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d deep learning of molecular
excitations and photoemission spectra†

Julia Westermayr and Reinhard J. Maurer *

Modern functional materials consist of large molecular building blocks with significant chemical complexity

which limits spectroscopic property prediction with accurate first-principles methods. Consequently,

a targeted design of materials with tailored optoelectronic properties by high-throughput screening is

bound to fail without efficient methods to predict molecular excited-state properties across chemical

space. In this work, we present a deep neural network that predicts charged quasiparticle excitations for

large and complex organic molecules with a rich elemental diversity and a size well out of reach of

accurate many body perturbation theory calculations. The model exploits the fundamental underlying

physics of molecular resonances as eigenvalues of a latent Hamiltonian matrix and is thus able to

accurately describe multiple resonances simultaneously. The performance of this model is demonstrated

for a range of organic molecules across chemical composition space and configuration space. We

further showcase the model capabilities by predicting photoemission spectra at the level of the GW

approximation for previously unseen conjugated molecules.
1 Introduction

The photoelectric effect1 describes the response of molecules
and materials to electromagnetic radiation by emission of
electrons. This effect plays a fundamental role in daily life, but
also in cutting-edge technology, such as optoelectronic
devices,2,3 regenerative electron sources for free-electron lasers,4

or photovoltaics, for instance to design articial ion pumps that
mimic nature.5

Novel functional materials in modern optoelectronic devices
are oen characterized by their molecular charge transport
properties between acceptor and donor molecules. Such devices
include organic diodes and transistors, which crucially depend
on the subtle alignment of molecular acceptor and donor levels
of different compounds with respect to each other. These
fundamental molecular resonances associated with electron
addition and removal in matter can be studied with photo-
emission and inverse photoemission spectroscopy.6,7 However,
the search for optimal materials combinations is limited by the
speed at which organic materials combinations can be spec-
troscopically characterized. This is exacerbated by the challenge
of interpreting macroscopically averaged photoemission data
for complex molecules.8–11

First-principles simulation of photoemission signatures
have the potential to dramatically accelerate high throughput
ick, Gibbet Hill Road, Coventry, CV4 7AL,

tion (ESI) available. See DOI:

the Royal Society of Chemistry
screening of organic materials, but the high computational cost
associated with accurate many-body excited-state calculations
limits their applicability to small molecular systems.12,13

Machine learning (ML) methods have the ability to overcome
the gap between experiment and theory for spectroscopic
characterization by reducing the computational effort of spec-
troscopic simulations without sacricing prediction
accuracy.14,15

ML methods in the context of spectroscopy have previously
focused on predicting single energy levels,15–19 oscillator
strengths,20,21 dipole moments,22–24 highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) energies25–28 or band gaps.29–31 They have also been
applied successfully to identify and characterize structures from
X-ray absorption spectra.32–34 Electronic excitations of molecules
across chemical compound space show crossings of states with
different character and discontinuous behaviour. For ML
models based on smooth features to capture this behaviour
while simultaneously predicting multiple electronic excitations
is a formidable challenge.15,35 By predicting spectral line-
shapes36,37 or continuous densities-of-states38 directly, some of
these problems can be circumvented as spectral signatures are
smooth. Furthermore spectra can be represented by basis
functions or discrete grids providing a consistent representa-
tion that is independent of the number of energy levels or the
size of the molecule.39–41 However, a consequence of this
simplication is that direct information on the number and
character of the molecular resonances is lost.

