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mulations of mesoscale exciton
dynamics in molecular materials†

Leonel Varvelo, Jacob K. Lynd and Doran I. G. Bennett *

Excited state carriers, such as excitons, can diffuse on the 100 nm to micron length scale in molecular

materials but only delocalize over short length scales due to coupling between electronic and vibrational

degrees-of-freedom. Here, we leverage the locality of excitons to adaptively solve the hierarchy of pure

states equations (HOPS). We demonstrate that our adaptive HOPS (adHOPS) methodology provides

a formally exact and size-invariant (i.e., Oð1Þ) scaling algorithm for simulating mesoscale quantum

dynamics. Finally, we provide proof-of-principle calculations for exciton diffusion on linear chains

containing up to 1000 molecules.
Introduction

New molecular materials, particularly organic semiconductors,
offer remarkable and tunable functionality for photonic, opto-
electronic, and light harvesting applications. The photo-
physical properties of molecular materials arise from diffusion
of excited-state carriers (e.g., electronic excitations, called
‘excitons’) across the 10 nm to 1 mm length scale. These meso-
scale exciton dynamics are sensitive to both the molecular
properties of the material building blocks and structural
heterogeneities, which include everything from point defects to
grain boundaries. Traditional bulk spectroscopies provide only
indirect evidence for the essential role of structural heteroge-
neity in exciton transport. The recent development of spatially-
resolved non-linear spectroscopy provides a remarkable new
lens by which to study exciton dynamics in heterogeneous
materials.1,2 Interpreting spatially-resolved spectroscopic
signals, however, remains challenging due to the absence of
corresponding simulations.

Simulating exciton transport dynamics in heterogeneous
materials on the 10 nm to 1 mm length scale (i.e., the mesoscale)
remains an outstanding theoretical challenge. Organic semi-
conductors oen combine close intermolecular packing with
correspondingly large coupling between electronic states (V) on
adjacent molecules and large intramolecular electron-
vibrational coupling (l).3 Perturbative equations-of-motion,
such as Förster theory, can be convenient for simulating large
aggregates, but are not applicable when V and l are comparable
st University, PO Box 750314, Dallas, TX,
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in magnitude. Similarly, in the absence of a clear separation of
timescales between vibrational and electronic degrees-of-
freedom, Markovian equations-of-motion, such as Redeld
theory,4 struggle to capture the rich dynamics of excitation
transport. There are a variety of non-perturbative, non-
Markovian equations-of-motion, such as multi-layer multi-
conguration time-dependent Hartree (ML-MCTDH),5,6 time-
evolving density operator with orthogonal polynomials
(TEDOPA),7 hierarchically-coupled equations-of-motion
(HEOM),8 and quasi-adiabatic path integrals (QUAPI).9 All of
these techniques, however, share an exponential scaling of
computational complexity with the number of molecules. While
efficient and parallelized implementations of formally exact
methods have been developed – for example, distributed
memory HEOM10,11 – the exponential scaling severely limits
even high-performance simulations of molecular aggregates.

Recently, there have been a few notable developments
towards highly-scalable equations-of-motion for exciton
dynamics. Modular path integrals12,13 provide a dramatic
reduction in computational cost of QUAPI, but retain an overall
linear scaling with the number of molecules and are most effi-
cient when molecules exhibit only nearest-neighbor coupling.
Dissipation-assisted matrix product factorization (DAMPF)14

extends TEDOPA to efficiently describe large numbers of
vibrational degrees-of-freedom (>10) on each molecule, but it
maintains between a quadratic and cubic scaling with the
number of molecules. For both modular path integrals and
DAMPF, the residual scaling makes it challenging to apply these
methods to mesoscale calculations containing thousands to
millions of molecules. Indeed, any density matrix approach will
suffer from residual scaling with system size at long times due
to the spread of ensemble population density across molecules.

