although the approach presented may
be in principle extended and applied to environmental factors
too.

Here, we introduce Golem, a probabilistic approach that
identies optimal solutions that are robust to input uncertainty,
thus ensuring the reproducible performance of optimized
experiments and processes. Golem accounts for sources of
uncertainty and may be applied to reweight the merits of
previous experiments, or integrated into popular optimization
algorithms to directly guide the optimization toward robust
solutions. In fact, the approach is agnostic to the choice of
experiment planning strategy and can be used in conjunction
with both design of experiment and optimization algorithms.
To achieve this, Golem explicitly models experimental uncer-
tainty with suitable probability distributions that rene the
merits of the collected measurements. This allows one to dene
an objective function that maximizes the average performance
under variable conditions, while optionally also penalizing the
expected variance of the results.

The article is organized as follows. First, we review some
background information and previous work on robust optimi-
zation (Section II). Second, we introduce the core ideas behind
the Golem algorithm (Section III). We then present the analyt-
ical benchmark functions used to test Golem together with
different optimization approaches (Section IV), as well as the
results of these benchmark studies (Section V). Finally, we show
© 2021 The Author(s). Published by the Royal Society of Chemistry
how Golem may be used in practice, taking the calibration of
a high-performance liquid chromatography (HPLC) protocol as
an example application (Section VI).
II. Background and related work

Formally, an optimization task requires nding the set of
conditions x (i.e., the parameters, or control factors) that yield the
most desirable outcome for f(x). If the most desirable outcome
is the one that minimizes f(x), then the solution of the optimi-
zation problem is

x* ¼ arg min
x˛X

f ðxÞ; (1)

where X is the domain of the optimization dening the range of
experimental conditions that are feasible or that one is willing
to consider. The objective function value f(x) determines the
merit of a specic set of parameters x. This merit may reect the
yield of a reaction, the cost-efficiency of a manufacturing
process, or a property of interest for a molecule or material.
Note that the objective function f(x) is a priori unknown, but can
be probed via experiment. Only a nite number K of samples
DK ¼ fx; f ðxÞgKk¼1 are typically collected during an optimization
campaign, due to the cost and time of performing the experi-
ments. A surrogate model of f(x) can be constructed based on
DK: This model is typically a statistical or machine learning
(ML) model that captures linear and non-linear relationships
between the input conditions x and the objective function
values f(x).

An optimization campaign thus typically proceeds by itera-
tively testing sets of parameters x, as dened via a design of
experiment or as suggested by an experiment planning algo-
rithm.26–28 Common design of experiment approaches rely on
random or systematic searches of parameter combinations.
Other experiment planning algorithms include sequential
model-based approaches, such as Bayesian optimization,29,30

and heuristic approaches like evolutionary and genetic algo-
rithms.31–33 Experiment planning algorithms are now of partic-
ular interest in the context of self-driving laboratories for
chemistry and materials science,18,19,22,34,35 which aim to auton-
omously and efficiently optimize the properties of molecules
and materials.
A. Robust optimization

The goal of robust optimization is to identify solutions to an
optimization problem that are robust to variation or sources of
uncertainty in the conditions under which the experiments are
or will be performed.36 Robustness may be sought for different
reasons. For instance, the true location in parameter space of
the query points being evaluated might be uncertain if experi-
ments are carried out with imprecise instruments. In another
scenario, a process might be developed in a tightly controlled
experimental setting, however, it is expected that future execu-
tion of the same protocol will not. In such cases, a solution that
is insensitive to the variability of the experimental conditions is
desirable.
Chem. Sci., 2021, 12, 14792–14807 | 14793
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Fig. 1 Golem's approach to estimating robustness. (a) Effect of
uncertain inputs on objective function evaluations. The true objective
function is shown as a gray line. The probability distribution p(xk̃) of
possible input value realizations for the targeted location xk is shown in
green, below the x-axis. The distribution of output f(xk̃) values caused
by the input uncertainty are similarly shown next to the y-axis. The
expectation of f(xk̃) is indicated by a green arrow. (b) Schematic of
Golem's core concept. The yellow line represents the surrogate
function used to model the underlying objective function, shown in
the background as a gray line. This surrogate is built with a regression
tree, trained on five observations (black crosses). Note how the
observations fk̃ are noisy, due to the uncertainty in the location of the
input queries. In the noiseless query setting, and assuming no
measurement error, the observations would lie exactly on the
underlying objective function. Vertical white, dashed lines indicate
how this model has partitioned the one-dimensional input space.
Given a target location xk, the probability that the realized input was
obtained from partition T can be computed by integrating the prob-
ability density p(xk̃) over T , which is available analytically.
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Several unique approaches have been developed for this
purpose, originating with the robust design methodology of
Taguchi, later rened by Box and others.36,37 Currently, the most
common approaches rely on either a deterministic or probabi-
listic treatment of input parameter uncertainty. Note that, by
robust optimization, and with chemistry applications in mind,
we broadly refer to any approach aiming at solutions that
mitigate the effects of the variability of experimental conditions.
In the literature, the same term is sometimes used to speci-
cally refer to what we are here referring to as deterministic
approaches.36,38 At the same time, the term stochastic optimiza-
tion39,40 is oen used to refer to approaches that here we
describe as probabilistic. We also note that, while being separate
elds, many similarities with robust control theory are
present.41 The lack of a unied nomenclature is the result of
robust optimization problems arising in different elds of
science and engineering, from operations research to robotics,
nance, and medicine, each with their own sets of unique
challenges. While a detailed review of all robust optimization
approaches developed to date is out of the scope of this brief
introductory section, we refer the interested reader to more
comprehensive appraisals by Beyer,36 Bertsimas,38 and Powell.40

In the interest of conciseness, we also do not discuss
approaches based on fuzzy sets42,43 and those based on the
minimization of risk measures.44,45

Deterministic approaches dene robustness with respect to
an uncertainty set.46,47 Given the objective function f(x), the
robust counterpart g(x) is dened as

gðxÞh sup
z˛Uðx;dÞ

f ðzÞ; (2)

where U is an area of parameter space in the neighborhood of x,
the size of which is determined by d. g(x) then takes the place of
f(x) in the optimization problem. This approach corresponds to
optimizing for a worst-case scenario, since the robust merit is
dened as the worst (i.e., maximum, in minimization tasks)
value of f(x) in the neighborhood of x. Despite being computa-
tionally attractive, this approach is generally conservative and
can result in robust solutions with poor average
performance.36

