
  Chemical
  Science
rsc.li/chemical-science

Volume 12
Number 48
28 December 2021
Pages 15779–16124

ISSN 2041-6539

EDGE ARTICLE
Sangram Bagh et al. 
A single layer artifi cial neural network type architecture with 
molecular engineered bacteria for reversible and irreversible 
computing



Chemical
Science

EDGE ARTICLE

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
N

ov
em

be
r 

20
21

. D
ow

nl
oa

de
d 

on
 1

/2
4/

20
26

 2
:1

8:
46

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
A single layer art
Biophysics and Structural Genomics Division

Bhabha National Institute (HBNI), Block A/F

India. E-mail: sangram.bagh@saha.ac.in

† Electronic supplementary informa
10.1039/d1sc01505b

‡ These authors contributed equally to th

Cite this: Chem. Sci., 2021, 12, 15821

All publication charges for this article
have been paid for by the Royal Society
of Chemistry

Received 16th March 2021
Accepted 8th November 2021

DOI: 10.1039/d1sc01505b

rsc.li/chemical-science

© 2021 The Author(s). Published by
ificial neural network type
architecture with molecular engineered bacteria
for reversible and irreversible computing†

Kathakali Sarkar,‡ Deepro Bonnerjee,‡ Rajkamal Srivastava‡ and Sangram Bagh *

Here, we adapted the basic concept of artificial neural networks (ANNs) and experimentally demonstrate

a broadly applicable single layer ANN type architecture with molecular engineered bacteria to perform

complex irreversible computing like multiplexing, de-multiplexing, encoding, decoding, majority

functions, and reversible computing like Feynman and Fredkin gates. The encoder and majority functions

and reversible computing were experimentally implemented within living cells for the first time. We

created cellular devices, which worked as artificial neuro-synapses in bacteria, where input chemical

signals were linearly combined and processed through a non-linear activation function to produce

fluorescent protein outputs. To create such cellular devices, we established a set of rules by correlating

truth tables, mathematical equations of ANNs, and cellular device design, which unlike cellular

computing, does not require a circuit diagram and the equation directly correlates the design of the

cellular device. To our knowledge this is the first adaptation of ANN type architecture with engineered

cells. This work may have significance in establishing a new platform for cellular computing, reversible

computing and in transforming living cells as ANN-enabled hardware.
Introduction

An Articial Neural Network (ANN), partly inspired by the bio-
logical neurons in the brain, is a computing system where a set
of nodes, called articial neurons is connected with appropriate
mathematical equations within a network and is able to map
complex nonlinear systems.1 Though ANN computing has
mostly been performed through soware,1–3 hardware imple-
mentation of ANN through neuro-synapse type architectures4–7

has also been realized through various physical mechanisms in
inorganic material based chips,4–12 photonics,11 and spin-
tronics.12 ANN hardware has also been realized by exploiting
chemical reactions using a copper catalyzed autocatalytic azide–
alkyne cycloaddition13 and biochemical reactions using in vitro
DNA computation.14,15 Furthermore, this inspires adaptation of
the basic ANN type architecture with living cells to create
complex articial computing functions by engineering interac-
tions at the molecular level.

The advent of synthetic biology has allowed implementation
of engineering principles in the molecular and cellular biology
regime, where many genetically encoded cellular devices, also
, Saha Institute of Nuclear Physics, Homi

, Sector-I, Bidhannagar, Kolkata 700064,

tion (ESI) available. See DOI:

e work.

the Royal Society of Chemistry
called synthetic genetic circuits, have been created to carry out
various computational operations.16–18 Synthetic genetic circuits
perform logical operations by engineered transcriptional and
translational machinery. Such systemsmay have applications in
quantitative and mechanistic understanding of various natural
cellular phenomena from the bottom-up,19–21 programmed
therapeutics,22,23 biocomputation,24,25 and smart living mate-
rials.26 One of the major approaches in synthetic biology is
adapting electronic circuit principles to create complex
computing functions, where synthetic genetic logic gates27–30

were layered analogously to the electronic circuit design to
create integrated genetic logic circuits and devices.31–35 Elec-
tronic analogous devices have been created in bacterial and
mammalian cells. Some of the examples include basic logic
gates,27–30 half adders,31 counters,32 DeMux and Mux33 in
bacteria, single bit full adders34 and an analog to digital
converter35 in mammalian cells. These circuits were either
realized in a single cell27–29,32 or distributed among multiple
cells.30,33–35 Such system development remains difficult, is not
properly scalable and is not streamlined.18,30,36

Here we demonstrate a different computing system to create
complex computing functions in living cells by adapting the
basic concept of ANN. A feed forward ANN may approximate
a wide variety of functions.1 Thus, it may be possible to create
complex computing functions using an ANN type architecture
with engineered bacteria. In this study, we experimentally
created a broadly applicable single layer ANN type framework
using engineered cellular devices in living bacteria for
Chem. Sci., 2021, 12, 15821–15832 | 15821
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performing complex reversible and irreversible computation.
Here, the cellular devices inside bacteria work as articial
neuro-synapses and we herein refer to such devices as ‘bacto-
neuron’ (BNeu). The cellular devices linearly combine the
chemical inputs and transform them nonlinearly to a uores-
cent protein output. Here, we established a set of general rules
to map the complete ANN architecture and to derive unit bac-
toneurons directly from the functional truth table of a complex
computing function without using its electronic integrated
circuit design. Furthermore, we developed straightforward and
universal molecular design rules directly from the mathemat-
ical nature of the activation function, which connect the
molecular design of an individual cellular device and the sign of
weights in an activation function of a bactoneuron in a one-to-
one fashion.

