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Catalytic (3 + 2) annulation of donor—acceptor
aminocyclopropane monoesters and indolesy

Vincent Pirenne,@ Emma G. L. Robert® and Jerome Waser @ *

The efficient catalytic activation of donor—acceptor aminocyclopropanes lacking the commonly used
diester acceptor is reported here in a (3 + 2) dearomative annulation with indoles. Bench-stable tosyl-
protected aminocyclopropyl esters were converted into cycloadducts in 46-95% yields and up to 95: 5
diastereomeric ratio using catalytic amounts of triethylsilyl triflimide. Tricyclic indoline frameworks

containing four stereogenic centers including all-carbon quaternary centers were obtained.

rsc.li/chemical-science

1. Introduction

Vicinal donor-acceptor (D-A) cyclopropanes are useful three-
carbon 1,3-zwitterion synthetic equivalents for the synthesis
of carbocyclic scaffolds.” The electronic properties of the donor
and acceptor groups are essential to obtain stable yet reactive
enough push-pull systems. Dicarbonyl motifs are acceptors of
choice for metal-catalyzed ring opening reactions.*? Among the
many possible transformations, (3 + 2) annulations giving
access to five-membered rings are especially useful and have
been thoroughly investigated with several donor substituents,
with a particular focus on aryl® and protected amines® (Scheme
1a). Enantioselective methods have also been reported.*

In contrast, D-A cyclopropanes with a single carbonyl
acceptor have been less studied (Scheme 1b). Such substrates
lead to the formation of one more stereocenter and do not
require a decarboxylation step to remove the diester group.®
However, activation and control over diastereoselectivity is
challenging for these less reactive cyclopropanes. Only rare
examples of (3 +2) annulations have been reported, and they are
often neither catalytic nor stereoselective.’®  Cyclo-
propanecarbaldehydes were mostly suitable in iminium-
enamine catalysis for ring-opening reactions rather than
annulations.® Annulation reactions of cyclopropyl ketones were
performed using stoichiometric Lewis acids such as SnCly,
TiCly, BF;-Et,0 and Me,AICl.” Reactions with less reactive
cyclopropyl monoesters are limited to alkoxycyclopropanes
using silyl triflates or organoaluminium reagents as stoichio-
metric activators.”*® Catalytic activation remains limited to ring
expansion, intramolecular annulation and spirocyclic D-A
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cyclopropanes.” Only one catalytic intermolecular (3 + 2)
annulation of 2-butoxycyclopropanecarboxylate with silyl enol
ethers was described by Ihara and co-workers using bistri-
flimide, but no stereoselectivity was observed.' Furthermore, in
contrast to the numerous reports for annulation of amino-
cyclopropane diesters,’ there is currently no report on the use of
aminocyclopropane monoesters in annulation reactions,
despite the importance of nitrogen-containing building blocks
in synthetic and medicinal chemistry. Phthalimide and succi-
nimide have the appropriate electronic properties in the case of
aminocyclopropane diesters,® but are not donating enough
when a single ester group is present. With carbamate protecting
groups, the ring-opening processes of aminocyclopropane
monoesters are limited to hydrolysis and rearrangements."* A
carbamate-protected aminocyclopropyl ketone was also showed
by our group to react intramolecularly in a formal homo-
Nazarov cyclization."

Annulations of D-A cyclopropanes with indole derivatives
are particularly interesting, as they provide a quick access to
polycyclic indoline scaffolds (Scheme 2). Aminocyclopropanes
are especially attractive starting materials, as the obtained
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Scheme 1 D-A cyclopropanes with one or two acceptor groups in
annulation reactions.
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a. Reaction of cyclopropane diesters with indoles
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e rtto 120 °C N Re ™2
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c. Intermolecular annulation with cyclopropane monoesters
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Scheme 2 Annulations of D—-A cyclopropanes and indoles.