A different way to approach the problem is to treat input
parameters probabilistically as random variables. Probability
distributions for input parameters can be dened assuming
knowledge about the uncertainty or expected variability of the
experimental conditions.36 In this case, the objective function
f(x) becomes a random quantity itself, with its own (unknown)
probability density (Fig. 1a). The robust counterpart of f(x) can
then be dened as its expectation value,

gðxÞhE½f ð~xÞ� ¼
ð
f ðxÞpð~xÞdx: (3)

Here, ~x ¼ x + d, where d is a random variable with probability
density p(d), which represents the uncertainty of the input
conditions at x (see Section S.1† for a different, but equivalent
formulation). This denition ensures that the solution of the
robust optimization problem is average-case optimal. For
example, assume f(x) is the yield of a reaction given the reaction
14794 | Chem. Sci., 2021, 12, 14792–14807
conditions x. However, we know the optimized protocol will be
used multiple times in the future without carefully monitoring
the experimental conditions. By optimizing g(x) as dened
above, instead of f(x), and assuming that p(~x) captures the
variability of future experimental conditions correctly, one can
identify a set of experimental conditions that returns the best
possible yield on average across multiple repeated
experiments.

Despite its attractiveness, the probabilistic approach to
robust optimization presents computational challenges. In fact,
© 2021 The Author(s). Published by the Royal Society of Chemistry
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the above expectation cannot be computed analytically for most
combinations of f(x) and p(~x). One solution is to approximate
E½f ð~xÞ� by numerical integration, using quadrature or sampling
approaches.48–50 However, this strategy can become computa-
tionally expensive as the dimensionality of the problem
increases and if g(x) is to be computed for many samples. As an
alternative numerical approach, it has been proposed to use
a small number of carefully chosen points in x to cheaply
approximate the integral.51 Selecting optimal points for arbi-
trary probability distributions is not straightforward, however.52

In Bayesian optimization, it is common to use Gaussian
process (GP) regression to build a surrogate model of the
objective function. A few approaches have been proposed in this
context to handle input uncertainty.53,54 Most recently, Fröhlich
et al.55 have introduced an acquisition function for GP-based
Bayesian optimization for the identication of robust optima.
This formulation is analytically intractable and the authors
propose two numerical approximation schemes. A similar
approach was previously proposed by Beland and Nair.56

However, in its traditional formulation, GP regression scales
cubically with the number of samples collected. In practice, this
means that optimizing g(x) can become costly aer collecting
more than a few hundred samples. In addition, GPs do not
inherently handle discrete or categorical variables57 (e.g., type of
catalyst), which are oen encountered in practical chemical
research. Finally, these approaches generally assume normally
distributed input noise, as this tends to simplify the problem
formulation. However, physical constraints on the experimental
conditions may cause input uncertainty to deviate from this
scenario, such that it would be preferable to be able to model
any possible noise distribution.

In this work, we propose a simple, inexpensive, and exible
approach to probabilistic robust optimization. Golem enables
the accurate modeling of experimental conditions and their
variability for continuous, discrete, and categorical conditions,
and for any (parametric) bounded or unbounded uncertainty
distribution. By decoupling the estimation of the robust
objective g(x) from the details of the optimization algorithm,
Golem can be used with any experiment planning strategy, from
design of experiment, to evolutionary and Bayesian optimiza-
tion approaches.
III. Formulating golem

Consider a robust optimization problem in which the goal is to
nd a set of input conditions x˛X corresponding to the global
minimum of the function g : X/ℝ;

x* ¼ arg min
x˛X

gðxÞ: (4)

We refer to g(x), as dened in eqn (3), as the robust objective
function, while noting that other integrated measures of
robustness may also be dened.

Assume a sequential optimization in which we query a set of
conditions xk at each iteration k. If the input conditions are
noiseless, we can evaluate the objective function at xk (denoted
fk). Aer K iterations, we will have built a dataset
© 2021 The Author(s). Published by the Royal Society of Chemistry
DK ¼ fxk; fkgKk¼1: However, if the input conditions are noisy, the
realized conditions will be ~xk ¼ xk + d, where d is a random
variable. As a consequence, we incur stochastic evaluations of
the objective function, which we denote ~f k. This is illustrated in
Fig. 1a, where the Gaussian uncertainty in the inputs results in
a broad distribution of possible output values. In this case, we
will have built a dataset ~D ¼ fxk; ~f kg

K
k¼1: Note that, while ~xk

generally refers to a random variable, when considered as part
of a dataset ~D it may be interpreted as a specic sample of such
variable. Hence, for added clarity, in Fig. 1 we refer to the
distributions on the y-axis as f(~xk), while we refer to function
evaluations on specic input values as ~f k.
A. General formalism

The goal of Golem is to provide a simple and efficient means to
estimate g(x) from the available data, DK or ~DK: This would
allow us to create a dataset GK ¼ fxk; gkgKk¼1 with robust merits,
which can then be used to solve the robust optimization task in
eqn (4). To do this, a surrogate model of the underlying objec-
tive function f(x) is needed. This model should be able to
capture complex, non-linear relationships. In addition, it
should be computationally cheap to train and evaluate, and be
scalable to high-data regimes. At the same time, we would like
to exibly model p(~x), such that it can satisfy physical
constraints and closely approximate the true experimental
uncertainty. At the core of Golem is the simple observation that
when approximating f(x) with tree-based ML models, such as
regression trees and random forest, estimates of g(x) can be
computed analytically as a nite series for any parametric
probability density p(~x). A detailed derivation can be found in
Section S.1.†

An intuitive depiction of Golem is shown in Fig. 1b. Tree-
based models are piece-wise constant and rely on the rectan-
gular partitioning of input space. Because of this discretization,
E½f ðxÞ� can be obtained as a constant contribution from each
partition T , weighted by the probability of x being within each
partition, Pðxk˛T Þ: Hence, an estimate of g(x) can be efficiently
obtained as a sum over all partitions (eqn (20)†).

Tree-based models such as regression trees and random
forests have a number of advantages that make them well-
suited for this task. First, they are non-linear ML models that
have proved to be powerful function approximators. Second,
they are fast to train and evaluate, adding little overhead to the
computational protocols used. In the case of sequential opti-
mization, the datasetDK grows at each iteration k, such that the
model needs to be continuously re-trained. Finally, they can
naturally handle continuous, discrete, and categorical variables,
so that uncertainty in all type of input conditions can be
modeled. These reasons in addition to the fact that tree-based
models allow for a closed-form solution to eqn (3) make
Golem a simple yet effective approach for robust optimization.
Note that while we decouple Golem's formulation from any
specic optimization algorithm in this work, it is in principle
possible to integrate this approach into tree-ensemble Bayesian
optimization algorithms.58,59 This can be achieved via an
acquisition function that is based on Golem's estimate of the
Chem. Sci., 2021, 12, 14792–14807 | 14795
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robust objective, as well as its uncertainty, which can be esti-
mated from the variance of g(x) across trees.