In this work, we develop a deep convolutional neural
network that accurately predicts molecular resonances across
Chem. Sci., 2021, 12, 10755–10764 | 10755
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a wide range of organic molecular compounds. We encode the
fundamental physics of molecular resonances by representing
them via a Hamiltonian matrix associated with a closed set of
secular equations. In contrast to previous efforts,42–45 this matrix
representation is not based on local atomic orbital features and
the elements of this matrix have no direct physical correspon-
dence beyond the fact that the matrix eigenvalues correspond to
the learned molecular resonances. As we are only training on
rotationally invariant quantities, the model achieves this
without the need to explicitly encode vectorial46–49 or tensorial
equivariance properties23,25 beyond the rotationally invariant
representation of the input molecular coordinates.28 The simple
algebraic modication of describing vectorial targets by diago-
nalization of a matrix output leads to increased learning rates,
reduced prediction errors, and increased transferability in
predicting electron addition and removal energies across
molecular composition space. We showcase the capabilities of
this model by predicting photoemission spectra of previously
unseen organic electronics precursor molecules at the level of
Density Functional Theory (DFT). We further show that the
model can be augmented to account for solvation effects or
many-body electron correlation effects using only a small frac-
tion of the original training data. Correlation effects are
described at the level of GW many-body perturbation theory,
which provides spectroscopic predictions of large, complex
molecules in close agreement with experiment.
Fig. 1 Comparison of the architecture of (a) a conventional single-state M
the proposed pseudo-Hamiltonian model (SchNet + H) along with the p
elements of the Hamiltonianmatrix,Hij, are obtained by pooling atomic fe
ML-fitted eigenvalues of a test set plotted against the reference eigenvalu
the bending mode of the molecule using the MS-SchNet and SchNet +

10756 | Chem. Sci., 2021, 12, 10755–10764
2 Results
2.1 Scalar, vectorial, and matrix-valued deep learning
representations of molecular resonances

The deep convolutional neural network we propose is based on
the SchNet framework28,50 and its architecture is illustrated in
Fig. 1.

In order to learn n molecular resonances with the conven-
tional scalar SchNet model, n ML models, one for every elec-
tronic state or resonance i need to be trained. In the following,
we refer to this as a one-state (1S) model (panel a). Similarly,
a vector of nmolecular resonances can be represented using one
ML model with a single vectorial output, which we refer to as
multi-state (MS) model (panel b).51 This is identical to a previ-
ously proposed model in the context of photochemistry.35 The
pseudo-Hamiltonian model (SchNet + H), which we propose
here is shown in panel c and internally builds an ML basis that
satises the properties of a quantum mechanical Hamiltonian,
i.e., it is symmetric and has eigenvalues that correspond to
electron addition/removal energies. The dimension of the
effective Hamiltonian output layer scales with the number of
eigenvalues dened by the user. This is in contrast to a full
quantum mechanical Hamiltonian, which scales with the size
of the molecular system. This advantage makes it feasible to
learn a large set of molecular resonances in a dened energy
range for molecules of arbitrary size. The eigenvalues are
L model (1S-SchNet), (b) a multi-state ML model (MS-SchNet), and (c)
rediction accuracy for fitting 15 eigenvalues of the H2O molecule. The
atures, xa, from the last layer of the network L. (d) Scatter plots show the
es. (e) Orbital energies around the HOMO–LUMOgap are plotted along
H models.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a) Eigenvalues and (b) diagonal matrix elements of the pseudo-
Hamiltonian of the SchNet + H model trained on molecules of the
QM7-X data set52 along a trajectory of conformational change in 2-
methylpentane.
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obtained aer diagonalization of the ML pseudo-Hamiltonian.
Further details on the model training are given in the
Methods Section 4.

The prediction accuracy of the three models is rst analyzed
by training on the 15 lowest Kohn–Sham DFT eigenvalues of
1000 congurations of the H2O molecule generated by ab initio
molecular dynamics (for details on the training data, see ESI†)
as shown in panels d and e of Fig. 1. As can be seen from the
scatter plots in Fig. 1d and the prediction errors reported in
Table S1,† the set of 15 1S models shows an accurate prediction
of eigenvalues compared to the reference values with mean
absolute errors (MAEs) ranging from 0.6 meV up to 5.5 meV for
a given orbital energy. This is known and expected as each
model only has to cover a small energy range.28 A single deep
neural network with multi-variate outputs to predict all 15
eigenvalues shows substantial deviation between reference and
prediction across all energies, i.e., for low-lying semi-core as
well as for valence and virtual eigenstates (panel e) withMAEs of
up to 300 meV. The MS model is about twenty times less
accurate in terms of MAEs of the HOMO energy than the 1S
models (52 meV vs. 2 meV). This nding is in line with similar
models reported in the literature.17,18,22,26,27,35,39,42