We experimentally demonstrated that single-layer neural
network type architectures that stemmed from those bacto-
neurons were general, exible and perform complex irreversible
computation through a 2-to-4 decoder, a 4-to-2-priority encoder,
a majority function, a 1-to-2 de-multiplexer, and a 2-to-1
multiplexer and reversible logic mapping through Feynman
and Fredkin gates. To our knowledge, the encoder and majority
function have not been demonstrated and reversible computing
has never been explored in living biological systems.

The bactoneuron ANN approach consists of a set of new well-
dened rules to create a wide variety of complex computing
functions. The ANN type architectures with engineered bacteria
have several advantages over conventional integrated genetic
circuit design: (i) a single layer ANN architecture does not
require layering of logic gates, (ii) unlike the mathematical
modeling of gene circuits in the conventional method, which
requires various mathematical equations for various genetic
logic gates, the ANN framework required only a single type of
mathematical equation, (iii) the molecular design of the cellular
device can directly be obtained from the mathematical equation
of an activation function. Thus, ANN with bactoneurons may
serve as a new, complementary and streamlined platform for
creating reversible and irreversible computation with bacteria.
Results and discussion
Principles of mapping the functional truth table to the single
layer molecular engineered bacterial ANN

First, we hypothesized that an abstract ANN model can be
mapped into an engineered cellular model (Fig. 1a), where
engineered cellular devices inside bacterial cell work as articial
neuro-synapses (bactoneurons). The bactoneurons combined
the inputs in the form of environmental chemical inputs and
those inputs were processed by synthetic genetic circuits, which
work through engineered transcriptional regulation to execute
appropriate log-sigmoid activation functions (eqn (1)). We call
these synthetic genetic circuits ‘cellular devices’. Eqn (1) is
a conventional activation function for characterization of an
articial neuro-synapse in ANN1 with two inputs and can be
applied to a wide range of functional behaviors, based on its
sign and magnitudes of the weight and bias terms.
15822 | Chem. Sci., 2021, 12, 15821–15832
In this equation, each bactoneuron has two weight values of
varying signs and magnitude corresponding to its two chemical
inducer inputs (X1 and X2) and a bias with its value in accor-
dance with the functional response of the neuron. For a given
bactoneuron j,

Oj ¼ 1�
1þ e�ðX1wj1þX2wj2þbjÞ� (1)

where Oj is the output from neuron j, X1 and X2 represent two
input inducer concentrations, wj1 represents the weight of input
X1 for the neuron j, wj2 represents the weight of input X2 for the
neuron j, bj represents the bias for the neuron j.

Eqn (1) suggests that if wj1 is positive, output Oi would
increase with X1. In terms of cellular devices, it is similar to
a molecular activation (Fig. 1b). Similarly, a negative weight
would suggest a repression and ‘zero’ weight suggests the
insensitivity of the input with the output (Fig. 1b). This simple
correlation between the sign of a weight, wji within an activation
function of a ‘unit’ bactoneuron and molecular engineering
principles, guided the physical design of the cellular device.

Next, we devised a way to map a complex computing function
through a single layer ANN type architecture directly from its
functional truth table, without considering its hierarchical
electronic design principle (Fig. 1c). We built a set of rules to
derive bactoneurons from the functional truth table by dividing
the bigger truth tables into smaller ones and to connect them
with the bactoneuron design (Fig. 1c). We demonstrated this
process considering a random functional truth table (Fig. 1c).
First, we considered a single output within a functional truth
table and then looked at its relationship with all the input
combinations. We grouped those input combinations in the
form of smaller truth tables, in such a way that each input
corresponding to that particular output possessed a weight with
only one type of sign (+, � or 0) (step 1). Such individual bac-
toneurons in this step were named ‘functional bactoneurons’,
which in appropriate ANN combinations would give rise to the
actual function. Next, we ignored the weight(s) with ‘zero’
values, if any, from functional bactoneurons and mapped them
back with smaller truth tables (step 2). Furthermore, we looked
at the output of the smaller truth table from step 2. If the output
value 1 (true) appeared only once in the smaller truth tables, we
dened them as ‘unit bactoneurons.’ Otherwise, we kept
dividing the truth table (step 3) until the above condition
appeared. This way we identied the unit bactoneurons, which
is the smallest unit required to be constructed as a cellular
device. Once those unit bactoneurons are combined appropri-
ately, they would operate as functional bactoneurons. Thus,
when the unit bactoneurons were assembled according to the
ANN structure, the actual function was physically realized
(Fig. 1c).