indoline-fused cyclopentylamines are present in the core of
alkaloid natural products, such as vindolinine, pleiomutinine
or huncaniterine A and B.*® 3-Methylindoles were used by Kerr
and co-workers in a ytterbium triflate catalyzed (3 + 2) annula-
tion with cyclopropane diesters (Scheme 2a).'* However, in the
absence of substituent at the C-3 position, ring-opening prod-
ucts were obtained. Ring-opening was also observed with ami-
nocyclopropanes by our group.” Ila and co-workers later
showed that annulation products can be obtained not only with
3-alkylsubstituted, but also with unsubstituted indoles and
aryleyclopropanes, but only using a stoichiometric amount of
boron trifluoride etherate as activator.” Recently, Tang and co-
workers described the in situ formation of unstable tosyl-
protected aminocyclopropane diesters and their use in intra-
molecular annulation with indoles leading to tetracyclic indo-
lines (Scheme 2b).'* By comparison, arylcyclopropyl ketones™
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Scheme 3 Screening of several push—pull systems for the TMS tri-
flimide-catalyzed (3 + 2) annulation of aminocyclopropanes la—f with
1-methylindole (2a).

and alkoxycyclopropyl monoesters® gave annulation products
in good yields, but these methods are not catalytic and are
limited to the synthesis of tertiary stereocenters at the acceptor
position (Scheme 2¢). Low diastereoselectivities are obtained for
several substitution patterns and in the case of alkox-
ycyclopropanes, annulation was successful only for C3-
unsubstituted indoles.

Herein, we describe the first catalytic (3 + 2) annulation of
bench-stable tosyl-protected aminocyclopropane monoesters 1

Table1 Optimization of the (3 + 2) annulation of aminocyclopropane
1d with 1-methylindole (2a)”

OSi
Me _~ OMe
/Me Me 3a-f
TsN TfNH (mol%)
1-methylindole 2a
—_—
DCM (0.1M)
Et0,C -78 °C, time
1d
Entry Tf,NH - Si Time (min)  Yield® (%) dr°
1 5 SiMe; (3a) 30 85 91:9
2 5 SiEt; (3b) 30 91 93:7
3 5 Si-n-Pr; (3¢) 30 87 93:7
4 5 Si-n-Bu; (3d) 30 88 93:7
5 5 SiMe,tBu (3e) 80 90 87:13
6 5 Si-i-Pr; (3f) 30 91 76:24
7¢ 2.5 SiEt; (3b) 30 95 93:7
8¢ 2.5 SiEt; (3b) 30 87 92:8

“ Reaction conditions: 0.1 mmol scale and 0.1 M, 1.05 equiv. of 1-
methylindole (2a), 25 mol% of silyl ketene acetals 3a-f. ? Isolated
yield for the mixture of both isomers. ¢ dr measured from the 'H
NMR spectrum of the isolated mixture. “ On 0.3 mmol scale. ¢ On
0.3 mmol scale and at 0.3 M.

Chem. Sci., 2021, 12, 8706-8712 | 8707


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1sc01127h

Open Access Article. Published on 05 May 2021. Downloaded on 2/9/2026 11:38:53 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Chemical Science Edge Article

(Scheme 2d). With indoles 2 as partners, key for success was the  previous (3 +2) annulations of cyclopropane monoesters that all
use of a silyl bistriflimide as catalyst, generated in situ from silyl required stoichiometric amounts of Lewis acid,’** full conver-
ketene acetal 3 through protodesilylation.””*® In contrast to sion could be achieved with only 2.5 mol% TESNTf, for several
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b. Scope of aminocyclopropanes
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Scheme 4 Scope of the catalytic (3 + 2) annulation of tosyl-protected aminocyclopropane 1 with indoles 2 (reaction on 0.1 to 0.3 mmol scale,
yields are given for the mixture of both isomers). *Reaction performed at room temperature.
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substrates. Furthermore, the method is unique for its tolerance
towards substitution patterns, as it works for both C2- and C3-
substituted indoles and can be used for the first time to intro-
duce a non-symmetrical all carbon quaternary center at the
acceptor position in good yield and high diastereoselectivity.

2. Results and discussion

2.1. Screening of aminocyclopropanes and optimization

Our work started with identifying a suitable push—pull system
(Scheme 3). Aminocyclopropanes 1a—f were used in the (3 + 2)
annulation with 1-methylindole (2a) using Lewis acids as cata-
lysts. Preliminary experiments using TMS triflate led to no
reaction (see ESI}), although such conditions have been
successful for alkoxycyclopropanes.®” Compared to silyl tri-
flates, silyl triflimides have shown superior catalytic activity."”
TMS triflimide was formed through the protodesilylation of
trimethylsilyl ketene acetal 3a with bistriflimide.*® Although the
aminocyclopropyl esters protected by a phthalimide (1a), an
amide (1b) or a nosyl group (1c) were not reactive, the tosyl
protecting group (1d) furnished the cycloadduct 4a in 85% yield
and 91:9 dr. The introduction of an oxazolidinone (1e) or
a ketone (1f) as the electron withdrawing group led to stability
issues and decomposition in presence of TMS triflimide.

