As of March 31, 2021, all publication charges for this article have been paid for by the Royal Society of Chemistry.

EDGE ARTICLE

[GaF(H2O)][IO3F]: a promising NLO material obtained by anisotropic polycation substitution†

Qian-Ming Huang, Chun-Li Hu, Bing-Ping Yang, Zhi Fang, Yuan Lin, Jin Chen, Bing-Xuan Li and Jiang-Gao Mao

A novel salt-inclusion fluoroiodate [GaF(H2O)][IO3F] derived from CsIO2F2 was ingeniously obtained through anisotropic polycation substitution. Because the catenulate [GaF(H2O)][IO3F]2+ framework serves as a template for the favorable assembly of the polar [IO3F]2− groups and contributes to the nonlinear coefficient, [GaF(H2O)][IO3F] exhibits a greatly improved second-harmonic generation (SHG) effect of 10 times that of KDP (KH2PO4) and a considerable band gap of 4.34 eV compared to the parent compound CsIO2F2 (3 × KDP, 4.5 eV). Particularly, to the best of our knowledge, [GaF(H2O)][IO3F] has the largest laser-induced damage threshold (LDT) of 140 × AgGaS2 of the reported iodates. All these results signify that [GaF(H2O)][IO3F] is a promising nonlinear optical (NLO) material. This work also proposes that anisotropic polycation substitution is an effective approach to optimize the SHG effect and develop excellent NLO materials.

Introduction

Nonlinear optical (NLO) materials are of great interest owing to their irreplaceable frequency conversion capability in all-solid-state laser technology. Because of the absence of the lasers emitting mid-infrared (IR) (3–12 μm) light that has great advantages in the fields of spectroscopy analysis, laser surgery, laser communications, etc., NLO materials used for mid-IR generation are increasingly attractive. However, currently commercialized mid-IR NLO crystals, such as AgGaS2 (AGS), AgGaSe2 and ZnGeP2, have been heavily restricted by their irreplaceable frequency conversion capability in all-solid-state laser technology. For the materials.

Metal iodates with the stereo-chemically active lone-electron pair (LEP) have long been investigated for mid-IR NLO applications. Generally, incorporating asymmetric IO3/Io units with octahedrally coordinated d0 transition-metal (TM) cations (VIV and MoVI, etc.) and SALP-involving metal cations (PtIV and BiVII, etc.) can easily induce non-centrosymmetric (NCS) structures and large SHG responses, such as BiOIO3 (12.5 × KDP). Nevertheless, the adoption of d0-TM/SALP-involved metal cations would inevitably narrow the band gap due to the d-d/s-p electronic transition, and further reduce the LDT of the materials. Lots of investigations have proposed that the introduction of the most electronegative fluorine anion is an effective way to enhance the band gap of iodates. In the reported NCS fluorine iodates, the band gaps of iodate fluorides are still seriously limited by d0-TM/SALP-involved cations although F plays a positive role in improving them, such as Ba2[V02F2(IO3)2]IO3 (9 × KDP, 2.55 eV); in contrast, fluoroiodates exhibit increased band gaps (>4.2 eV) owing to the larger bond-energy sum of IOF than IO3 unit (Table S1). Therefore, the SHG signals of fluoroiodates deserve further enhancements mainly because of the unfavorable arrangement modes and the inherent polarity of the IOF units, such as CsIO2F2 (3 × KDP, 4.5 eV). Therefore, it is an ideal route to obtain exceptional mid-IR NLO crystals through increasing the nonlinear coefficient of fluoroiodates.

Recently, introducing ionic halide-salt into the chalcogenide system to form salt-inclusion structures has emerged as a new method to regulate SHG–band gap relationships of chalcogenides. Salt-inclusion chalcogenides with mixed framework and filler can ingeniously inherit the wide band gap of halides and intense SHG effect of chalcogenides, such as Li[Li3CS2Cl] [Ga3Sn2]. Inspired by the unique host–guest framework structure, in this work, the mono-atomic Cs+ of CsIO2F2 was substituted by more anisotropic halide-salt polycation [GaF(H2O)]2+, and the [IO3F]2− unit also accordingly adjusted to its isomorphic [IOF]2−; thus, a novel salt-inclusion fluoroiodate [GaF(H2O)][IO3F] was successfully obtained. Catenulate [GaF(H2O)]2+ framework serves as a template to regulate the arrangement of the polar [IO3F]2− groups, resulting in an

† Electronic supplementary information (ESI) available. CCDC 2083798. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/d1sc01401c
unique NCS structure of [GaF(H2O)][IO3F]. Through this anisotropic polycation substitution, the SHG effect of [GaF(H2O)][IO3F] is greatly improved (10 × KDP) while the band gap remains elevated status (4.34 eV) compared to the parent compound CsIO2F2 (3 × KDP, 4.5 eV). Herein, we report its synthesis, crystal structure, physicochemical properties and first-principle studies.