Next, we chose a range of computing functions with varying
complexities (Fig. 2) and derived their functional bactoneurons
(Fig. 2) from their functional truth table following the principle
stated above (Fig. 1c). The chosen functions included 1-to-2
demultiplexer37 (Fig. 2a), 2-to-1 multiplexer37 (Fig. 2b),
majority functions38 (Fig. 2c), 2-to-4 decoder37 (Fig. 2d), and 4-to-
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Single layer artificial neural network (ANN) type architecture with engineered bacteria and schematic design rules of building complex
computing functions. (a) Schematic representation of an ideal single layer ANN with two weighted inputs (X1 and X2) and outputs (O1 and O2)
along with their corresponding weights (wi), the biases (bi) and summation function (yi). This abstract ANN is mapped with the proposed artificial
bacterial neurons (bactoneurons or BNeus). (b) Relationship between signs of weights in the activation function and molecular engineering
principles for a bactoneuron associated with an input. (c) Making of a bacteria-based single layer ANN type architecture from the truth table of
a given function.
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2 priority encoder37 (Fig. 2e). A de-multiplexer performs as an
output selector where it takes input from just one source and
the logical state(s) of selector line(s) direct(s) to select only one
among multiple output channels to process the signal and
interpret it. The multiplexer performs the complementary
function where the logical state(s) of selector line(s) directs
which input is to be received for generating an output. A
majority function suggests that in a ternary system if more than
50% of the inputs are true then the output is true, otherwise
© 2021 The Author(s). Published by the Royal Society of Chemistry
false. A N:2N decoder converts N bit binary-coded inputs into
2N coded outputs in a one-to-one mapping fashion and an
encoder encodes input signals to fewer bits and transforms
them into encoded outputs. The details of deriving functional
and unit bactoneurons from the truth tables of all those func-
tions without considering its integrated circuit design are
shown in Fig. 2 and ESI Fig. S1.† The specic activation function
equations for all functional bactoneurons are shown in Table
S1.†
Chem. Sci., 2021, 12, 15821–15832 | 15823

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1sc01505b


Fig. 2 Derivation of functional bactoneurons and abstraction of single layer ANN type architectures from functional truth tables of complex
computing functions. (a) 1-to-2 de-multiplexer, (b) 2-to-1 multiplexer, (c) 3-input majority function, (d) 2-to-4 decoder and (e) 4-to-2 priority
encoder.
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Design and construction of cellular devices and unit
bactoneurons

Next, we developed cellular devices to construct the unit bac-
toneurons (Table S1†) in our chassis organism, E. coli
DH5aZ1.39 The cellular devices are engineered molecular
networks incorporated in plasmid vectors, which are 25 nm
circular DNAs replicate inside the bacteria.40 In our design, the
abstract inputs (Xi) were replaced by extracellular chemical
inducers like isopropyl b-D-1 thiogalactopyranoside (IPTG),
anhydrotetracycline (aTc), N-acyl homoserine lactone (AHL),
and arabinose. The abstract outputs (Oi) were changed to uo-
rescent proteins like EGFP, mKO2, E2 Crimson, mTFP1, and
mVenus as appropriate. The device design of the unit bacto-
neurons were based on the molecular engineering principle we
stated in Fig. 1b.

We started with the construction and characterization of
unit bactoneuron BNeu 1 (Fig. 3a–d), where both the weights in
the activation function are positive with respect to the inputs (X1

and X2). In BNeu 1, two inducer chemicals IPTG and aTc were
used as the inputs X1 and X2 respectively while enhanced green
15824 | Chem. Sci., 2021, 12, 15821–15832
uorescence protein (EGFP) was used as the output O1. Previ-
ously, IPTG and aTc induced synthetic promoters PLlacO-1 and
PLtetO-1, respectively, in E. coli were shown demonstrating
nonlinear behavior between the inducer concentration and
reporter protein expression.39 Therefore, to design our hybrid
synthetic promoters for BNeu 1 we adapted the basic promoter
design of those promoters. The cellular device (Fig. 3a) for BNeu
1 consists of a synthetic hybrid promoter, which combines the
chemical signals aTc and IPTG and processes them through
a log-sigmoid function (eqn (1)) and according to the principle,
both aTc and IPTG should work as activators for the system.
TetR and LacI, two transcription factors, which are constitu-
tively and endogenously expressed in E. coli DH5aZ1, bind the
hybrid promoter thereby hindering it from expressing EGFP.39

Both IPTG and aTc bind with LacI and TetR, respectively, and
change their conformation such that they cannot bind to the
promoter anymore, and the promoter is free to recruit RNA
polymerase for EGFP expression.

To start with random weights and biases, as in any ANN
design,1we constructed and characterized an initial set (Set 1) of
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Design, experimental characterization, and weight and bias adjustments of cellular devices for unit bactoneurons BNeu 1, BNeu 2 and BNeu
6. (a) Neural architecture of the bactoneuron BNeu 1 where w1I and w1A are weights of inputs IPTG (IP: X1) and aTc (AT: X2), and b1 is the bias.
Activation function generates output EGFP (EG: O). Truth table and biological circuit design of the BNeu 1 activation function. PIAA1–11 are synthetic
promoters designed for BNeu 1 activation function and regulated by IPTG and aTc as these promoters contain binding cites for LacI and TetR
proteins. (b) Schematic representation of weight and bias adjustment of BNeu 1 through constructs IAA1–11. IAA1–11 were generated in sets by
changing the hybrid promoter designwith varied number and positions of the operating sites for both TetR and LacI and by simultaneously changing
the origin of replication (Ori) of the plasmids carrying those promoters. Promoter maps of PIAA1–11 are also shown. Positions of �10 and �35
hexamers, transcription start site, ribosome binding sites (RBS) and LacI & TetR binding sites are depicted in individual promoter maps. Weights and
bias associated with IPTG and aTc of the BNeu 1 were adjusted through a two-step modification of molecular interactions. Constructs corre-
sponding to the selected promoter from each set are shown in the magenta box. (c) Heatmaps showing percentage highest leakage (Lmax(%)),
percentage sum of leakage excluding the highest leakage (