With the optimal D-A aminocyclopropyl ester 1d, the influ-
ence of the substituents on the silicon was examined starting
from silyl ketene acetals 3a-f (Table 1). Using trimethylsilyl
ketene acetal 3a (entry 1), the reaction was completed in less
than 30 minutes leading to cycloadduct 4a in 85% yield and
91 : 9 dr. NOESY experiments allowed the determination of the
relative configuration of both isomers (see ESIt). The TES group
(3b) and other tri-n-alkyl silyl groups (3¢ and 3d) improved the
dr to 93 : 7 (entries 2-4). Increasing the bulkiness of the silyl
groups (TBS and TIPS, 3e and 3f) led to a decrease of the dia-
stereoselectivity (entries 5 and 6). The yield was slightly
improved by diminishing the catalyst loading to 2.5 mol% at
0.3 mmol scale without affecting the diastereoselectivity (entry
7). Finally, cycloadduct 4a was obtained in 87% yield and 92 : 8
dr when the reaction was performed at 0.3 M concentration

(entry 8).

2.2. Scope of indole derivatives™

The optimal conditions of entry 7 were then applied to different
indole derivatives 2a-u (Scheme 4a). Indoles 2b-d protected by
a TBS, a benzyl or a PMB group were converted to cycloadducts
4b-d in 78-92% yield and diastereoselectivities =91:9. A
functionalized N-alkyl substituent led to the formation of
compound 4e in similar yield and dr. Free indole gave no
reaction. Indoles 2f-k substituted at the 2 and/or 3-position
leading to sterically more encumbered products 4f-k were
successful. For all substitution patterns, annulation products
were obtained without ring-opening side reactions. Protected
tryptophol and tryptamine gave the desired cycloadducts 4h
and 4i with a quaternary carbon center in 84%/81% yield and
71:29/80:20 dr. Excellent yields and diastereoselectivities
were obtained for alkyl substituents (41 and 4m), a methoxy (4n),

© 2021 The Author(s). Published by the Royal Society of Chemistry
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a protected nitrogen (40) and halogens (4p-s) on the aryl ring.
Other functional groups such as pinacol borane and a tri-
fluoromethyl group were also tolerated (4t and 4u). More elec-
tron withdrawing substituents such as an ester or a nitrile gave
no reaction. X-ray crystal structure analysis of 40*° confirmed
the relative configuration of the cycloadducts. The all-cis
substituted product was the major diastereoisomer in all cases.
The diastereoselectivity decreased with increasing substitution
at C2/C3 position (no substituent: 84 : 16-95 : 5, one substit-
uent: 71 : 29-92 : 8, two substituents: 58 : 42-70 : 30).

2.3. Scope of aminocyclopropanes

The scope of aminocyclopropanes 1 was then examined
(Scheme 4b). These substrates were easily obtained by
copper-catalyzed cyclopropanation of the corresponding
enamides and diazo compounds.”* First,
cyclopropane 1g bearing a tosyl and a benzyl on the nitrogen
as orthogonal protecting groups afforded cycloadduct 5a in
89% yield and 80 : 20 dr. Replacement of the ethyl ester (E)
by a trifluoroethyl ester group was tolerated (5b). More
substituted aminocyclopropanes 1i-n bearing quaternary
stereocenters were then prepared. Bicyclo[4.1.0] amino-
cyclopropane 1i led to the formation of tetracyclic
compound 5c¢ in 75% yield and 67:33 dr. Amino-
cyclopropane 1j bearing a fully substituted center at the
donor position showed some reactivity only at room
temperature, leading to product 5d in 27% yield and >95 : 5
dr. Aminocyclopropanes fully substituted at the carbon
center next to the ester group were more reactive. Alkyl, aryl
and allyl substituents led to the formation of (3 + 2) cyclo-
adducts 5e-g bearing a carbon quaternary center in 78-86%

amino-

Scale up to 3.36 mmol (1.00 g)
2a, R = Me, 90%, dr 93:7
Scale up to 1 mmol
2b, R = TBS, 83%, dr 90:10
2c¢, R =Bn, 83%, dr 91:9
2d, R= PMB, 85%, dr 89:11

COD
/Me N

TsN \R
T,NH (5 mol%), 3b (25 mol%)