Fig. 2 shows a simple, one-dimensional example to provide
intuition for Golem's behavior. In the top panel, the robust
objective function is shown for different levels of normally-
distributed input noise, parameterized by the standard devia-
tion s(x) reported. Note that, when there is no uncertainty and
s(x) ¼ 0 (gray line), p(x̃) is a delta function and one recovers the
original objective function. As the uncertainty increases, the
global minimum of the robust objective shis from being the
one at x z 0.15 to that at x z 0.7. In the two panels at the
bottom, the same effect is shown under a realistic low-data
scenario, in which only a few observations of the objective
function are available (gray circles). Here, the dashed gray line
represents the surrogate model used by Golem to estimate the
robustness of each solution, given low (bottom le, green
circles) and high (bottom right, blue circles) input noise. As in
the top panel, which shows the continuous ground truth, here
too the le-hand-side minimum is favored until the input noise
is large enough such that the right-hand-side minimum
provides better average-case performance.
Fig. 2 One-dimensional example illustrating the probabilistic
approach to robustness and Golem's behavior. The top panel shows
how g(x), which is defined as E½f ðxÞ� ¼ Ð

f ðxÞpð~xÞdx; changes as the
standard deviation of normally-distributed input noise p(x)̃ is increased.
Note that the curve for s(x) ¼ 0 corresponds to the original objective
function. The panels at the bottom show the robust merits of a finite
set of samples as estimated by Golem from the objective function
values.

14796 | Chem. Sci., 2021, 12, 14792–14807
B. Multi-objective optimization

When experimental noise is present, optimizing for the robust
objective might not be the only goal. Oen, large variance in the
outcomes of an experimental procedure is undesirable, such
that one might want to minimize it. For instance, in a chemical
manufacturing scenario, one would like to ensure maximum
overall output across multiple plants and batches. However, it
would also be important that the amount of product manufac-
tured in each batch does not vary considerably. Thus, the
optimal set of manufacturing conditions should not only
provide high yields on average, but also consistent ones. The
problem can thus be framed as a multi-objective optimization
in which we would like to maximize E½f ðxÞ� while minimizing s

[f(x)] ¼ Var[f(x)]1/2. Golem can also estimate s[f(x)] (Section
S.1.D†), enabling such multi-objective optimizations. With
E½f ðxÞ� and s[f(x)] available, any scalarizing function may be
used, including weighted sums and rank-based algorithms.23

IV. Benchmark surfaces and basic
usage

The performance of Golem, in conjunction with a number of
popular optimization algorithms, was evaluated on a set of two-
dimensional analytical benchmark functions. This allowed us
to test the performance of the approach under different, hypo-
thetical scenarios, test which optimization algorithms are most
suited to be combined with Golem, and demonstrate the ways
in which Golem may be deployed.

A. Overview of the benchmark surfaces

Fig. 3 shows the benchmark functions that were used to eval-
uate Golem. These benchmarks were chosen to both challenge
the algorithm and show its exibility. We selected both
continuous and discrete surfaces, and bounded and
unbounded probability distributions to describe the input
uncertainty. The objective functions considered are shown in
the second row of Fig. 3. The Bertsimas function is taken from
the work of Bertsimas et al.,46 while Cliff and Sine are introduced
in this work (Section S.2.A†). The rst row of Fig. 3 shows the
uncertainty applied to these objective functions in both input
dimensions. These uncertainties induce the robust objective
functions shown in the third row. The location of the global
minimum is shown for each objective and robust objective,
highlighting how the location of the global minimum is affected
by the variability of the inputs. The eight robust objectives in the
third row of Fig. 3 are labeled S1 to S8 and are the surfaces to be
optimized. While we can only probe the objective functions in
the second row, we use Golem to estimate their robust coun-
terparts in the third row and locate their global minima.

These synthetic functions challenge Golem and the optimi-
zation algorithms in different ways. The rougher the surface
and its robust counterpart, the more challenging it is expected
to be to optimized. The smaller the difference in robust merit
between the non-robust and robust minima (Section S.2.A,
Table S1†), the harder it is for Golem to resolve the location of
the true robust minimum, as more accurate estimates of g(x) are
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Benchmark functions used to test Golem and its performance. The first two rows show the type of uncertainty (in both input dimensions)
assumed and the objective functions used in the synthetic benchmarks. The location of the global minimum is marked by a gray star on the two-
dimensional surface of each objective function. The third row shows how the input uncertainty transforms each objective function into its robust
counterpart. These surfaces (referred to as S1 to S8) represent the robust objectives, which are not directly observable, but that we would like to
optimize. The global minimum of these functions are marked by white stars, with an arrow indicating the shift in the location of the global
minimum between non-robust and robust objectives. The fourth row shows a set of 8� 8 samples that have been collected from these surfaces.
Each sample is colored by its robust merit as estimated by Golem using only these 64 samples. The largermarker (circle or square, for continuous
and discrete surfaces, respectively) indicate the sample with best estimated robust merit. For all surfaces, Golem correctly estimates the most
robust sample to be one in the vicinity of the true global minimum. The final row shows Golem's surrogate model of the robust objective,
constructed from the grid of 64 samples shown in row four. This surrogatemodel is highly correlatedwith the true underlying robust objective, as
indicated by Spearman's correlation coefficient (r) reported at the top-right corner of each plot.
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required. Finally, the steeper the objective function is outside
the optimization domain, the less accurate Golem's estimate
will be close to the optimization boundary, as samples are
collected only within the optimization domain.

S1–S6 evaluate performance on continuous spaces, while S7
and S8 on discrete ones. The function denoted Cliff has a single
minimum, which is shied in the robust objectives S1 and S2.
The Bertsimas function has a global minimum indicated at the
top-right corner of the surface, and a broader minimum at the
bottom-le corner. The latter is the global minimum of the
robust objective functions S3 and S4. The Sine function is the
most rugged and challenging, with nine minima (eight local
and one global). S2 and S8 describe input uncertainty via
distributions that do not allow values outside some of the
bounds of the optimization domain. This is used to demon-
strate Golem's exibility and ability to satisfy physical
constraints. For instance, if the uncertain input variable is
dispensed volume, one should be able to assign zero probability
to negative volumes.
© 2021 The Author(s). Published by the Royal Society of Chemistry
B. Reweighting previous results

One possible use of Golem is to reweight the merits of previ-
ously tested experimental conditions. Imagine, for instance,
that we have accurately and precisely evaluated how tempera-
ture and catalyst concentration affect the yield of a reaction in
the laboratory. To achieve this, we have performed 64 experi-
ments using a uniformly spaced 8 � 8 grid. Based on this data,
we know which of the measured conditions provide the best
yield. However, the same reaction will be used in other labora-
tories, or in larger-scale manufacturing, where these two vari-
ables will not be precisely controlled because, e.g., precise
control is expensive or requires a complex experimental setup.
Therefore, we would like to reweight the merit of each of the 64
conditions previously tested, and identify which conditions are
robust against variations in temperature and pressure. Golem
allows one to easily compute these robust merits given the
uncertainty in the input conditions. We tested Golem under this
scenario and the results are shown in Fig. 3. In particular, the
fourth row shows the grid of 64 samples taken from the objec-
tive function and reweighted with Golem. The color of each
Chem. Sci., 2021, 12, 14792–14807 | 14797

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1sc01545a


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
O

ct
ob

er
 2

02
1.

