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Photodynamic therapy (PDT) is a promising treatment for cancers such as superficial skin cancers,
esophageal cancer, and cervical cancer. Unfortunately, PDT often does not have sufficient therapeutic
benefits due to its intrinsic oxygen dependence and the limited permeability of irradiating light. Side
effects from “"always on” photosensitizers (PSs) can be problematic, and PDT cannot treat tumor
metastases or recurrences. In recent years, supramolecular approaches using non-covalent interactions
have attracted attention due to their potential in PS development. A supramolecular PS assembly could
be built to maximize photodynamic effects and minimize side effects. A combination of two or more
therapies can effectively address shortcomings while maximizing the benefits of each treatment
regimen. Using the supramolecular assembly, it is possible to design a multifunctional supramolecular PS

to exert synergistic effects by combining PDT with other treatment methods. This review provides
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Accepted 4th April 2021 a summary of important research progress on supramolecular systems that can be used to combine PDT

with photothermal therapy, chemotherapy, and immunotherapy to compensate for the shortcomings of
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PDT, and it provides an overview of the prospects for future cancer treatment advances and clinical

rsc.li/chemical-science applications.

(*0,). Most PSs follow the type IT mechanism, which is why most
photodynamic reactions are oxygen dependent.® The type I and
type II mechanisms can also occur simultaneously, and the
structural characteristics of a PS and its environment can affect
which mechanism dominates the reaction.

1. Introduction
1.1 Brief introduction to PDT

1.1.1 Photophysical and photochemical mechanisms of
PDT. Photodynamic therapy (PDT) is a process by which

a photosensitizer (PS) activated by light releases energy in a way
that produces cytotoxicity. When a PS is activated by visible or
near-infrared (NIR) light in the wavelength range of 400-
900 nm, it is transformed from the ground singlet state (S,) to
the excited singlet state (S;) (Scheme 1).* To return from the S,
state back to the stable Sy, it can generate heat using non-
radioactive decay pathways, or it can emit radiation as fluores-
cence. Because the S; state has a very short lifetime (in nano-
second units), it reaches the excited triplet state, which has
a relatively long lifetime, through intersystem crossing (ISC).
Depending on the photochemical reaction that occurs when
energy is released from the triplet state, PDT progression is
classified into two paths.” The first is a type I mechanism, which
generates a superoxide anion radical (O, ), hydrogen peroxide
(H,0,), and hydroxyl radicals (HO") by transferring electrons to
the adjacent substrates. The type II mechanism transfers energy
directly to molecular oxygen (O,) to produce a singlet oxygen
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1.1.2 PDT-mediated cytotoxicity. When tumor cells absorb
a PS, it is localized in several organelles (the mitochondria,
lysosomes, endoplasmic reticulum, plasma membrane, etc.),
and then it produces highly cytotoxic reactive oxygen species
(ROS) through the PDT process. The extremely short-lived ROS
cause cell damage only within a 10-55 nm range around the PS.*
Apoptosis is the major mode of cell death that is commonly
caused by PDT.* The mechanism that causes necrosis is not yet
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Scheme1l Modified Jablonski diagram of the photophysical processes
involved in PDT.
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fully understood, but severe mitochondrial membrane damage
can cause necrosis.® The autophagy pathway breaks down
organelles using lysosomes and can be triggered by oxidative
stress signals from ROS.” Damage to organelles caused by the
photodynamic reaction of the localized PS can directly kill
tumor cells through apoptosis and non-apoptotic (necrotic, and
autophagy) pathways.® PDT also affects tumor microvessels,
closing blood vessels and thereby blocking the delivery of
oxygen and nutrients, causing severe tissue hypoxia.>'® These
effects upregulate the expression of the vascular endothelial
growth factor and cyclooxygenase in tumor tissue after PDT.*"**
When cells and vascular systems are stressed by PDT, a local
inflammatory response is triggered, releasing cytokines and
stress-responsive proteins,” which can induce a variety of
immune responses, such as an influx of leukocytes, which are
involved in tumor removal activities.**