& DCM (0.3 M), -78 °C, 30 min
EOLC

Scheme 5 Scale up experiments and product modifications. Reaction
conditions: (a) DIBALH, THF, 0 °C; (b) Li/naphthalene, THF, rt; (c) TBAF,
THF, 0 °C.
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a. Control experiments ! b. Mechanism Me%OMe
: Me 3b
Me 1-methylindole (2a) : B TH,NH
TsN, Tf,NH (2.5 mol%) ;
% 3b (25 mol%) : EO£ 4a
: " ‘CO,Et
DCM, -78 °C, 10 min !
EtO,C ! SINTf,
(Eq. 1) : Me Me
' . o =TES
ent-1d (97% ee) 4a, 62%, <5% ee ' 4a', minor isomer 4a, major isomer
OSi-n-Bus (major dia., dr 85:15) T
Me _— '
oM L
e ' H NMeTs NMeTs
Me : Sio
Me— '
Me 3d (25 mol%) NTs ' EtO
s e H =~
TSN 1-methylindole (2a) ; : H 03/
DCM, -78 °C, 30 min R AV
EtO,C i
? (Ea.2) ;
cis-1d 4a, 80%, dr 92:8 :
Scheme 6

ylindole (2a) (a); speculative mechanism proposal (b).

yield and 80 : 20-88 : 12 dr.™ To the best of our knowledge,
such indoline products bearing a quaternary stereocenter
have never been accessed before via an annulation of D-A
cyclopropanes. When an intramolecular reaction was per-
formed with aminocyclopropane 1n, the desired product 5h
was obtained in >95:5 dr, but with another relative
configuration (supported by NOESY experiments, see ESIt),
in agreement with the results reported by Tang and co-
workers using aminocyclopropane diesters.*®

We further performed the reaction with 1 mmol of amino-
cyclopropane 1d with protected indoles 2b-d and obtained
similar yields and dr (Scheme 5). With 2a, a further scale up to
1.00 g (3.36 mmol) was done, giving 4a in 90% yield and 93 : 7
dr. After reduction of the ester on 4c¢ with DIBALH, the tosyl
group was removed using reductive naphthalene/lithium
conditions leading to amino alcohol 6. Due to the cis orienta-
tion of the nitrogen and the ester, a bridgehead lactam 7 was
produced in 43% yield when tosyl removal was performed
directly on 4c. Finally, the TBS protecting group was removed
with TBAF producing free indole 8 in 82% yield. Unfortunately,
attempts to epimerize the ester center through enolate forma-
tion followed by reprotonation were not successful.

We then attempted to gain information about the reaction
mechanism by starting with enantiopure aminocyclopropane
ent-1d (Scheme 6a, eqn (1)).>* Racemic cycloadduct 4a was ob-
tained in the TES triflimide-catalyzed (3 + 2) annulation with 2a
(eqn (1)). Moreover, using cis-substituted cyclopropane cis-1d
led to the formation of 4a with the same diastereoselectivity as
observed for trans-substituted cyclopropane 1d (eqn (2)).
Considering these results, the formation of an open-chain
reactive intermediate is probable (Scheme 6b). The proto-
desilylation of silyl ketene acetal 3b produces the active TES
triflimide catalyst,"”*®* which then activates aminocyclopropane

8710 | Chem. Sci, 2021, 12, 8706-8712

Sl *Wz
@/N%Q‘”v ==N7 \~/
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Influence of the absolute and relative configuration of the starting aminocyclopropane 1d on the (3 + 2) annulation with 1-meth-

1d through silylation of the ester. Ring-opening leads to imi-
nium I, which is attacked by indole 2a at the most nucleophilic
position to give iminium II. A Mannich reaction closes then the
ring delivering the (3 + 2) cycloadduct 4a. The diaster-
eoselectivity is controlled by minimizing steric repulsions
between the silyl enol ether and the indole ring (II vs. III).

3. Conclusion

In conclusion, a (3 + 2) annulation reaction of tosyl-protected
aminocyclopropane monoesters with indoles catalyzed by trie-
thylsilyl triflimide was disclosed. The tricyclic indoline products
were obtained in excellent yields, high degrees of stereo-
selectivity and short reaction times (less than 30 minutes) with
the formation of four stereocenters in one operation, including
quaternary centers. The method gives access to complex
nitrogen-substituted polycyclic indoline scaffolds of high
interest for synthetic and medicinal chemistry.
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