 D
ow

nl
oa

de
d 

on
 1

0/
22

/2
02

5 
10

:1
2:

17
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
sample indicates their robust merit as estimated by Golem, with
blue being more robust and red less robust. The largest marker
indicates the sample estimated to have the best robust merit,
which is in close proximity to the location of the true robust
minimum for all surfaces considered.

Based on these 64 samples, Golem can also build a surrogate
model of the robust objective. This model is shown in the last
row of Fig. 3. These estimates closely resemble the true robust
surfaces in the third row. In fact, the Spearman's rank correla-
tions (r) between Golem's surrogates and the true robust
objectives were $0.9 for seven out of eight surfaces tested. For
S8 only, while the estimated location of the global robust
minimum was still correct, r z 0.8 due to boundary effects. In
fact, while the robust objective depends also on the behavior of
the objective function outside of the dened optimization
domain, we sample the objective only within this domain. This
lack of information causes the robustness estimates of points
close to the boundaries to be less accurate than for those farther
from them (Fig. S4†). Another consequence of this fact is that
the robust surrogate does not exactly match the true robust
objective also in the limit of innite sampling within the opti-
mization domain (Section S.2.B†).

To further clarify the above statement, by “dened optimi-
zation domain” we refer to a subset of the physically-
meaningful domain that the researcher has decided to
consider. Imagine, for instance, that we have a liquid dispenser
which we will use to dispense a certain solvent volume. The
smallest volume we can dispense is zero, while the largest might
be the volume in the reservoir used (e.g., 1 L). These limits are
physical bounds we cannot exceed. However, for practical
purposes, we will likely consider a maximum volume much
smaller than the physical limit (e.g., 5 mL). In this example, 0–
5 mL would constitute the dened optimization domain, while
0–1 L are physical bounds on the domain. In the context of
uncertain experimental conditions, it can thus be the case that
a noisy dispenser might provide 5.1 mL of liquid despite this
exceeding the desired optimization boundary. The same
cannot, however, be the case for the lower bound in this
example, since a negative volume is physically impossible. As
a consequence, while we allow an optimization algorithm to
query the objective function only within the user-dened opti-
mization domain, a noisy experimental protocol might result in
the evaluation of the objective function outside of this domain.

Golem allows to take physical bounds into account by
modeling input uncertainty with bounded probability distri-
butions. Yet, it cannot prevent boundary effects that are the
consequence of the unknown behaviour of the objective func-
tion outside of the dened optimization domain. This issue,
unfortunately, cannot be resolved in a general fashion, as it
would require a data-drivenmodel able to extrapolate arbitrarily
far from the data used for training. A practical solution may be
to consider a “data collection domain” as a superset of the
optimization domain, which is used for collecting data at the
boundaries but which the optimization solution is not selected
from. In the examples in Fig. 3 (row 4), this would mean using
the datapoints on the perimeter of the two-dimensional grid
only for estimating the robustness of the internal points more
14798 | Chem. Sci., 2021, 12, 14792–14807
accurately. We conclude by reiterating how, notwithstanding
this inescapable boundary effect, as shown in Fig. 3 there is
a high correlation between Golem's estimates and the true
robustness values.
V. Optimization benchmarks

With increasing levels of automation and interest in self-driving
laboratories, sequential approaches that make use of all data
collected to select the next, most informative experiment are
becoming the methods of choice for early prototypes of auton-
omous science. In this case, rather than re-evaluating previously
performed experiments, one would like to steer the optimiza-
tion towards robust solutions during the experimental
campaign. Golem allows for this in combination with popular
optimization approaches, by mapping objective function eval-
uations onto an estimate of their robust merits at each iteration
of the optimization procedure. We evaluated the ability of six
different optimization approaches to identify robust solutions
when used with Golem and without. The algorithms tested
include three Bayesian optimization approaches (Gryffin,22,24

GPyOpt,60 Hyperopt61), a genetic algorithm (Genetic),62 a random
sampler (Random), and a systematic search (Grid). Gryffin,
GPyOpt, and Hyperopt use all previously collected data to decide
which set of parameters to query next, Genetic uses part of the
collected data, while Random and Grid are totally agnostic to
previous measurements.

In these benchmarks, we allowed the algorithms to collect
196 samples for continuous surfaces and 64 for the discrete
ones. We repeated each optimization 50 times to collect statis-
tics. For Grid, we created a set of 14 � 14 uniformly-spaced
samples (8 � 8 for the discrete surfaces) and then selected
them at random at each iteration. For all algorithms tested, we
performed the optimization with and without Golem. Algorithm
performance in the absence of Golem constitutes a näıve
baseline. Optimization performance in quantied using
normalized cumulative robust regret, dened in S.2.C.† This
regret is a relative measure of how fast each algorithm identies
increasingly robust solutions, allowing the comparison of
algorithm performance with respect to a specic benchmark
function.
A. Noiseless queries with uncertainty in future experiments

Here, we tested Golem under a scenario where queries during
the optimization are deterministic, i.e., noiseless. It is assumed
that uncertainty in the inputs will arise only in future experi-
ments. This scenario generally applies to the development of
experimental protocols that are expected to be repeated under
loose control of experimental conditions.

The results of the optimization benchmarks under this
scenario are summarized in Fig. 4, which shows the distribu-
tions of cumulative regrets for all algorithms considered, with
and without Golem, across the eight benchmark surfaces. For
each algorithm, Fig. 4 also quanties the probability that the
use of Golem resulted in better performance in the identica-
tion robust solutions. Overall, these results showed that Golem
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Robust optimization performance of multiple algorithms, with and without Golem, in benchmarks where queries were noiseless. Box
plots show the distributions of cumulative regrets obtained across 50 optimization repeats with and without Golem, in purple and yellow,
respectively. The boxes show the first, second, and third quartiles of the data, with whiskers extending up to 1.5 times the interquartile range. At
the top of each plot, we report the probability that the use of Golem improved upon the performance of each algorithm. Probabilities are in green
if the performance with Golemwas significantly better (considering a 0.05 significance level) than without, and in red if it was significantly worse,
as computed by bootstrap.

