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Difluorination of a-(bromomethyl)styrenes via I(l)/
I(I11) catalysis: facile access to electrophilic
linchpins for drug discovery+

Joel Hafliger, Keith Livingstone, Constantin G. Daniliuc and Ryan Gilmour ©*

Simple a-(bromomethyl)styrenes can be processed to a variety of 1,1-difluorinated electrophilic building
blocks via I(1)/I(ll) catalysis. This inexpensive main group catalysis strategy employs p-Toll as an effective
organocatalyst when combined with Selectfluor® and simple amine-HF complexes. Modulating
Brgnsted acidity enables simultaneous geminal and vicinal difluorination to occur, thereby providing
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a platform to generate multiply fluorinated scaffolds for further downstream derivatization. The method

facilitates access to a tetrafluorinated APl candidate for the treatment of amyotrophic lateral sclerosis.

DOI: 10.1039/d1sc01132d

rsc.li/chemical-science bromo/chloro esters.

Structural editing with fluorine enables geometric and elec-
tronic variation to be explored in functional small molecules
whilst mitigating steric drawbacks." This expansive approach to
manipulate structure-function interplay continues to manifest
itself in bio-organic and medicinal chemistry.> Of the plenum of
fluorinated motifs commonly employed, the geminal difluoro-
methylene group® has a venerable history.* This is grounded in
the structural as well as electronic ramifications of CH, — CF,
substitution, as is evident from a comparison of propane and
2,2-difluoropropane (Fig. 1, upper). Salient features include
localized charge inversion (C-H®" to C-F°") and a widening of
the internal angle from 112° to 115.4°.> Consequently, geminal
difluoromethylene groups feature prominently in the drug
discovery repertoire® to mitigate oxidation and modulate phys-
icochemical parameters. Catalysis-based routes to generate
electrophilic linchpins that contain the geminal difluoro-
methylene unit have thus been intensively pursued, particularly
in the realm of main group catalysis.”® Motivated by the
potential of this motif in contemporary medicinal chemistry, it
was envisaged that an I(I)/I(III) catalysis platform could be
leveraged to convert simple o-(bromomethyl)styrenes to gem-
difluorinated linchpins: the primary C(sp®)-Br motif would
facilitate downstream synthetic manipulations (Fig. 1, lower).
To that end, p-Toll would function as a catalyst to generate p-
TollF, in situ in the presence of an external oxidant'® and an
amine-HF complex. Alkene activation (I) with subsequent bro-
monium ion formation (II)** would provide a pre-text for the
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Preliminary validation of an enantioselective process is disclosed to access a-phenyl-B-difluoro-y-

first C-F bond forming process (III) with regeneration of the
catalyst. A subsequent phenonium ion rearrangement*?/fluori-
nation sequence (III and IV) would furnish the geminal
difluoromethylene group and liberate the desired electrophilic
building block.
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Fig. 1 The geminal difluoromethylene group: bioisosterism, and

catalysis-based access from a-(bromomethyl)styrenes via [(1)/I(ll)
catalysis.
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To validate this conceptual framework, a short process of
reaction optimization (1la — 2a) was conducted to assess the
influence of solvent, amine-HF ratio (Brgnsted acidity)** and
catalyst loading (Table 1). Initial reactions were performed with
p-Toll (20 mol%), Selectfluor® (1.5 equiv.) as an oxidant, and
CHCI; as the reaction medium. Variation of the amine : HF
ratio was conducted to explore the influence of Bronsted acidity
on catalysis efficiency (entries 1-4). An optimal ratio of 1 : 6 was
observed enabling the product 2a to be generated in >95%
NMR-yield. Although reducing the catalyst loading to 10 and
5 mol% (entries 5 and 6, respectively) led to high levels of effi-
ciency (79% yield with 5 mol%), the remainder of the study was
performed with 20 mol% p-Toll. Notably, catalytic vicinal
difluorination was not observed at any point during this opti-
mization, in contrast with previous studies from our labo-
ratory.®” A solvent screen revealed the importance of
chlorinated solvents (entries 7 and 8): in contrast, performing
the reaction in ethyl trifluoroacetate (ETFA) and acetonitrile
resulted in a reduction in yield (9 and 10). Finally, a control
reaction in the absence of p-Toll confirmed that an I(I)/I(III)
manifold was operational (entry 11). An expanded optimization
table is provided in the ESL¥

To explore the scope of this geminal difluorination, a series of
a-(bromomethyl)styrenes were exposed to the standard reaction
conditions (Fig. 2). Gratifyingly, product 2a could be isolated in
80% yield after column chromatography on silica gel. The
parent o-(bromomethyl)styrene was smoothly converted to
species 2b, as were the p-halogenated systems that furnished 2c
and 2d (71 and 79%, respectively). The regioisomeric bromides
2e and 2f (70 and 62%, respectively) were also prepared for
completeness to furnish a series of linchpins that can be
functionalized at both termini by displacement and cross-

Table 1 Reaction optimization®

1()/1(111) catalysis

— — FF
Br
Br 1a 2a

Br

Catalyst loading

Entry Solvent Amine/HF [mol%] Yield” [%]
1 CHCl; 1:4.5 20 72
2 CHCl; 1:6.0 20 >95
3 CHCl; 1:7.5 20 94
4 CHCl; 1:9.23 20 87
5 CHCl; 1:6.0 10 87
6 CHCl; 1:6.0 5 79
7 DCM 1:6.0 20 >95
8 DCE 1:6.0 20 93
9 ETFA 1:6.0 20 84
10 MeCN 1:6.0 20 50
11 CHCl; 1:6.0 0 <5