Results and discussion

[GaF(H2O)][IO3F] single crystals were synthesized by hydrothermal method with the Ga : I ratio of 1 : 1 in HF aqueous solution (40%, highly corrosive! personal protective equipment is required, and HF should always be handled inside of a fume hood), similar to that of CsIO2F2 (ESI†). Powder X-ray diffraction (PXRD) was performed to verify the purity of the product (Fig. S1†), and the existence of Ga, F, and I was also verified by energy-dispersive X-ray spectroscopy (EDS) (Fig. S2†). The thermogravimetric analysis (TGA) of [GaF(H2O)][IO3F] indicates that the sample has a high thermal stability up to 300 °C (Fig. S3†). Each molecule releases 0.5 I2, 0.75 O2, 1 H2O and 1 F2 during the decomposition and the measured value of weight loss (68.39%) is consistent with the calculated value (68.83%).

[GaF(H2O)][IO3F] crystallizes in the orthogonal polar space group Pca21 (no. 29). The asymmetric unit contains 1 Ga, 1 I, 4 O, 2 F, and 2 H atoms (Fig. S4a†). The I atom is disordered over two sites (85.8% for I(1A) and 14.2% for I(1B)) and is tetrahedrally coordinated by three oxygen and one fluorine atoms, constructing a mono-fluorinated [IO3F]2− anion (Fig. S4a†). The bond lengths of I(1B)−F(1) is 1.98(4) Å, which is slightly longer than I−O bonds (1.778(8)−1.858(9) Å). The I(1A) component with the major occupancy is assumed to be the only I atom in the overall structural descriptions. The Ga atom adopts the typical sixfold octahedral coordination to three O and three F atoms with Ga−O bond lengths ranging from 1.896(7) to 1.958(8) Å and Ga−F bond lengths varying from 1.860(8) to 1.933(6) Å (Fig. S4b†). The bond length differences of these six Ga−O/F bonds are very small, leading to a slightly distorted GaO3F3 octahedron. These coordination geometries are comparable to those of the reported iodates.21,44,56,57,58 The calculated bond valence sum (BVS) of Ga (3.15), I (4.97), O (1.8−2.24) and F (0.79−0.88) are reasonable except the terminal atom O(4) (0.54) (Table S3†). Therefore, the O(4) atom bonds to two H atoms, which constitutes the coordinating H2O. Owing to the disordered I(1) atom, determining which atom is O and which is F is rather complicated, which is provided in ESI in detail.† The physical techniques used to characterize the material are discussed in the experimental section.

[GaF(H2O)][IO3F] is characterized by a typical salt-inclusion structure with [GaF(H2O)]2+ polycation framework and assembled [IO3F]2− functional building blocks. Each GaF(H2O) unit shares the F(2) atom to build a one-dimensional (1D) zigzag [GaF(H2O)]2+ chain along the c axis (Fig. 1c), and parallel [GaF(H2O)]2+ chains further interact with IO3F units through O(2), O(3), and F(1) atoms, forming a 2D [GaF(H2O)][IO3F]∞ layer on the bc plane (Fig. 1d). These [GaF(H2O)][IO3F]∞ layers in two different orientations are alternately arranged in an ABAB sequence along the a-axis, stacking into a three-dimensional structure through weak chemical interactions (Fig. 2). The counterpart CsIO2F2 can be viewed as being made up of Cs+ cations and embedded IO2F2 groups (Fig. 1a and b).44 Alkali Cs+ cation is low charged, large, and weakly polarizing, and Cs+ cations form pure ionic bonds with O/F ions of the IO2F2 groups with the average length of 3.17 Å and have a very small impact on the arrangement of the IO2F2 groups, which results in a partial offset of the polarity and a relatively low SHG efficiency.44 In contrast, for [GaF(H2O)][IO3F], the main-group Ga3+ cation is smaller and more polarizing than the alkali cation, and the Ga−O/F chemical bondings with the average distance of 1.92 Å have a greater degree of covalent characteristic and lower symmetries occur. The catenulate substituent, [GaF(H2O)]2+ framework in [GaF(H2O)][IO3F], could...
effectively guide the favorable arrangement of the polar IO₃F groups, leading to the superposition of the SALPs of I(V) atoms and the polar structure (Fig. 1c and d), which might be highly beneficial to the enhancement of the SHG effect.