P
L � Lmax(%)), modulus of weight associated with IPTG (jw1Ij) and modulus of weight

associated with aTc (jw1Aj) for each out of 12 constructs (constructs IAA1–11). Construct IAA7B (coloured in red) was selected as the best performer.
(d) Expression characterization, simulated behavior (3D plot), and experimental validation of unit bactoneuron BNeu 1 carrying construct IAA7B are
shown. All of these experimental data were collected after 10 h induction followed by resuspension and 6 h induction. (e) Neural architecture, truth
table and biological circuit design of the bactoneuron BNeu 2 activation function. (f) Weight and bias adjustment of BNeu 2 through constructs
INA1A-7C, which are a two-plasmid system. Here, we re-engineered the synthetic promoter of BNeu 1 and replaced the aTc gene-activation
function (+w) with aTc gene repression function (�w), such that in the presence of aTc, transcription from the promoter gets turned off. In this
promoter we introduced an operating site for l repressor CI proteins and the amount of CI was under the control of an aTc-inducible promoter.
Promoter maps, Ori, RBS, and its various combinations in constructs are shown. (g) Heat maps of weight, leakage and hence bias adjustment for
BNeu 2. (h) Characterization, simulation and validation of BNeu 2 (INA1A-7C). (i) Neural architecture, truth table and biological design of BNeu 6. (j)
Details of the constructs (ANI1A-4D) for weight and bias adjustment of BNeu 6 and (k) corresponding heat maps are also shown. Construct ANI2C
was chosen as the best performing construct. (l) Characterization, simulation and validation of BNeu 6 construct ANI2C.

© 2021 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2021, 12, 15821–15832 | 15825
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molecular constructs (IAA1-5) (Fig. 3b and Table S2†), contain-
ing synthetic promoters PIAA1–PIAA5 respectively (Table S3†). For
this, we measured the EGFP expression at various combinations
of ‘zero’ and ‘saturated’ concentration of IPTG and aTc
(Fig. S2a†) and performed dose responses (Fig. S2b†) of EGFP
expression as a function of IPTG/aTc, by varying the concen-
tration of one chemical, while keeping the other at saturated
concentration. The dose–response behaviors were tted to
a modied form of eqn (1) (eqn (2), ESI note 1†). The tting
parameters gave the values of weights for each input and biases
(Table S4†). This starting set (Set 1) showed high leakage and
lower weight values (Fig. 3c, S2a, S2b, Tables S4 and S5†).
Leakage is dened as the basal level expression of the reporter
uorescent proteins under the input conditions, where output
expression should be zero.

Higher values for w1I and w1A would signify a sharper tran-
sition from the OFF to ON state and more negative bias might
signify a reduced intercept in a dose–response curve, which
could get reected as less ‘leakage’, which was dened by the
basal EGFP expression.

Guided by the least leakage and reasonably high weight
values for both w1I and w1A, we chose to construct IAA4 where
the promoter PIAA4 served as a platform and adjusted the
weights and bias by tweaking the molecular design and further
creating new constructs (Fig. 3b and Tables S2 and S3†). We
iteratively performed this adjustment process several times
(Fig. 3c). Clearly, the weight ‘w’ of a bactoneuron was a strong
function of the types and degree of molecular interactions, as
evident from the fact that the weight of the initial bactoneuron
was adjusted to a new one in each iteration. We found w1I as the
limiting weight as this had a lower value than w1A (Fig. S2b and
Table S4†). In addition, we focused on the highest leakage value
(Lmax), and (

P
L � Lmax) of each construct, where

P
L is the total

leakage (Table S5†). Our goal was to reduce it. Constructs IAA4
and IAA5 from the rst set carried similar weights but IAA5
showed signicantly high

P
L� Lmax. Thus, IAA4 was chosen for

further adjustment. Fig. 3c shows the adjustment of values for
weights and leakage. The constructs for further adjustment in
each step are boxed. Now, the construct IAA7A (for BNeu 1) from
the second set of adjustment was taken for further weight
adjustment either by engineering the promoter or by altering
the relative numbers of the promoters per cell by changing the
copy number of the plasmids (Fig. 3b). Construct IAA7B (Table
S2†) had higher weight values and the least leakage with respect
to construct IAA7A (Fig. 3c, Tables S4 and S5†). Others (IAA8–11)
from the same iteration showed comparatively poor behavior.
Such scenarios could be compared with overshooting of weight
adjustment, as happens in the ANN.1 Thus, the cellular device
IAA7B was selected as the unit bactoneuron BNeu 1. We per-
formed a simulation and experimentally tested the behavior of
BNeu 1 by simultaneously changing the concentration of the
IPTG and aTc (Fig. 3d). The results show a close topological
match with the simulation (Fig. 3d).

In an ANN framework, bias may determine the intercept.1

The leakage in the bactoneuron determines the intercept in the
dose–response curves. A moderate correlation (R2 ¼ 0.76)
between the bias ‘b1’ and Lmax was found (Fig. S3a†) within the
15826 | Chem. Sci., 2021, 12, 15821–15832
experimental range for BNeu 1 construct IAA7B. However, in
this case, adjustments of weight values were linked to that of the
bias during iteration and it was difficult to distinguish the exact
molecular reasoning. We performed a simulation by varying the
bias but keeping the weights constant and it suggested that
‘bias’ manifested as leakage in BNeu 1 (Fig. S3b†). We per-
formed similar simulations (Fig. S3†) for all unit bactoneurons
(Table S1†) and the results suggested that the bias value in the
bactoneuron indicated the leakage from the cellular devices
within a parameter range.