Stochastic simulations, which decompose the ensemble into
a collection of excited trajectories, can enable calculations on
arbitrarily large molecular aggregates, even at long time.
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Delocalized kinetic Monte Carlo15 and the kinetic Monte Carlo
version of generalized Förster theory16 are stochastic
approaches that calculate the rate of transport between clusters
of strongly interacting molecules and can be readily extended to
mesoscale calculations. Both of these methods, however, use
a perturbative approximation to partition state space and
calculate rates between adjacent spatial regions. The develop-
ment of a non-perturbative, non-Markovian approach for
mesoscale simulations would provide an important benchmark
for new equations-of-motion and could offer insight into
processes with debated mechanisms, such as charge separation
in organic photovoltaic materials.15,17–19

Here, we present a non-perturbative, non-Markovian, and
arbitrarily scalable stochastic method for simulating exciton
transport. First, we introduce the Hamiltonian considered and
our base equation-of-motion, the hierarchy of pure states
(HOPS).20 Next, we discuss locality in HOPS calculations and
present an algorithm for constructing an adaptive basis. Finally,
we present proof-of-concept calculations using the adaptive
HOPS (adHOPS) equation-of-motion that demonstrate both its
accuracy and size-invariant (i.e., Oð1Þ) scaling for large molec-
ular aggregates.
Preliminaries
Hamiltonian

We divide the exciton Hamiltonian into three parts

ĤT ¼ ĤS5ÎB þ Ĥ int þ ÎS5ĤB (1)

where ĤS ¼
P
n
jniEnhnj þ

P
nsm

jniVn;mhmj describes the electronic

system and HB ¼P
n;q
ħuqn

�
â†qn âqn þ 1=2

�
represents the thermal

environment arising from molecular vibrations. The inuence
of coupling between the electronic system and vibrational ‘bath’ 
Ĥint ¼

P
n;q
kqnL̂nq̂n

!
can be described in terms of the system-

bath coupling operators ðL̂nÞ and the two-point correlation
functions

anðtÞ ¼ ħ
p

ðN
0

duJnðuÞðcothðħu=2kBTÞcosðutÞ � i sinðutÞÞ (2)

where T is the temperature and JnðuÞ ¼ p
P
qn

��kqn��2dðu� uqnÞ is

the spectral density. In the following, we assume that each
pigment has an independent thermal environment that drives
uctuations in excitation energy. In other words, we assume
that the system-bath coupling operator is a site-projection
operator

�
L̂n ¼ jnihnj�. We describe the thermal environment

of each pigment by a Drude–Lorentz spectral density

JnðuÞ ¼ 2ln
uðgn=ħÞ

u2 þ ðgn=ħÞ2
(3)

which, at high temperature (gn/kBT < 1), allows for a convenient
exponential decomposition of the correlation function

an(t) ¼ gne
�gnt/ħ (4)
© 2021 The Author(s). Published by the Royal Society of Chemistry
where gn ¼ 2lnkBT � ilngn. In the following we use ln ¼ gn ¼
50 cm�1, V¼ 25–250 cm�1 and T¼ 295 K, which are comparable
to the parameters used for many simulations of photosynthetic
pigment protein complexes and fall into the broad intermediate
regime where perturbative approximations break down.21
Hierarchy of pure states (HOPS)

The non-Markovian quantum state diffusion (NMQSD) equa-
tion22 decomposes the time-evolution of the reduced density
matrix for the system degrees-of-freedom into an ensemble
average over stochastic pure states indexed by a complex
stochastic processes zn,t

rS ¼ E
���jðt; zn;tÞ��jðt; zn;tÞ��� (5)

where E½zn;t� ¼ 0; E½zn;tzn;s� ¼ 0 and; E½z*n;tzn;s� ¼ anðt� sÞ. The
equation-of-motion for the independent stochastic trajectories
is

ħvt
��jðt; zn;tÞ� ¼

 
�iĤS þ

X
n

L̂nz
*
n;t

!��jðt; zn;tÞ�

�
X
n

L̂
†

n

ðt
0

dsanðt� sÞ d
��jðt; zn;tÞ�
dz*n;s

: (6)

The NMQSD equation is formally exact and is equivalent to
solving Feynman path integrals with the Feynman–Vernon
inuence functional,22 but the functional derivative in the last
term makes direct solution of the stochastic trajectories
impractical except in special cases.

