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Quaternary amino acids are important tools for the modification and stabilisation of peptide secondary
structures. Here we describe a practical and scalable synthesis applicable to quaternary alpha-arylated

amino acids (Q4As), and the development of solid-phase synthesis conditions for their incorporation into
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peptides. Monomeric and dimeric a-helical peptides are synthesised with varying degrees of Q4A

substitution and their structures examined using biophysical methods. Both enantiomers of the Q4As are
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Introduction

Advances in automated synthesis and better understanding of
peptide and peptidomimetic structural properties have allowed
rapid development in the field of peptide-based therapeutics.
To date, over 60 peptidic drugs have been brought to market,
with a further 400 potential therapeutics currently under eval-
uation in clinical or pre-clinical trials.*

The use of peptides as active pharmaceutical compounds has
advantages. Such molecules can exhibit high biological activity,
low toxicity and excellent specificity. However, there are concerns
that peptidic drugs lack oral bioavailability and have poor
stability under physiological conditions. Accordingly, the devel-
opment of chemical methods to stabilise the bioactive states of
peptides whilst maintaining activity and improving bioavail-
ability is an active area of research.” The incorporation of
unnatural amino acids is a key aspect of this work. In particular,
quaternary amino acids have been at the forefront of research in
this area, being widely employed in the synthesis of bioactive
peptides and peptidomimetics due to their resistance to race-
misation and higher metabolic stability.® Substitution at the C,
carbon of a-amino acids can alter steric features sufficiently to
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tolerated in folded monomeric and oligomeric a-helical peptides, with the (R)-enantiomer slightly more

influence conformations adopted by peptides, which plays
a major role in determining their biological activities.* a-Arylated
amino acids do not occur naturally and their incorporation into
peptide structures could allow exploration of new chemical space
beyond that tested through traditional peptide design. In addi-
tion, whilst phenylglycine and related residues are prone to rac-
emisation during Fmoc solid-phase peptide synthesis (SPPS),’
quaternary o-arylated amino acids, which lack an enolisable
proton, are fully configurationally stable.

Results and discussion
Gram-scale synthesis of the Q4As

Previously, we reported a general and stereodivergent synthesis of
quaternary alpha-arylated amino acids (Q4As).® This allows the
preparation of both product enantiomers by arylation of the
same tertiary precursor depending on the choice of route. In
order to test the suitability of Q4As for automated SPPS, larger
quantities of Fmoc-protected products were required, and so we
optimised the method further, focussing on overall yield and
scalability. Our principal target was a multi-gram preparation of
both S- and R-(a-4-bromophenyl)alanine 4a (Scheme 1), for which
we use the single letter codes B and b. These amino acids provide
a representative example of the compound class, and the bro-
mophenyl substituent provides a potential synthetic handle for
functionalisation after incorporation into the peptide chain.
Amidation of commercial t-alanine methyl ester hydrochloride
and treatment with pivaldehyde gave the starting material for
both routes, imine 1 (R = H). Since our original publication,® we
have optimised the method for diastereoselective formation of
trans N-chloroformylimidazolidinones.” In this way, 40 g of 2 (R =
H) were readily prepared as a single diastereoisomer (our

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Synthetic pathways from L-alanine to Fmoc-protected S
and R-(a-4-bromophenyllalanine 4a by way of N-chlor-
oformylimidazolidinone 2a or N’'-bromophenyl imidazolinyl urea 6a.
The sequence shown by the orange arrows starting from 1 constitutes
a general S-selective route to quaternary alpha-arylated amino acids
(Q4As) S-4, whereas the sequence shown by the green arrows
constitutes an R-selective route to Q4As R-4. KHMDS = potassium
hexamethyldisilazide.

previously reported method gave a mixture of 2 and its cis isomer).
Sequential addition of KHMDS to a solution of 2 and 4-bromo-N-
methylaniline (the formal equivalent of the aryl electrophile)
effected one-pot tandem urea formation and diastereoselective N
to C migration of the aryl ring to install the quaternary centre.
Quenching with methyl iodide gave the protected N,N-dimethyl
urea 3a, a step that proved critical for avoiding the formation of
hydantoin by-products in the subsequent hydrolysis.® This is an
operationally simple, one-pot procedure. It combines urea
formation, deprotonation, rearrangement and protection to give
the penultimate species in the synthesis in a remarkable 94%
yield. This is with complete diastereoselectivity and without the
need for intermediate chromatographic purification.