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
O

ct
ob

er
 2

02
1.

 D
ow

nl
oa

de
d 

on
 1

0/
22

/2
02

5 
10

:1
2:

17
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
allowed the optimization algorithms to identify solutions that
were more robust than those identied without Golem.

A few additional trends can be extracted from Fig. 4. The
Bayesian optimization algorithms (Gryffin, GPyOpt, Hyperopt)
and systematic searches (Grid) seemed to benet more from the
use of Golem than genetic algorithms (Genetic) and random
searches (Random). In fact, the former approaches beneted
fromGolem across all benchmark functions, while the latter did
so only for half the benchmarks. The better performance of Grid
as compared to Random, in particular, may appear surprising.
We found that the main determinant of this difference is the
fact that Grid samples the boundaries of the optimization
domain, while Random is unlikely to do so. By forcing random
to sample the optimization boundaries, we recovered perfor-
mances comparable to Grid (Section S.2.D†). We also hypothe-
sized that uniformity of sampling might be benecial to Golem,
given that the accuracy of the robustness estimate depends on
how well the objective function is modeled in the vicinity of the
input location considered. We indeed found that low-
discrepancy sequences provided, in some cases, slightly better
performance than random sampling. However, this effect was
minor compared to that of forcing the sampling of the opti-
mization domain boundaries (Section S.2.D†).

Genetic likely suffered from the same pathology, given it is
initialized with random samples. Thus, in this context, initial-
ization with a gridmay bemore appropriate. Genetic algorithms
are also likely to suffer from a second effect. Given that we can
only estimate the robust objective, Golem induces a history-
© 2021 The Author(s). Published by the Royal Society of Chemistry
dependent objective function. Contrary to Bayesian optimiza-
tion approaches, genetic algorithms consider only a subset of
the data collected during optimization, as they discard solu-
tions with bad tness. Given that the robustness estimates
change during the course of the optimization, these algorithms
may drop promising solutions early in the search, which are
then not recovered in the latter stages when Golem would have
more accurately estimated their robustness. The use of more
complex genetic algorithm formulations, exploring a more
diverse set of possible solutions,63 could improve this scenario
and is a possibility le for future work.
B. Noisy queries with uncertainty in current experiments

In a second scenario, queries during the optimization are
stochastic, i.e., noisy, due the presence of substantial uncer-
tainty in the current experimental conditions. This case applies
to any optimization campaign in which it is not possible to
precisely control the experimental conditions. However, we
assume one can model the uncertainty p(~x), at least approxi-
mately. For instance, this uncertainty might be caused by some
apparatus (e.g., a solid dispenser) that is imprecise, but can be
calibrated and the resulting uncertainty quantied. The opti-
mization performances of the algorithms considered, with and
without Golem, are shown in Fig. 5. Note that, to model the
robust objective exactly, p(~x) should also be known exactly.
While this is not a necessary assumption of the approach, the
accuracy of Golem's estimates is proportional to the accuracy of
the p(~x) estimates. As the p(~x) estimate provided to Golem
Chem. Sci., 2021, 12, 14792–14807 | 14799
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Fig. 5 Robust optimization performance of multiple algorithms, with and without Golem, in benchmarks where queries were noisy. Box plots
show the distributions of cumulative regrets obtained across 50 optimization repeats with and without Golem, in purple and yellow, respectively.
The boxes show the first, second, and third quartiles of the data, with whiskers extending up to 1.5 times the interquartile range. At the top of each
plot, we report the probability that the use of Golem improved the performance of each algorithm. Probabilities are in green if the performance
with Golem was significantly better (considering a 0.05 significance level) than without, and in red if it was significantly worse, as computed by
bootstrap.
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deviates from its true values, Golem under- or over-estimate the
robustness of the optimal solution, depending on whether the
input uncertainty is under- or over-estimated. We will illustrate
this point in more detail in Section VI.A.

Generally speaking, this is a more challenging scenario than
when queries are noiseless. As a consequence of the noisy
experimental conditions, the dataset collected does not
correctly match the realized control factors x with their associ-
ated merit f(x). Hence, the surrogate model is likely to be
a worse approximation of the underlying objective function
than when queries are noiseless. While the development of ML
models capable of recovering the objective function f(x) based
on noisy queries ~x is outside the scope of this work, suchmodels
may enable even more accurate estimates of robustness with
Golem. We are not aware of approaches capable of performing
such an operation, but it is a promising direction for future
research. In fact, being able to recover the (noiseless) objective
function from a small number of noisy samples ~f would be
benecial not only for robustness estimation, but for the
interpretation of experimental data more broadly.

Because of the above-mentioned challenge in the construc-
tion of an accurate surrogate model, in some cases, the
advantage of using Golem might not seem as stark as in the
noiseless setting. This effect may be seen in surfaces S1 and S2,
where the separation of the cumulative regret distributions is
larger in Fig. 4 than it is in Fig. 5. Nonetheless, across all
benchmark functions and algorithms considered, the use of
14800 | Chem. Sci., 2021, 12, 14792–14807
Golem was benecial in the identication of robust solutions in
the majority of cases, and never detrimental, as shown by Fig. 5.
In fact, Golem appears to be able to recover signicant corre-
lations with the true robust objectives g(x) even when correla-
tion with the objective functions f(x) is lost due to noise the
queried locations (Fig. S6†).

Optimization with noisy conditions is signicantly more
challenging than traditional optimization tasks with no input
uncertainty. However, the synthetic benchmarks carried out
suggest that Golem is able to efficiently guide optimization
campaigns towards robust solutions. For example, Fig. 6 shows
the location of the best input conditions as identied by GPyOpt
with and without Golem. Given the signicant noise present,
without Golem, the optima identied by different repeated
experiments are scattered far away from the robust minimum.
When Golem is used, the optima identied are considerably
more clustered around the robust minimum.