The lack of prediction accuracy of the MS model can be
understood as the model has to cover a large range of energies
while having to capture the dependence of each eigenvalue as
a function of input. In contrast, our proposed model, SchNet +
H, which learns eigenvalues indirectly via the pseudo Hamil-
tonian matrix, faithfully reproduces orbital energies across the
whole energy range. The maximum MAE is 67 meV and the
HOMO orbital energy can be predicted with 26 meV accuracy.
Analysis of the learning behaviour shows that the prediction
error decreases faster with the number of data points for the
SchNet + H model compared to the MS model (see ESI Fig. S1†).
In Fig. 1e, the predicted and reference eigenvalue energies of
frontier orbitals around the HOMO energy are plotted as
a function of the bending angle in H2O. While all models
provide a qualitatively correct description of the smooth
dependence, the MSmodel shows larger deviations with respect
to the reference values compared to the SchNet + H model.
2.2 Predicting molecular resonances across chemical space

One might be able to attribute the improved performance of the
SchNet + H model compared to MS-SchNet simply to the
increased size of the output layer which provides more exi-
bility. We note that bothMS-SchNet and SchNet + H have almost
the same number of parameters and even a further increase of
the number of nodes and layers in the MS-SchNet model does
not yield a better prediction (see ESI† for more details). Instead,
we attribute the improved accuracy of SchNet + H to the fact that
the matrix elements of the pseudo-Hamiltonian are much
smoother functions in chemical space than the molecular
resonances on which the model is trained. By decoupling the
algebraic diagonalization that gives rise to avoided crossings
and non-differential behaviour of molecular resonances from
the ML model, we train an effective representation with
smoother coordinate dependence. This can be seen in Fig. 2
© 2021 The Author(s). Published by the Royal Society of Chemistry
where the orbital energies and diagonal matrix elements pre-
dicted by the SchNet + H model are shown along a reaction
coordinate of 2-methylpentane. The structures are part of the
rst subset of the QM7-X data set52 on which the SchNet + H
model has been trained. The QM7-X data set is an extension of
QM7 (ref. 53) that contains 4.2 M equilibrium and non-
equilibrium structures of a large number of molecules across
chemical compound space. The quantum machine data sets54

are oen used as a benchmark in ML studies,28,39,55–60 which we
have also done here (plots reporting model accuracy are given in
ESI Fig. S3c†). The diagonal elements of the internally formed
ML basis shown in panel b vary more continuously with
molecular composition than the orbital energies shown in
panel a. The diagonal elements show numerous crossings along
the coordinate, which is reminiscent of the behaviour of quasi-
diabatic representations oen used to represent multiple elec-
tronic states in computational photochemistry.61,62 The smooth
functional form is found for different elements of the pseudo-
Hamiltonian matrix and is not only true for the diagonal
elements. This nding also holds for variation across chemical
composition space. In ESI Fig. S3,† we show the behaviour of
eigenvalues and Hamiltonian matrix elements predicted by the
ML model along a coordinate of molecules with increasing
number of atoms. The smooth functional behaviour of Hamil-
tonian matrix elements is also discernible in this case. It can be
seen that thematrix elements are randomly distributed in terms
Chem. Sci., 2021, 12, 10755–10764 | 10757
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of value and position in the matrix with slightly more weight on
diagonal elements for larger molecules. It is noticeable that the
model makes effective use of all matrix elements.