The hierarchy of pure states (HOPS) equations provide
a numerically tractable version of NMQSD by rewriting the
functional derivative as a set of coupled differential equations.20

Briey, the sum of integrals over a functional derivative in the
nal term of the NMQSD equation is dened as a sum of rst
order auxiliary wave functions:

���j ~enð Þðt; zn;tÞ
E
¼
ðt
0

dsaðt� sÞ d
��jðt; zn;tÞ�
dz*n;s

(7)

giving

ħvt
���jð~0Þðt; zn;tÞE ¼

 
�iĤS þ

X
n

L̂nz
*
n;t

!���jð~0Þðt; zn;tÞE

�
X
n

L̂
†

n

���j ~enð Þðt; zn;tÞ
E

(8)

where we have now introduced a vector label into the equations
to index the different components. The physical wave function

is given by
���j ~0ð Þðt; zn;tÞ

E
. The rst order auxiliaries are indexed

by unit vectors with non-zero index at their nth element ð~enÞ.
When the correlation function an(t) is written as an exponential
(or sum of exponentials), the time-evolution of the rst order
auxiliary wave functions

��jð~enÞðt; zn;tÞ
�
introduces the second-

order auxiliary wave functions ð~en þ~emÞ, and so on, ad inn-
itum. The resulting general expression, called the ‘linear HOPS
equation,’ is
Chem. Sci., 2021, 12, 9704–9711 | 9705
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ħvt
���jð~kÞðt; zn;tÞE ¼

 
�iĤS � ~k$g

/ þ
X
n

L̂nz
*
t;n

!���jð~kÞðt; zn;tÞE

þ
X
n

~k½n�gnL̂n

���j ~k�~enð Þðt; zn;tÞ
E

�
X
n

L̂
†

n

���j ~kþ~enð Þðt; zn;tÞ
E

(9)

where we have introduced a general vector~k to index auxiliary
wave functions,~k½n� is the nth element of the index vector, g/ is
the vector of correlation function exponents (gn), and terms
involving any auxiliary wave function with an indexing vector
containing a negative element are always zero. The linear HOPS
equation maintains the normalization of the system reduced
density matrix within the ensemble average, but the physical
wave function is not normalized in individual trajectories.

Instead, for long trajectories, most realizations have
������jð~0Þ

������/0

and an innitesimal subset have physical wave functions with
diverging norms.20 As a result, linear HOPS calculations exhibit
slow convergence with respect to the size of the ensemble.

We can improve convergence with ensemble size by using
the non-linear HOPS equation, which describes the time-
evolution of a normalizable stochastic wave function. We
rewrite the reduced system density matrix (eqn (5)) in terms of
a normalized wave function and the norm contribution

rS ¼ E
�kjðt; zn;tÞk2��~j ðt; zn;tÞ

��
~jðt; zn;tÞ

���
¼ ~E

���~jðt; zn;tÞ��~jðt; zn;tÞ��� (10)

where
��~jðt; zn;tÞ� ¼ ��jðt; zn;tÞ�=kjðt; zn;tÞk. The norm in the rst

expression can be interpreted as a weighting factor for a new
ensemble average. Using a Girsanov transform, we can solve for
the corresponding equation-of-motion for jj(t;zn,t)i,23 which
gives the non-linear HOPS equation20

ħvt
���jð~kÞðt; zn;tÞE¼

 
�iĤS�~k$g

/ þ
X
n

L̂n

	
z*n;t þ xn;t


!���jð~kÞðt; zn;tÞE

þ
X
n

~k½n�gnL̂n

���j ~k�~enð Þðt; zn;tÞ
E

�
X
n

�
L̂

†

n �
D
L̂

†

n

E
t

����j ~kþ~enð Þðt; zn;tÞ
E

(11)

where

xt;n ¼
1

ħ

ðt
0

dsa*
nðt� sÞ

D
L

†

n

E
s

(12)

is a memory term that causes a dri in the effective noise, and

D
L̂

†

n

E
t
¼

D
jð~0Þðt; zn;tÞ

���L̂†

n

���jð~0Þðt; zn;tÞED
jð~0Þðt; zn;tÞ

���jð~0Þðt; zn;tÞE : (13)

We note that the non-linear HOPS equation ensures that the
contribution of each wave function is normalized in the reduced
9706 | Chem. Sci., 2021, 12, 9704–9711
density matrix, but it time-evolves the non-normalized physical
wave function. In the following, we will drop the explicit zn,t
dependence from the wave function for simplicity	���j ~kð Þðt; zn;tÞ