C. Effect of forest size and higher input dimensions

All results shown thus far were obtained using a single regres-
sion tree as Golem's surrogate model. However, Golem can also
use tree-ensemble approaches, such as random forest64 and
extremely randomized trees.65 We thus repeated the synthetic
benchmarks discussed above using these two ML models, with
forest sizes of 10, 20, and 50 (Section S.2.F†). Overall, for these
two-dimensional benchmarks we did not observe signicant
improvements when using larger forest sizes. For the
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Location of the optimal input parameters identified with and
without Golem. The results shown were obtained with GPyOpt as the
optimization algorithm. A pink star indicates the location of the true
robust minimum. White crosses (one per optimization repeat, for
a total of 50) indicate the locations of the optimal conditions identified
by the algorithm without (on the left) and with (on the right) Golem.
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benchmarks in the noiseless setting, regression trees appeared
to provide slightly better performance against the Bertsimas
functions (Fig. S7†). The lack of regularization may have
provided a small advantage in this case, where Golem is trying
to resolve subtle differences between competing minima. Yet,
a single regression tree performed as well as ensembles. For the
benchmarks in the noisy setting, random forest and extremely
randomized trees performed slightly better overall (Fig. S8†).
However, larger forests did not appear to provide considerable
advantage over smaller ones, suggesting that for these low-
dimensional problems, small forests or even single trees can
generally be sufficient.

To study the performance of different tree-ensemble
approaches also on higher-dimensional search spaces, we
conducted experiments, similar to the ones described above, on
three-, four-, ve, and six-dimensional versions of benchmark
surface S1. In these tests, we consider two dimensions to be
uncertain, while the additional dimensions are noiseless. Here,
too, we studied the effect of forest type and size on the results,
but we focused on the Bayesian optimization algorithms. In this
case, we observed better performance of Golem when using
© 2021 The Author(s). Published by the Royal Society of Chemistry
random forest or extremely randomized trees as the surrogate
model. In the noiseless setting, extremely randomized trees
returned slightly better performance than random forest, in
particular for GPyOpt and Hyperopt (Fig. S9†). The correlation of
optimization performance with forest size was weaker. Yet, for
each combination of optimization algorithms and benchmark
surface, the best overall performance was typically achieved
with larger forest sizes of 20 or 50 trees. While less marked,
similar trends were observed for the same tests in the noisy
setting (Fig. S10†). In this scenario, random forest returned
slightly better performance than extremely randomized trees for
Hyperopt. Overall, surrogate models based on random forest or
extremely randomized trees appear to provide better perfor-
mance across different scenarios.

We then investigated Golem's performance across varying
search space dimensionality and number of uncertain condi-
tions. To do this, we conducted experiments on three-, four-,
ve, and six-dimensional versions of benchmark surface S1,
with one to six uncertain inputs. These tests showed that Golem
was still able to guide the optimizations towards better robust
solutions. In the noiseless setting, the performance of GPyOpt
and Hyperopt was signicantly better with Golem for all
dimensions and number of uncertain variables tested
(Fig. S11†). The performance of Gryffin was signicantly
improved by Golem in roughly half of the cases. Overall, given
a certain search space dimensionality, the positive effect of
Golem becamemore marked with a higher number of uncertain
inputs. This observation does not imply that the optimization
task is easier with more uncertain inputs (it is in fact more
challenging), but that the use of Golem provides a more
signicant advantage in such scenarios. On the contrary, given
a specic number of uncertain inputs, the effect of Golem was
less evident with increasing number of input dimensions.
Indeed, additional input dimensions make it more challenging
for Golem to resolve whether the observed variability in the
objective function evaluations is due to the uncertain variables
or the expected behavior of the objective function along the
additional dimensions. Similar overall results were observed in
the noisy input setting (Fig. S12†). However, statistically
signicant improvements were found in a smaller fraction of
cases. Here, we did not observe a signicant benet in using
Golem when having a small (1–2) number of uncertain inputs,
but this became more evident with a larger (3–6) number of
uncertain inputs. In fact, the same trends with respect to the
dimensionality of the search space and the number of uncertain
inputs were observed also in the noisy query setting. One
important observation is that Golem was almost never (one out
of 108 tests) found to be detrimental to optimization perfor-
mance, suggesting that there is very little risk in using the
approach when input uncertainty is present, as in the worst-
case scenario Golem would simply leave the performance of
the optimization algorithm used unaltered.

Overall, these results suggest that Golem is also effective on
higher-dimensional surfaces. In addition, it was found that the
use of surrogate models based on forests can, in some cases,
provide a better optimization performance. Given the limited
computational cost of Golem, we thus generally recommend the
Chem. Sci., 2021, 12, 14792–14807 | 14801
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use of an ensemble tree method as the surrogate model. Forest
sizes of 20 to 50 trees were found to be effective. Yet, given that
larger ensembles will not negatively affect the estimator
performance, and that the runtime scales linearly with the
number of trees, larger forests may be used as well.
VI. Chemistry applications

In this section, we provide an example application of Golem in
chemistry. Specically, we consider the calibration of an HPLC
protocol, in which six controllable parameters (Fig. 7a, Section
S.3†) can be varied to maximize the peak area, i.e., the amount
of drawn sample reaching the detector.26,66 Imagine we ran 1386
experiments in which we tested combinations of these six
parameters at random. The experiment with the largest peak
area provides the best set of parameters found. The parameter
values corresponding to this optimum are highlighted in Fig. 7b
by a gray triangle pointing towards the abscissa. With the
collected data, we can build a surrogate model of the response
surface. The one shown as a gray line in Fig. 7b was built with
200 extremely randomized trees.65 Fig. 7b shows the predicted
peak area when varying each of the six controllable parameters
independently around the optimum identied.
Fig. 7 Analysis of the robustness of an HPLC calibration protocol. (a)
Flow path for the HPLC sampling sequence performed by a robotic
platform. The six parameters (P1–P6) are color coded. The yellow
shade highlights the arm valve, and the gray shade the HPLC valve. (b)
Golem analysis of the effect of input noise on expected protocol
performance. A surrogate model of the response surface is shown in
gray. Uncertainties were modeled with truncated normal distributions
with standard deviations of 10%, 20%, 30% of each parameter's range.
The corresponding robust surrogate models are shown in light green,
dark green, and blue. Triangular markers and dashed lines indicate the
location of the optima for each parameter under different levels of
noise.
A. Analysis of prior experimental results

Golem allows us to speculate how the expected performance of
this HPLC protocol would be affected by varying levels of noise
in the controllable parameters. We modeled input noise via
truncated normal distributions that do not support values
below zero. This choice satises the physical constraints of the
experiment, given that negative volumes, ows, and times are
not possible. We considered relative uncertainties correspond-
ing to a standard deviation of 10%, 20%, and 30% of the
allowed range for each input parameter. The protocol perfor-
mance is most affected by uncertainty in the tubing volume
(variable P3, Fig. 7b). A relative noise of 10% would result in an
average peak area of around 1500 a.u., a signicant drop from
the maximum observed at over 2000. It follows that to achieve
consistent high performance with this protocol, efforts should
be spent in improving the precision of this variable.