To further validate the accuracy of the model, we train it to
represent 12 Kohn–Sham eigenvalues of ethanol42,54 along
a molecular dynamics trajectory. Scatter plots are shown in ESI
Fig. S2† and errors on a hold-out test set are reported in the ESI
Table S2† along with other models reported in the literature for
comparison. By comparing broadly across literature, we nd
that SchNet + H provides the same or better accuracy for the
prediction of multiple resonances (between 12 and 53 across
different training sets) compared to what most other models
achieve for a single molecular resonance (e.g. the
HOMO).17,18,26,35,39,63 The exception to this is the atomic-orbital-
based SchNOrb Hamiltonian model,42 which predicts an
average MAE for the same 12 eigenvalues of about 0.02 eV.
However, we note that SchNOrb is a much larger and more
exible model, which is trained on eigenvalues and Hamilto-
nian matrices to predict all molecular eigenvalues (with a total
averaged MAE of 0.48 eV). SchNOrb in its current form can only
predict eigenvalues as a function of atomic positions for a xed
molecular composition.

Encouraged by the promising performance of SchNet + H, we
have trained a transferable model of molecular electronic states
based on the OE62 data base.66 This data set is especially
challenging as it features greater elemental diversity and more
Fig. 3 Validation of the SchNet + Hmodel to predict PBE0 eigenvalues o
eigenvalues to G0W0@PBE0 accuracy or to PBE0 + implicit water solvat
Histograms of orbital eigenvalue (quasiparticle) energies for PBE0 in imp
set. A Gaussian envelope with 0.5 eV width is placed over each peak
eigenvalues of (c) the molecule with most eigenvalues within the modelle
set are shown using a Pseudo-Voigt lineshape64,65 based on a 30% Loren

10758 | Chem. Sci., 2021, 12, 10755–10764
heteroatoms and functional groups than there are in the QM9
or QM7-X data bases.26,66 The 62k molecules in OE62 are
selected from known molecular crystal structures in the Cam-
bridge Structural Database.67 For each equilibrium structure,
the data set reports Kohn–Sham orbital eigenvalues calculated
at the PBE + vdW and hybrid PBE (PBE0) functional level of DFT.
The SchNet + H model trained on the PBE0 orbital energies is
termed ML(PBE0). The predicted orbital energies against
reference values of a test set are shown in Fig. 3a in light blue.
The SchNet + H model is trained to capture up to 53 electronic
states between �10 eV up to and including the LUMO+1 state.
The model error for each data point in the whole training set
shows a very large deviation for some systems with particularly
high structural complexity. One such outlier is shown in panel
a, which contains an 8-membered nitrogen cage in the center
(see also Fig. S4 in the ESI†). We note that these data points do
not inuence the model accuracy and its ability to generalize
across chemical compound space, which we have tested by
removing outliers and retraining the model. Training errors are
further reported along with the number of training data in ESI
Table S2.† The model error (MAE of 0.13 eV) is quite convincing
with few prominent deviations at low orbital energies that are
associated with a small number of outlier molecules of partic-
ularly high structural complexity.

For a subset of 30 876 molecules, the OE62 set further
reports PBE0 (ref. 68) eigenvalues calculated with the Multipole
f the OE62 data base and the D-MLmodel that corrects the PBE0 fitted
ion. (a) Scatter plots of a test set show the accuracy of each model. (b)
licit water solvation and G0W0@PBE0 are shown for the GW5000 data
to depict the energy shifts between data sets and ML models. The
d energy range and with (d) the worst predicted eigenvalues in the test
tzian and 70% Gaussian ratio with 0.5 eV width.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Expansion (MPE) implicit solvation method.69 For a further
subset of 5239 molecules in vacuum (termed GW5000), the data
set reports quasiparticle energies calculated at the many-body
perturbation theory in the G0W0@PBE0 approximation.70–72