We further illustrate the construction of two other bacto-
neurons namely BNeu 2 and BNeu 6, which showed positive
weight for one inducer and negative for the other (Fig. 3e–h and
i–l). The development of BNeu 1 indicated that Lmax could be the
rst parameter to look for during molecular engineering.
Therefore, for BNeu 2 and BNeu 6, we rst checked if the fold
change between the highest signal (output logic level “1”) and
the highest leakage was more than 8 times (Table S5†). If it was
so, we would proceed to adjust the weight values and linked-
biases for optimal behavior of the corresponding unit bacto-
neurons either by engineering the cis–trans element interaction
on the promoter, or by reducing the translation rate of CI via
RBS designing (Table S6†) or by modulating the relative number
of synthetic promoters per cell through modication of the
plasmid copy number. We followed this processing pipeline to
characterize, t and adjust the weights and biases in iterations
to get the unit bactoneurons BNeu 2 and BNeu 6 (Fig. 3e–h and
i–l), executed by constructs INA7A and ANI2C respectively
(Table S2†). The gene expression characterizations, dose–
response and tting for all constructs for BNeu 2 and BNeu 6 are
shown in Fig. S2c, d and S2e, f† respectively. The design, gene
expression characterizations, dose–response, tting, simula-
tion, and experimental validation of all other unit bactoneurons
are shown in the Fig. S4.† In many cases the unit bactoneurons
were equivalent to the functional bactoneurons which did not
have any ‘0’ weight inducer input (insensitive to a certain
inducer input). Therefore, for such bactoneurons, we experi-
mentally validated the weight ‘zero’ characteristics with respect
to the appropriate inputs (Fig. S5†). The details of the
assumptions and process in designing and optimizing each of
the bactoneurons are given in Table S7.†
ANN created from molecular engineered bactoneurons
generate complex computing functions

For unit bactoneuron construction, we used EGFP as an output.
We changed the EGFP with mKO2, E2-Crimson, mTFP1, and
mVenus (Table S1†) as appropriate. Next, the unit bactoneurons
were mixed, cocultured and exposed to various combinations of
input chemicals following relevant ANN designs (Fig. 2). The
experimental results are shown in Fig. 4 and S6† for the 1-to-2
de-multiplexer (Fig. 4a and b and S6a†), 2-to-4 multiplexer
(Fig. 4c, d and S6b†), 3-input majority function (Fig. 4e, f and
S6c†), 2-to-4 decoder (Fig. 4g, h and S6d†), and 4-to-2 priority
encoder (Fig. 4i, j and S6e†). The results showed the expected
truth table behavior (Fig. 4).
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Experimental demonstration of complex computations with single layer ANN type architectures with molecular engineered bacto-
neurons. Truth tables of the (a) 1-to-2 de-multiplexer, (c) 2 to-1 multiplexer, (e) 3-input majority function, (g) 2-to-4 decoder and (i) 4-to-2
priority encoder are shown. Inputs and outputs are written as Xi (i ¼ 1 to n) andOi (i ¼ 1 to n) respectively. Experimental behavior of the bacteria-
based single layer ANN type architectures corresponding to the (b) 1-to-2 de multiplexer, (d) 2-to-1 multiplexer, (f) 3-input majority function, (h)
2-to-4 decoder and (j) 4-to-2 priority encoder, studied with a fluorescence microscope. Unit bactoneurons of a function were cultured in
a mixed population and treated with all possible combinations of inputs. The resultant expressions of fluorescent proteins are represented by
separate output channels.

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
N

ov
em

be
r 

20
21

. D
ow

nl
oa

de
d 

on
 1

/2
4/

20
26

 2
:1

8:
46

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Mapping logical reversibility with molecular engineered
bactoneurons: Feynman and Fredkin gates

Reversible computing is the heart of quantum computing41 and it
can map the previous state of the computation from the current
state in a one-to-one basis.41,42 This is called logical reversibility,
which was demonstrated by implementing logically reversible
Fredkin and Toffoli gates through in vitro DNA computation.43

However, no logically reversible gate has been implemented in
living cells. Although the thermodynamic reversibility of reversible
computing, which gives the lowest energy cost in computation, is
not possible in living systems, the potential of logical reversibility
in biological systems is yet to be explored. We showed that the
ANN with bactoneurons had the exibility to create reversible
computing and we demonstrated the universal reversible Feyn-
man gate (Fig. 5a and b and S1f, S6f†) and Fredkin gate (Fig. 5c
and d and S1g, S6g†), which may create any linear reversible logic
gate. First we derived the functional and unit bactoneurons for
© 2021 The Author(s). Published by the Royal Society of Chemistry
Feynman (Fig. 5a and S1f, Table S1†) and Fredkin gates (Fig. 5c
and S1g, Table S1†). The Feynman gate was represented by 3 unit
bactoneurons (BNeu2, BNeu6, BNeu8), which we already devel-
oped. The ANN created from the corresponding functional bac-
toneurons (FBNeus 16–18) of these unit bactoneurons (Fig. 5a)
showed a successful Feynman gate (Fig. 5b). The Fredkin gate was
represented by 5 unit bactoneurons (BNeu 3, 4, 7, 9, 10), where
BNeu 3, 4, and 7 were already developed, and BNeu 9 and BNeu 10
were created (Fig. S4p–u†). The ‘zero’weights of the bactoneurons,
where appropriate, are validated in Fig. S5.† The ANN, created
from the corresponding functional bactoneurons (FBNeus 19–23)
(Fig. 5c), showed a successful Fredkin gate (Fig. 5d).
Discussion