E
/
���jt

~kð ÞE
.
The HOPS equations are a numerically convenient, formally

exact expression for exciton dynamics in small molecular aggre-
gates. Moreover, the calculations are ‘embarrassingly’ (also called
‘perfectly’) parallel24 due to the independence of individual trajec-
tories, and, as a result, HOPS ensembles can be computed using
thousands of CPUs simultaneously without loss of efficiency. The
application of HOPS to large molecular aggregates, however, is
limited by the scaling of the HOPS basis with the number of
molecules. It is convenient to think of HOPS calculations as
depending on two basis sets: the state basis ðSÞ and the auxiliary
basis ðAÞ. The complete state basis is a nite set of vectors that
span the Hilbert space of the system, while the complete auxiliary
basis is composed of an innite set of auxiliary wave functions
indexed by vectors ~k. To construct a nite auxiliary basis, the
innite hierarchymust be truncated. Here, we employ the common
triangular truncation condition which limits the auxiliary basis to
those wave functions with index vectors

�
~k
�
that have a sum of

elements less than a preselected bound kmax�

~k˛A :

P
i
k½i�# kmax

��
. If we assume one independent envi-

ronment per state, then the number of auxiliary wave functions

included in the triangular truncation scales as
�
Nstate þ kmax

kmax

�

which gives an overallO Nkmax
state

	 

scaling for large aggregates. While

convergence as a function of kmax is guaranteed, the requisite
number of auxiliary wave functions is oen prohibitive.
Short-time correction and Markovian modes

The Drude–Lorentz correlation function given in eqn (4) has
a discontinuity at t ¼ 0 arising from the symmetry condition

anðtÞ ¼ a*
nð�tÞ; (14)

and can be more completely written as25

adl,n(t) ¼ (Re[gn] + isgn(t)Im[gn])e
�gnjtj/ħ (15)

The discontinuity in the correlation function introduces
a numerically inconvenient innitely high-frequency compo-
nent to the stochastic noise trajectories zn,t.

We ameliorate this problem by redening the positive-time
correlation function in terms of two continuous exponential
functions a(t) ¼ a0,n(t) + amark,n(t) where

a0,n(t) ¼ gne
�gnjtj/ħ (16)

and

amark,n(t) ¼ �iIm[gn]e
�gmarkjtj/ħ. (17)

The denition of amark,n(t) ensures the imaginary component
of the total correlation is 0 when t ¼ 0, and it also provides for
a smooth transition back to the naive correlation function a0,n(t)
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Magnitude of the first three auxiliaries in a single-mode HOPS
calculation. (a) The magnitude of the auxiliaries calculated using the
non-linear HOPS equation (darker lines correspond to higher k values).
(b) The magnitude of the auxiliaries calculated using the non-linear
HOPS equation with the k-dependent prefactor. Parameters: l ¼ g ¼
50 cm�1, T ¼ 295 K, and kmax ¼ 10. No Markovian mode was included
in this calculation.
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on a nite timescale given by ħ/gmark. Except where otherwise
noted, gmark ¼ 500 cm�1 for all calculations presented in the
main text, because this was sufficiently fast to ensure the
Markovian timescale had no inuence on the calculated
dynamics.

Due to the extremely rapid timescale on which amark,n(t)
decays, this mode is Markovian, and high-lying contributions to
the hierarchy can be neglected. In the following, we will only
include the rst order terms associated with these Markovian
modes and neglect these terms in our discussion of the auxiliary
wave functions forming the hierarchy. This can be viewed as
a smoothing of the noise trajectories (zn,t) on timescales fast
compared to all other dynamics.

This problem can be avoided entirely by using a different
spectral density which more naturally accounts for the short-
time imaginary component of the correlation function: for
example, the recently reported alternative to the Drude–Lorentz
oscillator with improved low-temperature behavior.26

Adaptive HOPS (adHOPS)

Within the quantum state diffusion formalism, stochastic wave
functions localize in the presence of thermal environments.27–29

At a single time point, the pure state can be interpreted as
a system wave function conditioned on a measurement of all
the environmental degrees-of-freedom.30 The delocalization
extent of exciton wave functions within the ensemble of pure
states is suppressed by the dynamic localization induced by
coupling to the vibrational degrees-of-freedom.31,32 Previously,
Markovian quantum state diffusion calculations have leveraged
the locality of the exciton to reduce computational complexity
using both a moving basis27,33 and an adaptive basis.34 Both of
these approaches, however, require the conservation of proba-
bility, which is violated in the HOPS equations because ampli-
tude in the auxiliary wave functions can be created and
destroyed.