The dipole moment calculations of CsIO₂F₂ and [GaF(H₂O)]-[IO₃F] further explain how favorable the alignment of IO₂F groups is in [GaF(H₂O)][IO₃F] (Tables S6, S7† and Fig. 1b, d). Each IO₃F unit in [GaF(H₂O)][IO₃F] has a large local dipole moment of 11.26 D (Debye), comparable to that of IO₂F₂ in CsIO₂F₂ (11.96 D) owing to their very similar spatial geometric configurations. At the same time, the extremely orderly arrangement of IO₃F results in an additive net dipole moment of 41.82 D in [GaF(H₂O)][IO₃F], whereas the IO₂F₂ units of CsIO₂F₂ counteract a lot with each other, leading to a relatively small value of 33.77 D. Besides, the net dipole moment density of [GaF(H₂O)][IO₃F] is 0.0908 D Å⁻³, which is greatly larger than that of CsIO₂F₂ (0.0680 D Å⁻³).

Salt-inclusion compounds with host–guest structure were widely reported in oxide and chalcogenide system, some of which with NCS space group have emerged as a new class of NLO materials, such as [A][Ga,P₅S₅][X] (A = K, Rb; X = Cl, Br) and Ba₄(BO₃)₃(SiO₄)·Br₂X (X = Cl, Br). Generally, the halogen of the halide in salt-inclusion compounds are Br and Cl, respectively. However, the ionic radius of Cl⁻ is relatively small. Notably, the introduction of fluoride iodates (Fig. 4), and these results also illustrate that designing NCS multi-fluorinated salt-inclusion compound is an effective method to regulate the SHG–band gap relationship of NLO crystals.

LDT measurements were performed on powder samples (105–150 μm) together with AGS samples of the same size as the reference, [GaF(H₂O)][IO₃F] displays a giant LDT value of 298.40 MW cm⁻² (about 140 × AGS (2.13 MW cm⁻²)), which is, to the best of our knowledge, the largest value of the reported iodates SHG crystals, much larger than those of CsIO₂F₂ (20 × AGS) and K₂(W₇O₄F₆)(IO₃) (95 × AGS), etc. This result could be primarily attributed to the large band gap and salt-inclusion structure of [GaF(H₂O)][IO₃F], and such a high LDT value indicates [GaF(H₂O)][IO₃F] is suitable for high-power laser applications.

![Fig. 3 Diagram of particle size versus SHG intensity of [GaF(H₂O)][IO₃F] under laser irradiation at λ = 1064 nm. Oscilloscope traces of the SHG signals for [GaF(H₂O)][IO₃F] and KDP samples of the same size (150–210 μm) are plotted in the inset.](image-url)
Conclusions

In conclusion, a new fluoriodate [GaF(H₂O)][IO₃F] based on CsIO₂F₂ was successfully obtained through an ingenious anisotropic polycation substitution approach. The compound features a polar layered salt-inclusion structure and the catenulate [GaF(H₂O)]²⁺ polycation framework not only acts as a template for the favourable arrangement of the polar [IO₃F]²⁻ groups but also contributes to the NLO coefficient. In comparison with the parent compound CsIO₂F₂ (3 x KDP, 4.5 eV), the SHG effect of [GaF(H₂O)][IO₃F] increase to 10KDP and a wide band gap of 4.34 eV remains. Furthermore, [GaF(H₂O)][IO₃F] has a broad transparent spectral region from near-UV to mid-IR and the largest LDT of 140 times that of AGS of the reported iodates. These superior performances indicate that [GaF(H₂O)][IO₃F] is a promising mid-IR NLO material. This work suggests that anisotropic polycation substitution is a feasible route to optimize NLO properties and isolate promising SHG crystals. Therefore, the discovery of [GaF(H₂O)][IO₃F] is of great significance for the development of inorganic functional material and NLO optics.

Data availability

All of the related experimental and computational data are provided in the electronic supplementary information.

Author contributions

Q. M. H. synthesized the compound and performed most experiments. C. L. H. performed the optical theoretical calculations. B. X. L. performed LDT measurements. Q. M. H. and B. P. Y. analyzed the X-ray diffraction data and all physical tests, and wrote the manuscript. All authors provided input on the manuscript.

Conflicts of interest

The authors declare no competing financial interest.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 21975256, 22031009 and 21921001) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant no. XDB20000000).

Notes and references