1.1.3 History of clinical applications of PDT. Light has
been used to treat diseases since the ancient civilizations of
Egypt, China, Greece, India, and Rome.” Despite its long
history, the first literature to report the concept of PDT using
light-responsive dyes was the work of Oscar Raab in the 1900s.
He observed that acridine orange that accumulated in Para-
mesia showed cytotoxicity after exposure to light.*® His super-
visor, Hermann von Tappeiner, confirmed that atmospheric
oxygen plays an important role in this toxicity and defined this
reaction as a ‘photodynamic action’.’” The discovery of hema-
toporphyrin (HP) was a very important event in the history of
PDT. In 1961, Lipson discovered that a mixture of hematopor-
phyrin derivatives (HpDs) obtained after acid treatment with HP
emitted tumor-localized fluorescence.’® After that, HpD
mixtures were found to have therapeutic effects under incan-
descent light irradiation.” The clinical application of PDT as we
know it today is due to efforts led by Dougherty in the 1970s.
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After his work in 1975 on treating tumors in mice with HpD,*
he treated various patients with tumors and confirmed the
therapeutic effects of HpD.**** The exact composition of HpDs
has still not been determined, though it is a compound of
various porphyrins. However, the main active ingredient is
dihematoporphyrin ether (DHE) that is produced when hema-
toporphyrin is converted to HpD by acetylation. The work
establishing the activity of DHE led to the development of
a more purified and better-characterized version of HpD, Pho-
tofrin®, which was first approved by Canadian regulatory
authorities for the treatment of bladder cancer. Photofrin® was
approved by the U.S. Food and Drug Administration (FDA) in
1995 as a PS for the treatment of esophageal cancer.”*** This
substance is still the PS most frequently approved for clinical
use. Since the approval of Photofrin®, the first-generation PS,
many new PSs have been developed and approved.??® Second-
generation PSs, such as 5-aminolevulinic acid (ALA) deriva-
tives and chlorin derivatives, generally have a longer absorption
wavelength than the first-generation PS. ALA, a porphyrin
precursor, was approved by the FDA in 1999 under the name
Levulan® for the treatment of actinic keratoses. Foscan®,
a chlorin derivative, was approved in Europe in 2001 for the
treatment of a variety of tumors. In addition, several candidates,
such as phthalocyanine derivatives and texaphyrin derivatives,
are in clinical trials as PSs for tumor treatment (Table 1).?

1.1.4 Development of photosensitizers. In addition to
classical PSs that have been approved or are in clinical trials,
studies are being conducted to develop new, more effective PSs.
An ideal PS should have a long wavelength with a deep trans-
mission depth as its maximum absorption wavelength, and the
ISC efficiency between the excited singlet state and the triplet
state must be high. To date, the potential of many organic and
inorganic substances as PSs has been explored.”

Table 1 Clinically applied photosensitizers. Adapted with permission from ref. 8. Copyright 2011 American Cancer Society, Inc”

Wavelength
Photosensitizer Structure (nm) Approved Trials Cancer types
Porfimer sodium (Photofrin) (HpD)  Porphyrin 630 Worldwide Lung, esophagus, bile duct, bladder,
brain, ovarian
ALA Porphyrin 635 Worldwide Skin, bladder, brain, esophagus
precursor
ALA esters Porphyrin 635 Europe Skin, bladder
precursor
Temoporfin (Foscan) (mTHPC) Chlorine 652 Europe United States  Head and neck, lung, brain, skin, bile
duct
Verteporfin Chlorine 690 Worldwide United Ophthalmic, pancreatic, skin
(AMD) Kingdom
HPPH Chlorin 665 United States  Head and neck, esophagus, lung
SnEt2 (Purlytin) Chlorin 660 United States  Skin, breast
Talaporfin (LS11, MACE, NPe6) Chlorin 660 United States  Liver, colon, brain
Ce6-PVP (Fotolon), Ce6 derivatives Chlorin 660 Belarus, Russia Nasopharyngeal, sarcoma, brain
(Radachlorin, Photodithazine)
Silicon phthalocyanine (Pc4) Phthalocyanine 675 United States ~ Cutaneous T-cell lymphoma
Padoporfin (TOOKAD) Bacteriochlorin 762 United States  Prostate
Motexafin lutetium (Lutex) Texaphyrin 732 United States  Breast