Here, we develop an adaptive solution to the HOPS equation-
of-motion that achieves size-invariant computational scaling
(i.e., Oð1Þ scaling) for calculations of large molecular aggre-
gates. We rst establish a normalized non-linear HOPS equa-
tion, which ensures that the magnitude of derivative terms does
not diverge with increasing depth of the hierarchy. We then
illustrate how locality appears within the hierarchy of auxiliary
wave functions, with a particular emphasis on the connection
between locality and the ux between neighboring auxiliary
wave functions. Finally, we present an adaptive algorithm for
the normalized non-linear HOPS equation that satises a user-
selected bound on the absolute derivative error.

Normalization of HOPS

To ensure that the magnitude of the derivative elements for
auxiliary wave functions have a consistent absolute scale across
the hierarchy, we: (1) enforce normalization of the physical wave
function in the time-evolution equation and (2) redene the
auxiliary wave function coefficients.

To enforce the normalization of the physical wave function,
we rewrite the non-linear HOPS equation in terms of
© 2021 The Author(s). Published by the Royal Society of Chemistry
a normalized physical wave function. Starting with eqn (11),
dividing all wave functions by the norm of the physical wave
function, taking the derivative, and expanding terms gives

ħvt
���jt

ð~kÞ E ¼
 
�iĤS � ~k$g

/ � Gt þ
X
n

L̂n

	
z*n;t þ xn;t


!���jt
ð~kÞE

þ
X
n

~k½n�gnL̂n

���jt

~k�~enð ÞE�
X
n

�
L̂

†

n �
D
L̂

†

n

E
t

����jt

~kþ~enð ÞE;
(18)

where

Gt ¼
X
n

D
L̂n

E
t
Re
h
z*n;t þ xn;t

i
�
X
n

Re

�D
jt
ð~0Þ���L̂†

n

���jt
~enð Þ
E�

þ
X
n

D
L̂

†

n

E
t
Re

�D
jt
ð~0Þ���jt

~enð Þ
E�

(19)

is the normalization correction factor.
In the non-linear HOPS equation, the magnitude of the

auxiliary wave functions grows with increasing auxiliary index.
The basic HOPS terminator for a hierarchy with a single thermal
environment ���jt

ðkÞ
E
¼ g

g
L̂
���jt

ðk�1Þ
E

(20)

can be derived from the integral form of the HOPS equation by
considering the limit where the auxiliary damping is much
faster than any system timescale (kg/ħ [ usys).20 When this
terminator is used for the rst-order auxiliaries the resulting
HOPS equation is equivalent to the standard Markovian
quantum state diffusion equation. Fig. 1a shows the norm of
the rst three auxiliary wave functions for a single trajectory
with a hierarchy consisting of one Drude–Lorentz oscillator.

The magnitude
������jt

ðkÞ
������ increases with increasing auxiliary index

which, given g/g > 1, is consistent with the terminator condi-
tion. For a single mode hierarchy, we can ensure the norm of
the auxiliary wave functions does not diverge by introducing
a new k-dependent prefactor for each wave function (g/g)k, as
Chem. Sci., 2021, 12, 9704–9711 | 9707

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1sc01448j


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
M

ay
 2

02
1.

 D
ow

nl
oa

de
d 

on
 1

1/
1/

20
25

 8
:0

8:
28

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
shown in Fig. 1b. In the multimode case, we extend the de-
nition of the prefactor to

Q
n
ðgn=gnÞ

~k½n� which ensures that the

auxiliary wave functions that dene the edges of the hierarchy
(only one non-zero mode) do not diverge with increasing hier-
archy depth. Rewriting the non-linear HOPS equation to account
for this additional prefactor leads to the normalized non-linear
HOPS equation

ħvt
���jt

ð~kÞ E ¼
 
�iĤS � ~k$g/�Gt þ

X
n

L̂n

	
z*n;t þ xn;t


!���jt
ð~kÞE

þ
X
n

~k½n�gn L̂n

���jt

~k�~enð ÞE�
X
n

�
gn

gn

��
L̂

†

n �
D
L̂

†

n

E
t

����jt

~kþ~enð ÞE;
(21)

where

Gt ¼
X
n

D
L̂n

E
t
Re
h
z*n;t þ xn;t

i
�
X
n

�
gn

gn

�
Re

�D
jt
ð~0Þ���L̂†

n

���jt
~enð Þ
E�

þ
X
n

�
gn

gn

�D
L̂

†

n

E
t
Re

�D
jt
ð~0Þ���jt

~enð Þ
E�

(22)

ensures normalization of the physical wave function.
Locality of HOPS

To construct an adaptive approach to solving the HOPS equa-
tions, we must rst address the question: how and to what
extent does the locality expected in the quantum state diffusion
formalism appear in HOPS?