In a complementary manner, acylation of the same imine 1
with carbamoyl chloride 5 (X = 4-Br) in refluxing toluene
resulted in selective cyclisation to the cis imidazolidinone,
yielding urea 6a. Diastereoselective N to C migration of the
bromophenyl moiety was induced by enolisation of 6a with
KHMDS, generating the enantiomeric a-quaternary product 7a
in high yield after methylation.

Removal of the imidazolidinone motif from 3a and 7a to
reveal the quaternary amino acid was achieved by acidic
hydrolysis in 3 hours using microwave irradiation. Unlike
previous methods, which involve laborious prior separation
from by-products of the free amino acid by ion-exchange
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Table 1 Synthesis of Fmoc-protected Q4As via imidazolidinones 3

R= X= 3, yield (S)-4, yield/% (scale)
H 4-Br 3a, 94 4a, 83 (1.8 g)
H 3-Br 3b, 91 4b, 50 (1.5 g)
H 3-CN 3¢, 83

H 3,5-F, 3d, 91 ad, 67 (0.5 g)
H 3,5-Cl, 3e, 90

Ph 4Cl 3f, 89 af, 51 (0.2 g)
Ph 4-Me 3g, 80 4g, 62 (0.4 )
Ph 3-Br 3h, 95 4h, 50 (0.4 g)
4-BnOC¢H, 4-Me 3i, 88

4-BnOCH, 3-F, 4-Br 3j, 93

chromatography,® in situ Fmoc protection allowed facile isola-
tion of both S-4a and R-4a in multigram quantities.

We expected this method to be generalisable to the gram-scale
synthesis of other Q4As, and to demonstrate its scope we syn-
thesised the further series of functionalised Q4A precursors 3 and
used them to prepare Fmoc-protected Q4As 4, as shown in Table
1. Coupling and rearrangement was unaffected by the steric bulk
of the aromatic amino acids: Phe and O-benzyl Tyr, and even
multiply halogenated targets were formed cleanly. Samples of (S)-
4 were isolated in quantities from 0.2-1.8 g.

Incorporation of Q4As into peptides

The Fmoc protection achieved by this method enabled direct use
of these amino acids in solid-phase peptide synthesis (SPPS). The
a-aryl substituents of these quaternary amino acids replace the
C,—H bonds of their proteinogenic counterparts, offering the
possibility of incorporating additional functionality into peptide
mimetics without otherwise altering the side chains of the
parents. Previous approaches to the incorporation of function-
alised quaternary residues have offered much less subtle control:
for example, the use of derivatives of achiral 4-aminopiperidine-
4-carboxylic acid makes it impossible for the natural side chains
to be present.? Thus, we aimed to explore the extent of the effect
on secondary structure of inserting the p-bromophenyl-
substituted quaternary residues B and b as ‘point mutations’ in
peptides of established conformational preference.

The initial challenge was how to incorporate the sterically
demanding o-arylated residues B (of which S-4 is the Fmoc-
protected precursor) and b (of which R-4 is the Fmoc pro-
tected precursor) into peptide sequences using SPPS. Previ-
ously, we had introduced related residues into Aib-based helices
by solution-phase methods,” but we sought an efficient and
reliable method for automated peptide coupling with Q4As.*
Other work has demonstrated efficient coupling of multiple
consecutive a,o-dimethylated aminoisobutyric acid (Aib) resi-
dues by SPPS in the presence of Oxyma." We found that
applying these same coupling cycles allowed a-arylated amino
acids S-4 and R-4 to be coupled to proteinogenic residues.