With the exception of the HOMO, Kohn–Sham orbital energies
lack a physical meaning73 and important properties of opto-
electronic materials, such as donor and acceptor levels20,39 or
band gaps are oen incorrectly described.70 In order to obtain
charged excitations in molecules and materials, the GW
method13,71 can be used to correct artifacts that arise from
approximations in the exchange–correlation functional in DFT.
The computation of quasiparticle energies is computationally
unfeasible for the full OE62 data set and for much larger
molecular systems with potential relevance in organic elec-
tronics. The electronic resonances that include solvation effects
and correlation effects captured in the two data subsets should
principally deviate from the PBE0 energies of the full data set in
relatively systematic ways. We therefore apply a D-ML
approach20,74 to train ML models to capture the difference in
orbital energy and quasiparticle energy between PBE0 in
vacuum and in water and PBE0 and G0W0@PBE0, respectively.
Our D-ML approach is explained in more detail in the Methods
section. Briey, the SchNet + H model of the PBE0 eigenvalues
learns a baseline for the full 62k data set (50k training data
points), whereas the D-ML models learn the difference with
respect to this ML(PBE0) baseline from a much smaller training
data set (4k).

Test errors of orbital (quasiparticle) energies predicted by the
two D-ML models are also reported in Fig. 3a. We note that the
error distribution is narrower for the D-ML-corrected models
than for ML(PBE0). Fig. 3b shows that the ML(PBE0) and the
two D-ML models predict eigenenergies with high delity and
accurately represent the data sets with a MAE (RMSE) as low as 2
and 4 meV for PBE0(H2O) and G0W0@PBE0, respectively. On
closer inspection, we nd that the excitation spectrum of the
molecule in the test set with the most eigenvalues in the rep-
resented energy range shows quantitative agreement with the
reference spectrum and a MAE (RMSE) of 29 (52) meV in the
vicinity of the peaks (see Fig. 3c). The spectrum for the molecule
with the highest prediction error (Fig. 3d) shows noticeable
deviations only for the D-ML(G0W0@PBE0) model. Here the
model predicts a splitting of the HOMO levels and underesti-
mates the energy of the LUMO compared to the reference data
with a MAE of 0.51 meV and a RMSE of 0.94 meV on the spec-
trum in the vicinity of the peaks. We note that this molecule is
a rare case in the data base that contains more heteroatoms
than carbon atoms, which could be a reason for the increased
prediction errors.

The D-ML(G0W0@PBE0) is only trained on a subset of 4k
datapoints of the GW5000 data set as no quasiparticle energies
are available for the full 62k data points of the OE62 data set. By
applying the SchNet + H ML(PBE0) and D-ML(G0W0@PBE0)
models to predict the quasiparticle energies of the full OE62
data set, we can gauge the transferability of the models across
chemical space. We nd that the models predict the same
vertical shi of occupied and unoccupied states between PBE0
and G0W0@PBE0 levels of theory for the full OE62 data set that
© 2021 The Author(s). Published by the Royal Society of Chemistry
we have shown in Fig. 3b for the GW5000 set (see ESI Fig. S4b†).
In addition, the predictions show a linear correlation of the
Kohn–Sham HOMO and LUMO orbital energies with the cor-
responding quasiparticle energies (Fig. S4a†). This linear rela-
tion has previously been identied for HOMO energies of the
smaller GW5000 subset in ref. 66, which we can now extend for
all orbitals in the OE62 set. Not surprisingly, the application of
the D-ML(G0W0@PBE0) induces a downward shi of occupied
PBE0 energies and an upward shi in energy for unoccupied
orbitals to create electron removal and addition quasiparticle
energies. Hardly any shi can be found for the eigenenergies
obtained from the implicit solvation model indicating that
solvation has a minor impact on the molecular resonances.