Neurons are conventionally viewed as being the ultimate bio-
logical hardware, and these structures naturally form neural
Chem. Sci., 2021, 12, 15821–15832 | 15827
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Fig. 5 ANN architecture and experimental demonstration of reversible Feynman and Fredkin gates with molecular engineered bactoneurons.
Derivation of functional bactoneurons from truth tables for (a) Feynman gate and (c) Fredkin gate. Experimental behavior of (b) Feynman gate and
(d) Fredkin gate.
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networks to perform extremely complex computational func-
tions. Bacteria are not equipped to perform such complex tasks.
Furthermore, in comparison to the millisecond speed of
response of a biological neuronal network44 or nanosecond
response time of ANN hardware,45 the transcriptional regula-
tions in bacteria take tens of minutes to hours. However,
bacteria are micron-size objects, which replicate fast and
perform biological work by taking food from the environment,
without the need for a battery. If a set of bacteria is programmed
15828 | Chem. Sci., 2021, 12, 15821–15832
to perform complex computing tasks, they could be attractive
chassis for creating microbiorobots, biohybrid-robots and
cellular computers.25,46,47 The irreversible computing functions
we developed (demultiplexer, multiplexer, decoder, encoder,
majority function) were the major components in telecommu-
nications, networking, and data transfer systems. Furthermore,
the logical reversibility we demonstrated was a new class of
computing functions created through biological cells. The
ultimate goal of our work is to create a platform technology for
© 2021 The Author(s). Published by the Royal Society of Chemistry
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performing complex computing with a consortium of bacteria
with a far-fetched dream towards bacterial machine intelli-
gence. We believe the ANN type architecture with bacteria might
help to achieve such a goal.

The gene regulation in bacteria is generally non-linear. The
transcription factors are bound to the various operating sites of
a promoter in dimer or multimer forms to regulate the tran-
scription. A small molecule inducer or inhibitor binds to those
transcription factors to activate or inhibit the transcription
process. This results in a non-linear relationship between the
inducer concentration and the protein produced from tran-
scription and translation.48,49 However, proper thresholding is
important to create a specic activation function with appro-
priate parameters. For thresholding and optimizing log sigmoid
behavior in bactoneurons, we changed the numbers and rela-
tive positions of various promoter operator sites in our synthetic
promoters, relative molecular amounts of transcription factors
and promoter copy numbers through different plasmid copy
numbers or altering the strength of ribosome binding by
changing the nucleic acid sequence of the ribosome binding
sites (RBS) in the promoter. This allowed change in both weight
and bias parameters in the individual log sigmoid activation
functions of the bactoneuron.

In order to use bactoneuron networks as a streamlined
microbial computing platform, the bactoneuron must work
robustly, stably and reproducibly within a given network. All the
basic bactoneurons we created activated or interacted with
several chemicals (with a non-zero weight value). However,
within a network it experienced more chemicals (with zero
weight value). We observed that the behavior of any specic
bactoneuron did not change in various chemical environments
(Fig. S5†). Second, the bactoneurons were modular and work in
proper coordination with other bactoneurons within a network.
Each bactoneuron carried a cellular device, which was physi-
cally separated by cell walls. As a result, their function did not
interfere with others and there were no cross-talks between two
cellular devices from different bactoneurons. Those were
evident from the fact that a unit bactoneuron was part of many
networks and they worked in proper coordination with other
bactoneurons in various networks. For example, the unit bac-
toneuron BNeu 2 worked appropriately as a part of the demul-
tiplexer, multiplexer, decoder, encoder, and Feynman gate
(Fig. S1†). Similarly, BNeu 1 was part of the demultiplexer,
decoder, and majority function (Fig. S1†). Those unit bacto-
neurons performed the coordinated tasks properly at least for
16 hours. However, the experiments were not done beyond 16
hours. In that context the stability of our circuits is maintained
for at least 16 hours under induced conditions for all the bac-
toneurons (excluding the overnight plate and overnight unin-
duced liquid media culture). This timing was in the range of
other genetic circuits27,28,30–32,36 developed in plasmids and
propagated in bacteria. Furthermore, this stability is repro-
ducible. We have performed several independent experiments
(Table S8†) for optimized single unit bactoneurons individually
as well as in a mixed population. Each of the bactoneuron was
tested independently for fold change characterization, dose
response behavior, validation experiments for simulation and
© 2021 The Author(s). Published by the Royal Society of Chemistry
within various mixed cultures for the full function character-
ization. The details of culture conditions, seeding, propagation,
and number of experiments for each bactoneuron are tabulated
in Table S8.†However, as the genome encoded synthetic genetic
circuits are more stable than the plasmid encoded circuits,50 for
long term functional stability of the bacteria-based ANN plat-
form, the cellular device should be encoded in the bacterial
genome.

One of the limitations of our study was that it did not explore
the variation in the results due to probable variation in the
growth rate of various sub-populations during cell multiplica-
tion51 and variation generated from the undened LB media
from experiment to experiment. It was interesting to note that
with those plausible sources of variation the bactoneurons work
reproducibly and stably within the experimental limit. However,
studying such variation in the case of bactoneuron ANN would
be an important future study. Furthermore, the dynamics of the
bactoneuron would be an important property,52 which we did
not explore in this study and it could be an important addition
for near future study.