Conformational effects of Q4As on peptide secondary
structure

To determine the consequences of introducing a Q4A residue
into regular secondary structures,'” we synthesised a series of de
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Table 2 Designed peptides and summary of biophysical data®

Entry Peptide Sequence

gabcdef gabcdef gabcdef gabcdef

Monomeric peptides % helix

8 CC-Mono Ac-G EAAAAKQ EAAAAKK EAAAAKW EAAAAKQ G—NH2 35

9 CC-Mono-Al3a Ac-G EAAAAKQ EAAAaKK EAAAAKW EAAAAKQ G—NH2 14

10 CC-Mono-A13¢ Ac-G EAAAAKQ EAAA$KK EAAAAKW EAAAAKQ G—NH2 16

11 CC-Mono-A130 Ac-G EAAAAKQ EAAASKK EAAAAKW EAAAAKQ G—NH2 20

12 CC-Mono-A13b Ac-G EAAAAKQ EAAAbLKK EAAAAKW EAAAAKQ G—NH2 33

13 CC-Mono-A13B Ac-G EAAAAKQ EAAABKK EAAAAKW EAAAAKQ G—NH2 28

14 CC-Mono-A13U Ac-G EAAAAKQ EAAAUKK EAAAAKW EAAAAKQ G—NH2 39

Dimeric peptides v (°C)

15 CC-Di Ac-G ETAALKQ EIAALKK ENAALKW EIAALKQ GW—NH2 75

16 CC-Di-W22b Ac-G EIAALKQ EIAALKK ENAALKb EIAALKQ GW—NH2 73

17 CC-Di-W22B Ac-G EIAALKQ ETAALKK ENAALKB EIAALKQ GW-NH2 67

“ Letters are standard one-letter amino acid codes, plus B/b: S/R-0-(4-bromophenyl)alanine; ®/¢: 1/p-phenylglycine; U: a-aminoisobutyric acid (Aib).

novo designed peptides (Table 2) based on a monomeric « helix,
CC-Mono, and a dimeric a-helical coiled coil, CC-Di (Fig. 1A and
B)."* CC-Mono (8) has the 7-residue (heptad) sequence repeat,
abcdefg, of coiled-coil peptides that normally oligomerise.
However, in CC-Mono, the a and d positions are occupied by Ala
residues, which are too small to drive the association of helices
and the formation of a consolidated a/d-based hydrophobic
core typical of coiled-coil oligomers. The parent CC-Mono is
35% o helical by circular dichroism (CD) spectroscopy, which
we argued would be highly sensitive to single point mutations to
quaternary amino acids should these affect the local and global
conformations of the peptides.

Variants of CC-Mono were synthesised in which a single
central Ala residue at the d position of the second heptad was
mutated: peptide 9 had p-Ala (a) at this site as a control;
peptides 10 and 11 introduced the enantiomers of phenyl-
glycine (p-PhG, ¢ and 1-PhG, @) as tertiary analogues of the a-
bromophenyl amino acids b and B, respectively (peptides 12
and 13). Peptide 14 had the smaller, but still helix-inducing, Aib
(U) as a further control.

The control peptides (9 and 14) responded as predicted: in 9,
with the p-Ala mutation, the helicity measured by CD spec-
troscopy was reduced by >2 fold (Fig. 1C and Table 2); whereas
the substitution with Aib (14), known for its high helical
propensity,*® marginally increased the helicity up to 39%. The
incorporation of either enantiomer of phenylglycine (10 and 11)
into CC-Mono reduced the overall helicity of the system in
a similar manner to introduction of p-Ala (Table 2 and Fig. 1C).
By contrast, both Q4A substitutions b and B (peptides 12 and 13,
respectively) were remarkably well accommodated, and only
marginally less folded than the parent peptide. Intriguingly,
peptide 12 was slightly more folded (33%) than 13 (28%). This
suggests that b—in which the Me group, rather than the Ar
group, is orientated in the same direction as the methyl group
in 1-Ala—is better tolerated than B. a,o-Diarylated amino acids

9388 | Chem. Sci., 2021, 12, 9386-9390

are incompatible with peptide helices.” Therefore, the Q4A
residues appear to occupy a ‘sweet spot’ as functionalisable
replacements for L a-amino acids in a-helical structures.