Fig. 2 shows that in HOPS calculations localization in the
physical wave function induces localization in the hierarchy. By
‘localization in the hierarchy,’ we specically refer to clustering
of amplitude in a small set of auxiliary wave functions in a way
Fig. 2 Localization in a single HOPS trajectory. (a) Contour map of site
populations in the physical wave function (darker is more populated).
(b) Norm-squared of auxiliary wave functions for a two-dimensional
subset of the hierarchy associated with site 2 (column) and 3 (row).
Panels are labelled by their index vector

�
~k
�
. The shaded region

represents the time-period when site 2 is occupied. The physical wave
function

�
~k ¼~0

�
shows the populations of site 2 and 3 as green and

blue lines, respectively. Parameters: V¼ 10 cm�1, l¼ g¼ 50 cm�1, T¼
295 K, and kmax ¼ 10.
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that depends on the position of the excitation in the physical
wave function. In Fig. 2a, an excitation begins on themiddle site
of a ve pigment chain and then jumps between site 3 and site
2. Fig. 2b plots the norm of auxiliary wave functions associated
with site 2 and site 3; each plot is labeled by an auxiliary vector
index~k. For example, [0,1,0,0,0] (Fig. 2b, rst column) is the rst
order auxiliary wave function associated with the thermal
environment on the second site. The occupation of the auxiliary
wave functions (black lines, Fig. 2b) track with the population of
the physical wave function – i.e., the auxiliary wave functions
associated with the thermal environment of site 2 (rst column
Fig. 2b) are only occupied when site 2 is occupied in the physical
wave function (shaded region).

The locality in the HOPS hierarchy can be understood in
terms of the balance of ux terms in the normalized non-linear
HOPS equation. First, every auxiliary wave function is damped

(rst line of eqn (21), � ~k$g/
	 
���jt

ð~kÞ
E
) and, therefore, has zero

amplitude without a continuous source term. The fundamental
source term is the physical wave function which is the lowest order
of the hierarchy. The ux of amplitude towards higher-
lying auxiliary wave functions arises from the second line of

eqn (21)
	
~k½n�gnL̂n

���jt
~k�~enð ÞE
. For system-bath coupling operators

that are site projection operators
�
L̂n ¼ jnihnj�, the ux towards

higher-lying auxiliaries only arises when there is amplitude on the
associated site of the lower auxiliary wave function. Moreover, the
auxiliary wave functions are localized by the same dynamics that
localize the physical wave function. As a result, the localized
auxiliary wave functions only contribute amplitude to higher-lying
auxiliary wave functions with an index that differs by þ~en in a site
(n) with non-zero amplitude. Thus, the locality of the physical wave
function results in preferential population of specic auxiliary
wave functions.
Adaptive algorithm

We have developed an adaptive algorithm for time-evolving the
HOPS equations (adaptive HOPS, adHOPS) that leverages locality
by constructing a reduced basis set at each time point. We
establish the essential basis set elements at each time point (t) by
ensuring that the error in the time-derivative introduced by the
truncated auxiliary ðAtÞ and state ðStÞ basis is below a given
threshold (d). We dene the derivative error in terms of Euclidean
distance between the true derivative vector and the effective
derivative vector constructed using the adaptive basis. The key
equations (given in the ESI†) provide an upper bound on the
derivative error squared and are derived by considering all
possible ux contributions in the normalized non-linear HOPS
equation (eqn (21)), excluding higher order effects introduced
through the normalization correction (Gt). Because auxiliary wave

functions share only nearest neighbor connections
�
~k �~en)~k

�
and the Hamiltonian for a molecular aggregate supports elec-
tronic couplings over a nite spatial extent, the adaptive basis can
be constructed withOð1Þ scaling. The result is a calculation where,
in addition to a trajectory of the wave functions, we construct an
adaptive basis-set trajectory fB0; Bdt;.; Btg where Bt ¼ At4St.
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Our adHOPS algorithm neither assumes nor imposes locality.
Rather, the adaptive basis takes advantage of whatever locality
arises during the simulation. If the full hierarchy is required to
satisfy the derivative error bound, adHOPS smoothly reverts to
a HOPS calculation. As a result, adHOPS remains formally exact –
the adaptive basis represents a time-dependent truncation of
hierarchy elements, and d, like kmax, is a convergence parameter.