The combined SchNet + H ML(PBE0) and D-
ML(G0W0@PBE0) models can predict (inverse) photoemission
spectra, ionization potentials and electron affinities of large and
complex organic molecules which are well out of reach for ab
initio calculations at this level of theory. Previous works have
predicted individual HOMO and LUMO quasiparticle energies
of the GW5000 (ref. 27) and GW100 (ref. 63 and 78) data sets.
Ourmodel is able to predict many quasiparticle resonances over
a wide energy range and is therefore able to simulate photo-
emission spectra.
2.3 Prediction of energy levels and photoemission spectra of
functional organic molecules

In the following, we report the ML-based prediction of the
photoemission spectra of a range of organic molecules which
are commonly used as acceptor and donor compounds in
organic electronics applications. To showcase the wide appli-
cability of our model, three different types of functional organic
molecules are selected: azenes, derivatives of azulenes, and
other polycyclic aromatic hydrocarbons. Azulenes are particu-
larly interesting as they exhibit unusually low HOMO–LUMO
gaps for molecules of such small conjugation length due to
their topological properties.79,80 Polycyclic aromatic hydrocar-
bons are oen considered for the design of new organic light-
emitting diode materials, eld-effect transistors or photovol-
taics.3,7,81 Their electronic properties make these molecules not
only relevant for optoelectronic applications, but also for other
research areas such as astrochemistry82 and atmospherical
chemistry.83

The excitation spectra are predicted with the ML model
trained on PBE0 orbital energies of the OE62 data set (denoted
as ML(PBE0)) and the D-ML model trained on the difference of
the ML(PBE0) model and the G0W0@PBE0 values of 4k data-
points of the GW5000 data set. The combination of bothmodels
is denoted as ML(G0W0@PBE0) in the following. All photo-
emission spectra shown in Fig. 4a–d and ESI Fig. S6–S8† are ML
predictions of molecules the model has not seen before. In
addition to the photoemission spectra, the LUMO energies are
plotted and the spectra obtained from Kohn–Sham eigenvalues
are shown to highlight the D-ML quasiparticle correction. The
spectra obtained with ML(G0W0@PBE0) are in excellent
agreement with experiment. Compared to spectra based on
Kohn–Sham orbital energies, they accurately reect the
Chem. Sci., 2021, 12, 10755–10764 | 10759
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Fig. 4 Experimental and ML predicted photoemission spectra along
with the LUMO (quasiparticle) orbital energies at the PBE0
(G0W0@PBE0) level for (a) perylene, (b) chrysene, (c) 1,3-dibenzoyla-
zulene, and (d) 1,3-dichloroazulene. A Pseudo-Voigt lineshape64,65

based on a 30% Lorentzian and 70% Gaussian ratio with 0.3 eV width
was used. (e) Electron affinities and ionization potentials of acene
molecules are plotted with increasing ring size. (1)Experimental
photoemission spectra have been extracted from ref. 75, (2) ref. 76, and
(13) ref. 77.
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positions and intensities of photoemission features. In addi-
tion, the model correctly predicts the spectral ngerprints of
similar molecules and accurately describes substituent effects.
For instance, the model accurately predicts the differences of
1,3-dibromoaculene and 1,3-dichloroaculene (see panel d and
ESI† for details). Even a highly complex molecule such as 1,3-
dibenzoylazulene with 48 atoms (see Fig. 4d), is predicted with
high accuracy with respect to the experimental spectrum.

In addition to the photoemission spectra, we predict the
electron affinities and ionization potentials of molecules of the
acene family. As can be seen in Fig. 4d, acenes are built from
linearly condensed benzene rings and are oen referred to as
“1d graphene strips”. Acenes are especially interesting as they
are relevant in electronic devices due to their narrow HOMO–
LUMO gaps that can result in generally high conductivity.2,77

The predicted ionization potentials and electron affinities t
well to experimental values although the HOMO–LUMO gaps
are slightly underestimated. This underestimation is not an
artifact of the ML model, but is a well known limitation of the
G0W0 method for acene molecules.77 Due to the instability of
hexacene (n ¼ 6), the experimental prediction of charged
10760 | Chem. Sci., 2021, 12, 10755–10764
excitations is challenging, hence no electron affinity value is
available to which the ML predictions can be compared.2 The
respective photoemission spectra are reported in ESI Fig. S8†
and are in qualitatively good agreement with experimental
spectra reported in literature.77