Given this evidence that a-arylated amino acids are tolerated
in a helices, we explored the insertion of the bromophenyl
residues b and B into a cooperatively folded, oligomerising a-
helical system. Specifically, we used the dimeric de novo
designed coiled-coil peptide, CC-Di (Fig. 1B)." In this peptide,
Ile and Leu predominate at the a and d positions, respectively,
of the sequence repeat leading to formation of an amphipathic
helix that specifies and stabilises the dimer. The Asn-17, an
a site, further specifies the dimer by disfavouring the alternative
trimeric state. We wanted to test the impact of Q4A residues on
such systems, but without compromising the dimer interface.
Therefore, we made point mutations by replacing the single Trp
at the third f position, as this is furthest from the helix-helix
interface, Fig. 1B. In addition to CC-Di, peptide 15, as a control,
peptides 16 and 17 were synthesised with the Trp mutated to
b and B, respectively. In each case an additional Trp chromo-
phore was added at the C terminus to allow peptide concen-
tration to be determined (Table 2).

As with the monomeric system, by CD spectroscopy, both
quaternary a-arylated residues b and B were well tolerated in the
dimeric assembly (Fig. 1D). The a-arylated peptides 16 and 17
showed only slight decreases in a helicity compared with the
parent CC-Di (15). Moreover, and also similar to the parent, 16
and 17 had sigmoidal thermal unfolding transitions consistent
with cooperatively folded and unique species (Fig. 1E).
Sedimentation-equilibrium experiments by analytical ultracen-
trifugation showed that all three peptides formed dimers in
solution with fitted molecular weights 2.13, 1.99 and 2.14 times
the monomer masses, respectively (Fig. 1F and G). Once again,
the (R)-enantiomer b (where the aryl group directly replaces the
o-H) was marginally more favoured than B, as indicated by both
the helicities from the CD spectra and the midpoints of the

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Helical-wheel representations of CC-Mono (A) and CC-Di (B). (C) CD spectra of peptides 8-14. (D) CD spectra of peptides 15-17. (E)
Variable temperature CD measurements for peptides 15-17 monitoring MRE,,, from 5 to 95 °C. All CD measurements were carried out with
50 uM peptide in phosphate-buffered saline (PBS, pH 7.4). (F—H) Sedimentation equilibrium profiles for peptides 15-17 respectively. Top: SE data
(circles) fitted to a single-ideal species model (black lines). Bottom: residuals for the above fits. SE measurements were carried out at 20 °C in PBS,

pH 7.4 at 37 uM for peptide 15 and 75 uM for peptides 16 & 17.

thermal unfolding curves (Ty;) (Table 2 and Fig. 1E). The high
helical content, similar thermal unfolding transitions, and
identical oligomerisation states of peptides 16 and 17 compared
to the parent 15 indicate that over helical quaternary structures
of three peptides are closely similar, with little evidence of
disruption such as fraying after the point mutations. Previously,
we have found that placing the dimer-specifying Asn at a sites of
different heptads can lead to helix fraying, which is accompa-
nied by changes in thermal unfolding transitions and oligo-
meric states.'® By contrast, both enantiomers of a-bromophenyl
alanine are well tolerated within a fully folded and defined
quaternary peptide structure.

Conclusion

In conclusion, we have shown that both enantiomers of Fmoc-
protected o-aryl alanine derivatives can be prepared on
a multi-gram scale from the commercial r-alanine methyl ester
hydrochloride precursor to 1. Furthermore, these amino acids,

© 2021 The Author(s). Published by the Royal Society of Chemistry

represented by 1- and p-o-(bromophenyl) alanine, can be
incorporated into peptide structures by SPPS, and both enan-
tiomers are well tolerated when they replace t-amino acids in a-
helical peptide structures. Future work will incorporate Q4As
for more sterically demanding amino acids such as leucine and
seek to further exploit the functionalization of these additional
‘conformationally silent’ aryl substituents.
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