One of the advantages of creating biocomputing functions
with bactoneuron ANNs, as we discussed earlier, was that it did
not require layering of logic gates. Thus, we created a multi-
plexer and an encoder with a single layer bactoneuron ANN,
though both of them consisted of at least three layers of logic
gates in their simplest electronic design.

Increasing another hidden layer of articial neurons may
help to approximate a more complex function appropriately.1

Our near future goal is to increase a layer in our bactoneuron
architectures by replacing our uorescent reporter proteins
with quorum-sensing genes, which produce diffusive quorum-
sensing molecules and secrete to activate another bacto-
neuron at a distance.30

Conclusions

In summary, we showed that the basic concept of ANN could be
adapted in living bacteria with the help of cellular devices. The
ANN type architecture with molecular engineered bacteria
works as a exible and general framework in its design and
architecture for performing complex bio-computation, both
conventional and reversible. Unlike the conventional in vivo
synthetic genetic computing,31,53 which followed the hierar-
chical logic circuit approach,16,54 we showed that the ANN type
framework can adapt a new design path to create complex
computing functions like encoder, majority function, Mux,
Demux, Feynman gate and Fredkin gate, where the encoder,
majority function and reversible gates were demonstrated for
the rst time in living cells. Reversible computing is a new class
of computing for biological cells and our work might pave the
way in that direction. In ANNs, any function can be designed
and simulated just by adjusting the weights and bias values of
a single mathematical equation and we established a direct
relationship between signs of the weights and nature of the
interaction in the cellular devices. Thus, our approach estab-
lished a new streamlined design and construction platform
complementary to the conventional bio-circuit design55 and
Chem. Sci., 2021, 12, 15821–15832 | 15829
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may have implications in complex reversible and irreversible
biocomputing, bacteria-based ANN hardware, and synthetic
biology.

Materials and methods
Promoters and genes, plasmids, RBSs & primers

The genetic devices were made according to the designs. The
bioparts (promoter, ribosome binding sites (RBS), gene and
transcription terminators) were arranged within appropriate
plasmids using standard molecular biology protocols. PCR
amplication was performed using KOD Hot Start DNA poly-
merase (Merck Millipore). All enzymes, ligase, and ladders were
from New England BioLabs. Plasmid isolation, gel extraction,
and PCR purication kits were from QIAGEN. The translation
initiation rate for EGFP and CI under the control of the
promoter PAAH and PLtetO-1/PLlacO-1, respectively, was calculated
and weak RBSs (RBSs RH and RC1-3) were designed using RBS
Calculator v2.0,56 considering RBS R (BBa_B0034)57 along with
linker GGTACC (KpnI site) as the degenerate RBS sequence and
E. coli-MG1655 as the organism. All promoter sequences, RBS
sequences, primers, and plasmids are shown in ESI Tables S3
and S9.† All primers, oligos and gene products were obtained
from IDT and Invitrogen. All cloned genes, promoters, and RBSs
in plasmid constructs were sequence veried by Eurons
Genomics India Pvt. Ltd, Bangalore, India.

Bacterial cell culture for characterization

Chemically competent Escherichia coli DH5a strain was used for
cloning and DH5aZ1 strain was used for the experimental
characterization. Working concentrations of the antibiotics in
LB-Agar, Miller (Difco, Beckton Dickinson) plates as well as in
LB broth, Miller (Difco, Beckton Dickinson) were: 100 mg ml�1

for ampicillin (Himedia), 34 mg ml�1 for chloramphenicol
(Himedia) and 50 mg ml�1 for kanamycin (Sigma Aldrich).
DH5aZ1 cells were transformed with appropriate sequence
veried plasmid constructs. Well-isolated single colonies were
picked from LB agar-plates, inoculated to fresh LB-liquid
media, and grown overnight in the presence of antibiotics.
Next, the overnight culture was re-diluted 100 times in fresh LB
media with antibiotics and with or without inducers, as per the
design of the gene circuit, and grown at 37 �C and �250 rpm.
Engineered cells for weight and bias adjustment steps were
Unscaled normalized fluorescence ¼
�ðabsolute fluorescence value from experimental cell populationÞ

ðOD of experimental cell populationÞ
�

�
�ðabsolute fluorescence value from no plasmid cell populationÞ

ðOD of no plasmid cell populationÞ
�

grown for 6/12/16 hours (expression characterization and dose
response experiments) and cells with nal constructs were
grown for 10 hours with inducers, resuspended and grown for
another 6 hours. Such 10 + 6 hours growth was performed for
15830 | Chem. Sci., 2021, 12, 15821–15832
expression characterization, dose response experiments, vali-
dation experiments and for full ANN microscopy experiments
(Table S8†).
Dose–response experiments and validation experiments

All dose–response experiments were performed by varying one
inducer across 9 or more concentration points, while the other
inducer was kept constant (“0” state or “1” as the case may be).
Here, for the linear combinations of input signals, we converted
the concentration range of each input chemical from ‘0’ to ‘1’,
where 0 signies zero concentration and 1 signies the satu-
rating concentration of the chemical. Any concentration higher
than the saturation concentration was treated as 1. For the
validation experiments, the corresponding two inducers of the
relevant constructs were simultaneously varied across 10+
concentration points. For validation experiments, we used
different concentration points compared to the concentration
used in dose response. For intermediate experiments, during
weight and bias adjustments of the constructs, a single colony
was used. For the optimized constructs, all dose response and
fold characterization experiment data from minimum 3 inde-
pendent colonies were collected.
Measurement of uorescence and optical density,
normalization, and scaling