3 Conclusion

In this work, we have developed a machine learning model that
can be used to predict orbital energies of large and complex
molecules in various congurations duringmolecular dynamics
and orbital and quasiparticle energies across chemical
compound space in general. By using physical relations and
building an internal ML basis that exploits the fundamental
symmetries of a quantum chemical Hamiltonian, but does not
scale with system size, molecular resonances such as orbital
and quasiparticle energies can be predicted with high accuracy.
The developed model is accurate enough to be used in combi-
nation with aD-MLmodel trained on the difference between the
ML predicted orbital energies of DFT and quasiparticle energies
from many-body perturbation theory. This provides an
extremely data-efficient way to eliminate errors in spectral
signatures that arise from exchange–correlation approxima-
tions in Kohn–Sham DFT and to achieve close to experimental
accuracy in the prediction of photoemission spectra, ionization
potentials, and electron affinities. We evidence this by predict-
ing these quantities with high accuracy compared to experiment
for unseen azulene-like molecules, acenes, and polyaromatic
hydrocarbons that are oen targeted for the design of new
organic electronic materials.3 The model clearly has the ability
to distinguish between functional groups and predict trends as
a function of molecule size in conjugated systems. The results
demonstrate the transferability and scalability of the model.
While we have only shown the application of this model for
frontier orbital and quasiparticle energies, we are condent that
it will be similarly applicable to the prediction of core-levels and
X-ray photoemission signatures.6,41

The ability to efficiently predict molecular resonances at
high accuracy is key to enable large-scale computational
screening of novel acceptor and donor molecules to be used in
organic electronics and thin lm device applications.7,81,84 We
expect that the presented method will be very useful in this
context. It will likely be especially powerful in combination with
generative ML85,86 or reinforcement learning models87 that can
recommend new molecular structures with specic tailored
properties. In this way, a fully automated search algorithm for
new molecules with optimally tuned acceptor and donor levels
could be created.81,88,89

4 Methods

The underlyingMLmodel used in this work is SchNet.28,90 As the
network architecture of SchNet is explained in the original
references in details, we will only briey describe it here: SchNet
is a convolutional message-passing neural network that was
originally developed to model scalar valued properties and their
derivatives91 and has recently been extended to model multiple
© 2021 The Author(s). Published by the Royal Society of Chemistry
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energy levels and multi-state properties in the context of
molecular excited states. This model was previously termed
SchNarc and we call it MS-SchNet for consistency in this
work.35,92
4.1 SchNet + H

(MS-)SchNet combines a network that learns the molecular
representation in an end-to-end fashion with a network that
maps this tailored representation to the targeted outputs. The
rst part of the network, the input layer I in Fig. 1, takes atomic
positions, r1 to rNa, with Na being the number of atoms in
a system, and elemental charges, z1 to zNa, as an input. It
transforms this information into atomistic descriptors using
lter-generating networks and atom-wise layers to optimize the
representation. This representation enters into the network, L
in Fig. 1, which itself contains layers that learn atomistic
features xa. These features are sum-pooled and usually form
(excitation) energies. The SchNet + H model developed here is
an adaption of MS-SchNet, in which the architecture of the
network is altered such that the nal fully-connected layer
represents a symmetric matrix, HML (H in Fig. 1), that returns
a diagonal matrix of n eigenvalues 3ML

i aer diagonalization:

diag({3ML
i }) ¼ UTHMLU. (1)

As SchNet learns the molecular representation, the need for
extensive hyperparameter search is reduced. As illustrated in
Fig. 1, Hamiltonian elements for states i and j, Hij, are obtained
by sum-pooling of atomic features, xa. wija denotes the weights
that connect the last layer of the standard SchNet network to the
pseudo-Hamiltonian layer.

Hij ¼
XNa

a

wijaxa (2)

Diagonalization of the pseudo-Hamiltonian matrix is carried
out aer each pass trough the network and the eigenvalues
predicted by the ML model enter the loss function, L2:

L2 ¼ 1

N

Xn

i

�
3ML
i � 3refi

�
(3)

where 3refi indicate reference eigenvalues in the training data set.
Due to the fact that we backpropagate through the diagonal-
ization, the atom-wise features are connected and form a global
molecular representation of the orbital energies.