“ Standard reaction conditions: 1a (0.2 mmol), Selectfluor® (1.5 equiv.),
amine : HF source (0.5 mL), solvent (0.5 mL), p-Toll, 24 h, rt.
b Determined by 'F NMR using a,o,o-trifluorotoluene as internal
standard.
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Fig. 2 Exploring the scope of the geminal difluorinative rearrange-
ment of a-(bromomethyl)styrenes via I(1)/I(ll) catalysis. Isolated yields
after column chromatography on silica gel are reported. X-ray crystal
structure of compound 2n (CCDC 20558927). Thermal ellipsoids
shown at 50% probability.

coupling protocols (2a, 2e and 2f). Modifying the amine : HF
ratio to 1 : 4.5 provided conditions to generate the ‘Bu derivative
2g in 68% yield." Electron deficient aryl derivatives were well
tolerated as is demonstrated by the formation of compounds
2h-2k (up to 91%). Disubstitution patterns (21, 81%), sulfon-
amides (2m, 75%) and phthalimides (2n, 80%) were also
compatible with the standard catalysis conditions. Gratifyingly,
compound 2n was crystalline and it was possible to unequivo-
cally establish the structure by X-ray crystallography (Fig. 2,
lower)."” The C9-C8-C7 angle was measured to be 112.6° (¢f.
115.4° for 2,2-difluoropropane).’ Intriguingly, the C(sp®)-Br
bond eclipses the two C-F bonds rather than adopting
a conformation in which dipole minimization is satisfied (F1-
C8-C9-Br dihedral angle is 56.3°).

Cognizant of the influence of Brgnsted acidity on the regio-
selectivity of I(I)/I(III) catalyzed alkene difluorination,* the
influence of the amine:HF ratio on the fluorination of

Chem. Sci., 2021, 12, 6148-6152 | 6149
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electronically non-equivalent divinylbenzene derivatives was
explored (Fig. 3, top). Initially, compound 3 bearing an o-(tri-
fluoromethyl)styrene motif was exposed to the standard catal-
ysis conditions with a 1:4.5 amine: HF ratio. Exclusive,
chemoselective formation of 4 was observed in 79% yield.
Simple alteration of the amine : HF ratio to 1 : 7.5 furnished the
tetrafluorinated product 5 bearing both the geminal and vicinal
difluoromethylene'® groups (55% yield. 20% of the geminal-
geminal product was also isolated. See ESIT). Relocating the
electron-withdrawing group («-CF; — B-CO,Me) and repeating
the reaction with 1 : 4.5 amine : HF generated the geminal CF,
species 7 in analogy to compound 4. However, increasing the
amine : HF ratio to 1:6.0 led exclusively to double geminal
difluorination (8, 55%).

Similarly, bidirectional geminal difluorination of the
divinylbenzene derivatives 9 and 11 was efficient, enabling the
synthesis of 10 (46%) and 12 (70%), respectively. This enables

Chemoselective difluorination
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Fig. 3 Exploring the synthetic versatility of this platform. (Top)
Leveraging Bronsted acidity to achieve chemoselective fluorination.
(Centre) Bidirectional functionalization. (Bottom) Preliminary valida-
tion of an enantioselective variant.
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Fig.4 Selected modification of building blocks 2a and 2h. Conditions:
(a) NaN3, DMF, 110 °C, 16 h. (b) Pd(OH),/C (10 mol%), EtOH, 1 M HCL, rt,
24 h; (c) CDI, EtzN, THF, 60 °C, 16 h; (d) malonyl chloride, DCM, 0 °C,
2 h.

facile access to bis-electrophilic fluorinated linchpins for
application in materials chemistry.

Preliminary validation of an enantioselective variant® was
achieved using the trisubstituted alkene 13. To that end, a series
of C,-symmetric resorcinol-based catalysts were explored (see
Fig. 3, inset). This enabled the generation of product 15 in up to
18 : 82 e.r. and 71% isolated yield. It is interesting to note that
this catalysis system was also compatible with the chlorinated
substrate E-14. A comparison of geometric isomers revealed
a matched-mismatched scenario: whilst E-14 was efficiently
converted to 16 (75%, 14 :86 e.r.), Z-14 was recalcitrant to
rearrangement (<20%).

To demonstrate the synthetic utility of the products, che-
moselective functionalization of linchpin 2a was performed to
generate 17 (57%) and 18 (87%), respectively (Fig. 4). Finally,
this method was leveraged to generate an API for amyotrophic
lateral sclerosis. Whereas the reported synthesis'” requires the
exposure of o-bromoketone 19 to neat DAST over 7 days,'®
compound 2h can be generated using this protocol over a more
practical timeframe (24 h) on a 4 mmol scale. This key building
block was then processed, via the amine hydrochloride salt 20,
to API 21.

Conclusions

In conclusion, an I(I)/I(I1I) catalysis manifold that facilitates the
difluorinative rearrangement of a-(bromomethyl)styrenes is

© 2021 The Author(s). Published by the Royal Society of Chemistry
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disclosed. In addition to generating electrophiles with a single
geminal difluoro motif, bidirectional processes are presented
together with simultaneous geminal and vicinal difluorination.
Preliminary validation of an enantioselective reaction is
demonstrated, to enable the generation of versatile a-phenyl--
difluoro-y-bromo/chloro esters. Finally, the transformation has
been leveraged to enable the synthesis of an amyotrophic lateral
sclerosis drug: this provides an operationally simple alternative
to common deoxyfluorinating reagents when preparing gem-
difluoro linchpins for contemporary medicinal chemistry.
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