While the protocol performance (i.e., expected peak area) is
least robust against uncertainty in P3, the location of the
optimum setting for P3 is not particularly affected. Presence of
noise in the sample loop (variable P1) has a larger effect on the
location of its optimal settings. In fact, noise in P1 requires
larger volumes to be drawn into the sample loop to be able to
achieve average optimal responses. The optimal parameter
settings for the push speed (P5) and wait time (P6) are also
affected by the presence of noise. However, the protocol
performance is fairly insensitive to changes in these variables,
with expected peak areas of around 2000 a.u. for any of their
values within the range studied.

Fig. 7 also illustrates the effect of under- or over-estimating
experimental condition uncertainty on Golem's robustness
estimates. Imagine that the true uncertainty in variable P3 is
20%. This may be the true uncertainty encountered in the future
14802 | Chem. Sci., 2021, 12, 14792–14807
deployment of the protocol, or it may be the uncertainty
encountered while trying to optimize it. If we assume, incor-
rectly, the uncertainty to be 10%, Golem will predict the
protocol to return, on average, an area of �1500 a.u., while we
will nd that the true average performance of the protocol
provides an area slightly above 1000 a.u. That is, Golem will
overestimate the robustness of the protocol. On the other hand,
© 2021 The Author(s). Published by the Royal Society of Chemistry
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if we assumed the uncertainty to be 30%, we would underestimate
the robustness of the protocol, as we would expect an average area
below 1000 a.u. In the case of variable P3, however, the location of
the optimum is only slightly affected by uncertainty, such that
despite the incorrect prediction, Golem would still accurately
identify the location of the global optimum. That is, a tubing
volume of�0.3mL provides the best average outcome whether the
true uncertainty is 10%, 20%, or 30%. In fact, while ignoring
uncertainty altogether (i.e. assuming 0% uncertainty) would result
in the largest overestimate of robustness, it would still have
minimal impact in practice given that the prediction of the
optimum location would still be accurate. This is not the case if we
considered P1. If we again assume that the true uncertainty in this
variable is 20%, providing Golem with an uncertainty model with
10% standard deviation would result in a protocol using a sample
loop volume of �0.04 mL, while the optimal one should be �0.06
mL. Providing Golem with a 30% uncertainty instead would result
in an underestimate of the protocol robustness and an unneces-
sarily conservative choice of�0.08 mL as the sample loop volume.

In summary, as anticipated in Section V.B, while an
approximate estimate of p(~x) does not prevent the use of Golem,
it can affect the quality of its predictions. When uncertainty is
underestimated, the optimization solutions identied by Golem
will tend to be less robust than expected. On the contrary, when
uncertainty is overestimated, Golem's solutions will tend to be
overly conservative (i.e., Golem will favor plateaus in the
objective function despite more peaked optima would provide
better average performance). The errors in Golem's estimates
will be proportional to the error in the estimates of the input
uncertainty provided to it, but the magnitude of these errors is
difficult to predict as it depends on the objective function,
which is unknown and application-specic. Note that, ignoring
input uncertainty corresponds to assuming p(~x) is a delta
function in Golem. This choice, whether implicitly or explicitly
made, results in the largest possible overestimate of robustness
when uncertainty is in fact present. The associated error in the
expected robustness is likely to be small when the true uncer-
tainty is small, but may be large otherwise.

It is important to note that, above, we analyzed only one-
dimensional slices of the six-dimensional parameter space.
Given interactions between these parameters, noise in one
parameter can affect the optimal setting of a different one
(Section S.3.B†). Golem can identify these effects by studying its
multi-dimensional robust surrogate model. Furthermore, for
simplicity, here we considered noise in each of the six control-
lable parameters one at a time. It is nevertheless possible to
consider concurrent noise in as many parameters as desired.

This example shows how Golemmay be used to analyze prior
experimental results and study the effect of input noise on
protocol performance and the optimal setting of its controllable
parameters.
B. Optimization of a noisy HPLC protocol

As a realistic and challenging example, we consider the opti-
mization of the aforementioned HPLC sampling protocol under
the presence of signicant noise in P1 and P3 (noisy query
© 2021 The Author(s). Published by the Royal Society of Chemistry
setting). In this rst instance, we assume that the other condi-
tions contain little noise and can thus be approximated as
noiseless. As before, we consider normally distributed noise,
truncated at zero. We assume a standard deviation of 0.008 mL
for P1, and 0.08 mL for P3. In this example, we assume we are
aware of the presence of input noise in these parameters, and
are interested in achieving a protocol that returns an expected
peak area, E½area�; of at least 1000 a.u. As a secondary objective,
we would like to minimize the output variability, s[area], as
much as possible while maintaining E½area�. 1000 a:u:

To achieve the optimization goals, we use Golem to estimate
both E½area� and s[area] as the optimization proceeds (Fig. 8a).
We then use Chimera23 to scalarize these two objectives into
a single robust and multi-objective function, g[area], to be
optimized. Chimera is a scalarizing function that enables multi-
objective optimization via the denition of a hierarchy of
objectives and associated target values. As opposed to the post-
hoc analysis discussed in the previous section, in this example
we start with no prior experiment being available and let the
optimization algorithm request new experiments in order to
identify a suitable protocol. Here we perform virtual HPLC runs
using Olympus,26 which allows to simulate experiments via
Bayesian Neural Network models. These probabilistic models
capture the stochastic nature of experiments, such that they
return slightly different outcomes every time an experiment is
simulated. In other words, they simulate the heteroskedastic
noise present in the experimental measurements. While
measurement noise is not the focus of this work, it is another
source of uncertainty routinely encountered in an experimental
setting. As such, it is included in this example application.
Bayesian optimization algorithms are generally robust to some
level of measurement noise, as this source of uncertainty is
inferred by the surrogate model. However, the combination of
output and input noise in the same experiment is particularly
challenging, as both sources of noise manifest themselves as
noisy measurements despite the different origin. In fact, in
addition to measurement noise, here we inject input noise into
the controllable parameters P1 and P3. Hence, while the opti-
mization algorithm may request a specic value for P1 and P3,
the actual, realized ones will differ. This setup therefore
contains noise in both input experimental conditions and
measurements.