We note that the current adHOPS algorithm makes use of
two approximations: rst, the spectral density is assumed to be
over-damped (e.g., Drude–Lorentz), which allows for a consis-
tent normalization of the hierarchy elements. Second, the
system-bath coupling operator is assumed to be a site-

projection operator
	
L̂n ¼ jnihnj



; in other words, we assume

that each molecule has an independent vibrational
environment.

Results and discussion

For a ve-site linear chain, adHOPS calculations converge
rapidly with respect to the derivative error bound and require
only a small fraction of the full HOPS basis. Fig. 3a shows the
comparison between full (black line) and adaptive (green line)
HOPS population dynamics of the initially excited pigment (site
3). For d ¼ 10�1, the adaptive basis set is so small that the
calculation shows no excitation transport. Smaller values of
d improve the description, and by d¼ 10�3 themean error is less
than 10�2. Fig. 3b shows the mean adaptive error as a function
of d. In the grey region the adaptive error is smaller than the
statistical error associated with the 104 trajectory ensemble. We
Fig. 3 Comparing HOPS and adHOPS for a five-site linear chain. (a)
Site 3 population dynamics for HOPS (black line) and adHOPS (green
line). (b) Mean adaptive error as a function of d. The grey region
represents error beneath the statistical error for a 104 trajectory
ensemble. (c) Ensemble distribution of the size of the adaptive auxiliary
basis as a function of d. Parameters: V¼ 50 cm�1, l¼ g¼ 50 cm�1, T¼
295 K, kmax ¼ 10, and Ntraj ¼ 104.

© 2021 The Author(s). Published by the Royal Society of Chemistry
measure the size of the auxiliary basis for a single trajectory by
the average number of auxiliary wave functions required across
time points. Fig. 3c plots the ensemble distribution of the
auxiliary basis size as a function of d. For d ¼ 10�3, most
adHOPS trajectories require 102 auxiliaries on average, or
approximately 1% of the 9 � 103 auxiliaries required for the
corresponding HOPS calculation. Improving the accuracy of the
calculation by decreasing d two orders of magnitude only
requires about four times as many auxiliaries. The other kinds
of error that arise in HOPS simulations, including statistical
error from a nite number of trajectories and hierarchy error
from the nite kmax value, are reported in the ESI.†

One persistent challenge for numerical implementations of
formally exact methods is demonstrating the calculations are
converged to the exact answer. In hierarchical methods, calcu-
lations must be converged with respect to the auxiliary basis
which is dened in the triangular truncation condition by the
maximum hierarchy level considered (kmax). In HOPS, the
criterion for convergence is that kmaxg/ħ [ us, where us is the
characteristic frequency of the system.20 Because the full auxil-

iary basis scales as
�
Npig þ kmax

kmax

�
, it is oen impractical to

systematically check convergence for sufficiently large values of
kmax. Though our adHOPS method was inspired by localization,
we nd that it naturally incorporates a dynamic ltering scheme
that dramatically improves the scaling of the auxiliary basis
with kmax even when the exciton is fully delocalized. Fig. 4a
compares the full (black) and adaptive (green) HOPS dynamics
with increasing coupling (V). By V ¼ 5l the oscillations in the
site 3 population report a wave function that is coherently
oscillating across 5 sites. Fig. 4b shows the corresponding size
of the auxiliary basis as a function of kmax. In all cases the
adaptive auxiliary basis (green line) increases muchmore slowly
than the full auxiliary basis (black line).
Fig. 4 Comparing dynamics and auxiliary basis size as a function
electronic coupling (V) for the full (black) and adaptive (green) HOPS
calculations. (a) Site 3 population dynamics when kmax ¼ 10. (b) Size of
the auxiliary basis as a function of maximum hierarchy depth (kmax).
Other parameters: l ¼ g ¼ 50 cm�1, T ¼ 295 K, d ¼ 10�3, and Ntraj ¼
104. For V ¼ 250 cm�1, gmark ¼ 1000 cm�1, all others used gmark ¼
500 cm�1.
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Fig. 5 Advantageous scaling of adHOPS simulations for large numbers
of pigments. (a) Average number of elements in the adaptive system
(top) and auxiliary (bottom) basis for linear chains of different lengths.
(b) Exciton diffusion coefficient (in units of molecular spacing, l0) for
a 103 pigment chain from a linear fit to the mean-squared displacement