SchnNet + H models consistently provide better accuracy
thanMS-SchNetmodels. While the accuracy of direct training in
MS-SchNet can be improved by placing a Gaussian function on
top of the orbital energies in the loss function, this did not lead
to more accurate results than the SchNet + H model. Our goal
was to develop a model that predicts molecular resonances
across chemical space and does not scale with system size. We
therefore dene an energy range within which we represent all
orbital energies up to amaximum number of values that denes
the size of HML. The energy range that was tted for each data
set is reported in ESI Table S2.† A varying number of orbital
© 2021 The Author(s). Published by the Royal Society of Chemistry
energies are used for training with the maximum number of
eigenvalues being 53 for the OE62 and GW5000 training sets.66

Every molecule that contains fewer orbital energies than the
maximum amount of tted values can be predicted by using
a mask in the loss function that makes sure only relevant values
are included.

4.2 D-MS-SchNet

The GW5000 training set contains 5k data points and represents
a subset of the OE62 data set with G0W0@PBE0 quasiparticle
energies. Due to the complexity of the data set with molecules
up to 100s of atoms, 5k data points are not enough to train
a model directly on quasiparticle energies (MAEs of 0.3 eV). To
circumvent this problem, D-ML20 was applied. This approach
can be used to train the difference between a baseline method
and a higher accuracy method. In this case, we trained a model
on the difference between the orbital energies obtained from
DFT as predicted by the SchNet + H model, 3ML(DFT), and the
quasiparticle energies of G0W0@PBE0, 3QC(G0W0):

D3ML(G0W0 � DFT) ¼ 3ref(G0W0) � 3ML(DFT) (4)

For the D-ML model, a conventional MS model is sufficient
as the differences in DFT (predicted by the SchNet + H model)
and G0W0 vary less strongly as a function of input than the
actual targets.93,94 The architecture of the D-ML model is iden-
tical to panel (b) in Fig. 1. The D-ML model is trained separately
from the SchNet + H model and is not combined in an end-to-
end fashion. Nevertheless, the models depend on each other as
the SchNet + H models provides the baseline for the D-ML
model and predictions of both models need to be combined to
obtain reliable quasiparticle energies.

Although the accuracy of the D-models can be improved by
using DFT reference values as the baseline for D-models (MAE
of 0.02 eV are obtained with DFT baseline models compared to
MAEs of 0.16 eV with SchNet + H(PBE0) baseline models), the
ML predicted DFT values are chosen as a baseline to circumvent
the use of DFT reference calculations for new predictions alto-
gether. This provides an ML prediction that is independent of
electronic structure calculations and practical for large-scale
screening studies. The predicted G0W0@PBE0 values are ob-
tained by using the following equation:

3ML(G0W0) ¼ 3ML(DFT) + D3ML(G0W0 � DFT). (5)

For the prediction of G0W0@PBE0 values, we thus use two
ML models, one SchNet + H model trained on DFT orbital
energies and one MS-SchNet model trained on the difference
between quasiparticle and orbital energies. Further details on
model size, training and test set split, and model parameters
can be found in the ESI.† The chosen model parameters are
reported in ESI Table S3.†

4.3 Spectra predictions

The comparison to experimental photoemission spectra shown
in Fig. 4 and ESI Fig. S5–S7† is obtained by convolution of the
orbital energies to account for electronic lifetime broadening,
Chem. Sci., 2021, 12, 10755–10764 | 10761
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instrument response, and many-body effects, such as inelastic
losses. For the broadening we use a Pseudo-Voigt lineshape64,65

with 30% Lorentzian and 70% Gaussian and varying widths of
0.3–0.5 eV. The spectral shis of all eigenvalues of molecules
across chemical compound space given in Fig. 3 and ESI Fig. S4
and S7† are obtained by Gaussian convolution with a width of
0.5 eV and subsequent summation.
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