While large input noise would be catastrophic in most
standard optimization campaigns (as shown in Section 5.2,
Fig. 6), Golem allows the optimization to proceed successfully.
With the procedure depicted in Fig. 8a, on average, Gryffin was
able to identify parameter settings that achieve
E½area�. 1000 a:u: aer less than 50 experiments (Fig. 8b).
Equivalent results were obtained with GPyOpt and Hyperopt
(Fig. S15†). The improvements in this objective are, however,
accompanied by a degradation in the second objective, output
variability, as measured by s[area] (Fig. 8c). This effect is due to
the inevitable trade-off between the two competing objectives
being optimized. Aer having reached its primary objective, the
optimization algorithm mostly focused on improving the
second objective, while satisfying the constraint dened for the
rst one. This behavior is visible in Fig. 8d and e. Early in the
Chem. Sci., 2021, 12, 14792–14807 | 14803
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Fig. 8 Setup and results for the optimization of an HPLC protocol under noisy experimental conditions. (a) Procedure and algorithms used for
the robust optimization of the HPLC protocol. First, the optimization algorithm selects the conditions of the next experiment to be performed.
Second, the HPLC experiment is carried out and the associated peak's area recorded. Note that, in this example, P1 and P3 are noisy such that
their values realized in the experiment do not correspond to those requested by the optimizer. Third, Golem is used to estimate the expected
peak's area, E½area�; as well as its variability s[area], based on amodel of input noise for P1 and P3. Finally, theChimera scalarizing function is used
to combine these two objectives into a single figure of merit to be optimized. (b–e) Results of 50 optimization repeats performed with Gryffin.
Equivalent results obtained with GPyOpt and Hyperopt are shown in Fig. S15.† (b) Optimization trace for the primary objective, i.e. the maxi-
mization of E½area� above 1000 a.u. The average and standard deviation across 50 optimization repeats are shown. (c) Optimization trace for the
secondary objective, i.e. the minimization of s[area]. The average and standard deviation across 50 optimization repeats are shown. (d) Objective
function values sampled during all optimization runs. The arrows indicate the typical trajectory of the optimizations, which first try to achieve
values of E½area� above 1000 a.u. and then try to minimize s[area]. A Pareto front that describes the trade-off between the two objectives
becomes visible, as larger area's expectation values are accompanied by larger variability. (e) Objective function values sampled during a sample
optimization run. Each experiment is color-coded (yellow to dark green) to indicate at which stage of the optimization it was performed.
Exploration (white rim) and exploitation (black rim) points are indicated, as Gryffin explicitly alternates between these two strategies. Later
exploitation points (dark green, black rim) tend to focus on the minimization of s[area], having already achieved E½area�. 1000 a:u:
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optimization, Gryffin is more likely to query parameter settings
with low E½area� and s[area] values. At a later stage, with more
information about the response surface, the algorithm focused
on lowering s[area] while keeping E½area� above 1000 a.u. Due to
input uncertainty, the Pareto front highlights an irreducible
amount of output variance for any non-zero values of expected
area (Fig. 8d). An analysis of the true robust objectives shows
that, given the E½area�. 1000 a:u: constraint, the best achiev-
able s[area] values are �300 a.u. (Fig. S14†).

The traces showing the optimization progress (Fig. 8b–c)
display considerable spread around the average performance.
This is expected and due to the fact that both E½area� and s[area]
are estimates based on scarce data, as they cannot be directly
observed. As a consequence, these estimates uctuate as more
data is collected. In addition, it may be the case that while
Golem estimates E½area� to be over 1000 a.u., its true value for
a certain set of input conditions may actually be below 1000,
and vice versa. In fact, at the end of the 50 repeated optimization
runs, 10 (i.e., 20%) of the identied optimal solutions had true
E½area� below 1000 a.u. (this was the case for 24% of the opti-
mizations with GPyOpt, and 34% for those with Hyperopt).
However, when using ensemble trees as the surrogate model, it
is possible to obtain an estimate of uncertainty for Golem's
expectation estimates. With this uncertainty estimate, one can
control the probability that Golem's estimates satisfy the
14804 | Chem. Sci., 2021, 12, 14792–14807
objective's constraint that was set. For instance, to have a high
probability of the estimate of E½area� being above 1000 a.u., we
can setup the optimization objective in Chimera with the
constraint that E½area� � 1:96� sðE½area�Þ. 1000 a:u:; which
corresponds to optimizing against the lower bound of the 95%
condence interval of Golem's estimate. Optimizations set up
in this way correctly identied optimal solutions with
E½area�. 1000 a:u: in all 50 repeated optimization runs
(Fig. S16†).

As a nal test, we simulate the example above, in which we
targeted the optimization of the lower-bound estimate of
E½area�; with all experimental conditions containing a consid-
erable amount of noise. For all input variables we consider
normally distributed noise truncated at zero, with a standard
deviation of 0.008 mL for P1, 0.06 mL for P2, 0.08 mL for P3, 0.2
mL min�1 for P4, 8 Hz for P5, and 1 s for P6. This is an even
more challenging optimization scenario, with input noise
compounding from all variables. In this case,Hyperopt achieved
E½area�. 1000 a:u: aer about 100 experiments on average,
Gryffin achieved E½area� values around the targeted value of 1000
a.u. aer 120–130 experiments, and GPyOpt only when close to
200 experiments (Fig. S17†). As expected, the noisier the
experimental conditions (larger noise and/or more noisy vari-
ables) the less efficient the optimization. However, Golem still
enabled the algorithms tested to achieve the desired objective of
© 2021 The Author(s). Published by the Royal Society of Chemistry
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E½area�. 1000 within the pre-dened experimental budget.
Aer 200 experiments, Hyperopt correctly identied solutions
with E½area�. 1000 a:u: in 78% of the optimization runs,
GPyOpt in 70%, and Gryffin in 42%. We stress that Golem is not
a substitute to developing precise experimental protocols. A
noise-free (or reduced-noise) experimental protocol will always
allow for faster optimization and better average performance.
While Golem can mitigate the detrimental effects of input noise
on optimization, it is still highly desirable to minimize noise in
as many input conditions as possible.

This example application shows how Golem can easily be
integrated into a Bayesian optimization loop for the optimiza-
tion of experimental protocols with noisy experimental
conditions.

VII. Conclusion

In summary, Golem provides a simple, inexpensive, yet exible
approach for the optimization of experimental protocols under
noisy experimental conditions. It can be applied retrospectively,
for the analysis of previous results, as well as on-the-y in
conjunction with most experiment planning strategies to drive
optimizations toward robust solutions. The approach was
found to perform particularly well when used with systematic
searches and Bayesian optimization algorithms. Optimization
under noisy conditions is considerably more challenging than
typical optimization tasks. When such noise is known but
cannot be removed or corrected for, Golem enables optimiza-
tions that would otherwise be infeasible.

Data availability
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golem, under an MIT license.
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