For uorescence and optical density (OD) measurements,
a Synergy HTX Multi-Mode reader (Biotek Instruments, USA)
was used. For this purpose, cells were diluted in PBS (pH 7.4) to
reach around OD600 as 0.8, loaded onto a 96-well multi-well
plate (black, Greiner Bio-One), and both EGFP uorescence
with appropriate gain and OD600 were measured. For EGFP
uorescence measurements, we used a 485/20 nm excitation
lter and 516/20 nm emission bandpass lter. At least 3 bio-
logical replicates were considered for each condition to collect
the uorescence and OD data. The raw uorescence values were
divided by the respective OD600 values and thus normalized to
the number of cells. Auto-uorescence was measured as average
normalized uorescence of the untransformed DH5aZ1 set (no
plasmid set) and subtracted from the normalized uorescence
value of the experimental set. The above normalization can be
mathematically represented as follows:
The values thus obtained were then scaled down between
0 and 1; considering the normalized uorescence value at the
induction point of maximum expected uorescence to be 1,
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Scaled normalized fluorescence ¼
� ðunscaled normalized fluorescence at any induction pointÞ
ðunscaled normalized fluorescence at induction point of maximum expected fluorescenceÞ

�
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Data analysis, tting, mathematical modeling and simulation

The ttings of the dose response curves were done using
appropriate equations (ESI Table S1†). However, all the equa-
tions could be brought down to a general form:

Oj ¼ 1

1þ e�ðwjnXnþbÞ (2)

where Oj is the output signal from the articial neuron j, Xn

corresponds to the magnitude of the varying input (n) to the
articial neuron j, wn corresponds to the weight of the nth input
to the articial neuron j, and b is given by:

b ¼ Xmwjm + bj (3)

where Xm corresponds to the logical state of the constant input
(m) to the articial neuron j (0 or 1), wm corresponds to the
weight of the mth input to the articial neuron j, and bj corre-
sponds to the bias of the articial neuron j.

The scaled output uorescence values obtained from the
dose–response experiments were plotted against the varying
inducer concentration and tted against eqn (2). All data anal-
ysis and tting were performed in OriginPro 2018 (OriginLab
Corporation, USA) and using a built-in Levenberg Marquardt
algorithm, a damped least squares (DLS) method. The param-
eter “wjn” of the tting function (eqn (2)) gives the “weight” of
the varying input in the summation function of the corre-
sponding neuron j. The b value obtained includes the bias plus
the product of the input logic state of the second input and its
weight as explained above. Upon similarly tting the dose–
response of the neuron to the second input, the weight “wj” and
“b” for input 2 is obtained. Solving eqn (2) and (3) for both the
inputs, “wjinput1”, “wjinput2” and “bj” of the complete summation
function of the corresponding neuron j were obtained. All
parameter values for all constructs are shown in ESI Table S4.†
The simulations were performed by generating matrices of
calculated, normalized output uorescence values against
simultaneously varying concentrations of the corresponding
two inputs across 65 � 65 or more points, following the
parameterized activation function. For single-input systems,
simulation for a given activation function was carried out across
19 varying input concentration points.
Microscopy

DH5aZ1 cells were transformed with the appropriate sequence-
veried plasmid construct(s). Following a 10 hour induction
followed by re-suspension and 6 hour induction step, cells were
washed thrice in PBS. Cell pellets were nally resuspended in
fresh PBS (pH 7.2–7.4) and this re-suspension was used to
prepare fresh slides. A Laser Scanning Microscope Zeiss LSM
710/ConfoCor 3 operating on ZEN 2008 soware was used for
© 2021 The Author(s). Published by the Royal Society of Chemistry
imaging the de-multiplexer, multiplexer, majority function,
decoder, encoder and Feynman gate. The cell suspension slides
were subjected to excitation by appropriate laser channels
(458 nm Ar Laser for mTFP1, 488 nm Ar Laser for EGFP, 514 nm
Ar Laser for mVenus, 543 nm He–Ne Laser for mKO2 and
633 nm He–Ne Laser for E2-Crimson) and uorescence emis-
sions were captured through suitable emission lters (BP484-
504 nm for mTFP1, BP500-520 nm for EGFP, BP521-541 nm for
mVenus, BP 561–591 nm for mKO2, and BP641-670 nm (2-to-4
decoder)/BP630-650 nm (1-to-2 de-multiplexer) for E2-
Crimson) with a 63� oil immersion objective and were detec-
ted through a T-PMT. The pin hole was completely open. For
reversible Fredkin gate imaging, a Nikon AIR Si confocal
microscope along with a resonant scanner and coherent CUBE
diode laser system was used. The mixed cell population, washed
and resuspended in PBS (pH 7.2–7.4), was added on the top of
a 1% molten agarose pad, which was placed upon a cleaned
glass slide. The sample eld was then covered with a clear cover
slip, placed under 60� water immersion and subjected to
excitation by laser channels (488 nm laser for EGFP, 561 nm for
td-Tomato and 640 nm for E2-Crimson). Three different emis-
sion lters (BP 525/50 nm for EGFP, BP 585/65 for td-Tomato
and BP 700/75 nm for E2-Crimson) were used for measuring
the uorescence. Differential interference contrast (DIC) images
were captured for all samples as well. Microscopic images were
processed through ImageJ soware for better visualization.
Data availability

Data are available within the article or in the ESI le.†
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