of an excitation starting on the middle pigment
	
Tr
h
rX̂

2
i


. Parameters:

l¼ g¼ 50 cm�1, T¼ 295 K, kmax ¼ 10, and d¼ 3� 10�4. For V¼ 25 and
50 cm�1, Ntraj ¼ 103; for V ¼ 100 cm�1, Ntraj ¼ 5 � 103.
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Another perpetual challenge for formally exact methods is
their intractable computational scaling with the number of
molecules. In HOPS calculations this arises from the scaling of
the auxiliary basis. Fig. 5a compares the full (black line) size of
the state (top) and auxiliary (bottom) basis to the average size of
the adaptive basis (colored lines) as a function of the number of
molecules in a linear chain. Compared to the full auxiliary
basis, the size of the adaptive auxiliary basis scales favorably
with respect to the number of molecules in the aggregate.
Moreover, both the auxiliary and state bases in adHOPS calcu-
lations show a plateau beyond a threshold size of the linear
chain (Npig > N*), indicating the onset of size invariant scaling.
In the ESI,† we compare the CPU time required for full and
adaptive HOPS calculations (V ¼ 50 cm�1). We nd that adap-
tive calculations are faster than full calculations starting around
Npig ¼ 10, and we also demonstrate the onset of size invariance
(i.e., Oð1Þ) scaling of CPU time for large aggregates. In other
words, increasing the number of pigments beyond a threshold
size does not increase the computational expense of an adHOPS
calculation. Thus, for localized excitons, the size invariance of
9710 | Chem. Sci., 2021, 12, 9704–9711
adHOPS allows for calculations on scales that were previously
unachievable for formally exact methods.

Our adaptive HOPS algorithm offers a computationally
tractable approach for formally exact calculations of mesoscale
quantum dynamics. As a proof-of-concept, we demonstrate the
ability to simulate exciton diffusion on a linear chain of 103

molecules within the formally exact framework of adHOPS
(Fig. 5b). Exciton diffusion is a common experimental observ-
able extracted from non-linear microscopies2 but is challenging
to simulate on long length scales.35–37 Using adHOPS, simu-
lating exciton diffusion in a linear chain of 103 pigments is
computationally tractable because for V ¼ 100 cm�1 it requires,
on average, less than 2 � 103 auxiliary wave functions and 20
pigment states. The corresponding HOPS simulation would
require an auxiliary basis containing more than 1023 auxiliary
wave functions.

Conclusions

To summarize, our adaptive HOPS (adHOPS) algorithm:
1. Is a formally exact solution to the time-evolution of

a quantum state coupled to a non-Markovian thermal reservoir,
2. Is embarrassingly (or ‘perfectly’) parallel,24 and
3. Achieves size-invariant (i.e., Oð1Þ) scaling for molecular

aggregates that are substantially larger than the exciton delo-
calization extent in the material.

This combination of properties allows us to perform non-
perturbative, non-Markovian simulations involving an arbi-
trary number of pigments in physically relevant parameter
regimes, thus laying the foundation for mesoscale quantum
dynamics simulations of excited-state carriers in molecular
materials. Currently, our adaptive algorithm assumes that each
pigment has an independent thermal environment composed
of overdamped vibrations, but future developments will allow
for a broader class of mechanisms involving high-frequency
intra-molecular vibrations38–40 and Peierls-type electron-
vibration coupling.3 Looking forward, we believe that adHOPS
provides a promising new direction for simulations of a broad
range of organic semiconductors including photosynthetic
membranes,16,41 molecular thin lms,42,43 and organic photo-
voltaic heterojunctions.17–19,44

Data availability

The data that supports the ndings of this study, the scripts
used to run calculations, and the code required to generate the
gures are available at DOI: 10.5281/zenodo.4597068. The most
recent release of MesoHOPS is available through GitHub at
https://github.com/MesoscienceLab/mesohops. The source
code used for these calculations is available at DOI: 10.5281/
zenodo.4592583.
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M. Rodŕıguez and S. Yin, Chem. Phys., 2018, 515, 262–271.
11 T. Kramer, M. Noack, A. Reinefeld, M. Rodŕıguez and
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