¢ Abbreviations: ALA, 5-aminolevulinic acid; AMD, age-related macular degeneration; Ce6-PVP, chlorin e6-polyvinypyrrolidone; HPD,

hematoporphyrin derivative; HPPH, 2-(1-hexyloxyethyl)-2-devinyl
m-tetrahydroxyphenylchlorin; SnEt2, tin ethyl etiopurpurin.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Organic PSs have relatively high biocompatibility, which is
advantageous in clinical trials. Because precise molecular
design and modification are possible, it is easy to introduce
characterization groups, so it is easy to modify them to have
better therapeutic effects. First-generation organic PSs include
porphyrin derivatives, such as the aforementioned HpD.
However, it has a short excitation wavelength, low tumor
selectivity, and long-term accumulation in normal tissues and
the skin, causing light sensitivity.”® Second-generation PSs, such
as porphyrin derivatives and chlorin derivatives, have a clear
composition and are excited at longer wavelengths to take
advantage of light that penetrates deeper into tissue.” In
addition to classic dyes with a tetrapyrrole structure, various
synthetic dyes are being tested for use as PSs. A variety of
cyanine dyes can be used in PDT.***" Indocyanine green (ICG) is
a water-soluble, anionic, tricarbocyanine dye approved by the
FDA. ICG has the property of generating heat and ROS upon NIR
irradiation.’>* Methylene blue is a widely used dye that is also
used to treat basal cell carcinoma, melanoma, and fungal
infections.** Rose bengal, which has a long history as a photo-
active dye, has also been studied for anticancer applications.*
BODIPY dye can function as a PS if a halogen atom is added or
an electron donating group is introduced to increase the triplet
yield.***® In addition, squaraine dyes and transition metal
compounds such as ruthenium(u) polypyridyl complexes are
being studied as PSs.***!

Inorganic PSs usually have stronger light absorption and
higher light stability than organic PSs. Photocatalysts such as
titanium dioxide (TiO,), semiconductors (CdSe, ZnO, etc.), and
Ag, Pt, and Au nanoparticles have been used as inorganic
PSs.*>*¢ Unlike most of the organic PSs, which have a high
dependence on the type II PDT process, some inorganic PSs can
produce radicals or radical ions without oxygen dependence via
the type I photoreaction mechanism, giving them a high value
in treating hypoxic tumors.*” However, inorganic PSs have the
fatal disadvantage of low biocompatibility, so many issues must
be addressed before clinical applications will be feasible.

The main topic in the development of third-generation PSs is
delivery systems. The use of nanosystem is an approach to
improve the water solubility of existing PSs and increase
delivery efficiency.**** Researchers have tried various methods
to use the aforementioned TiO, and ZnO inorganic nano-
particles as photodynamic therapeutics.** Metallic nano-
particles such as gold nanoparticles can exhibit photothermal
therapy (PTT) effects and can be used as carriers for PSs.*
Micelles or liposomes made from biodegradable polymers can
be effective nanosystems that have high biocompatibility and
plasma circulation times.*® Nanoparticles are endowed with
passive targeting ability, i.e., they accumulate intensively in
tumor tissue through enhanced permeability and retention
(EPR) effects.?** In addition, active targeting strategies that use
a targeting ligand or a tumor microenvironment reactive group
on the surface of a nanocarrier can further improve tumor
selectivity.>>>®

1.1.5 Limitations of PDT. Compared with traditional
treatments such as surgery, chemotherapy, and radiation
therapy, PDT offers several advantages. As a non-invasive
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method, PDT can be used for end-stage cancer patients with
reduced stamina because it carries a low risk of bleeding or
complications. In addition, it is easy to change the light irra-
diation site, time, and power, allowing precise control of treat-
ment. Nonetheless, significant drawbacks limit the clinical
application of PDT. First, treatment of deep tumors is difficult
due to the shallow depth of light transmission through bio-
logical tissues.”” Second, the PDT process, especially the type II
pathway, is oxygen-dependent, which greatly hinders the ther-
apeutic effect in hypoxic tumor microenvironments.*® Third,
residual PSs remaining in the skin or other normal tissues can
make patients sensitive to light, producing a risk of side
effects.”® Finally, because most PSs are highly conjugated
hydrophobic molecules, they aggregate strongly in aqueous
solutions. PS aggregation generally quenches photodynamic
activity, thereby interfering with PS operation in vivo. To expand
the successful clinical applications of PDT, future PS develop-
ment must improve these shortcomings.

1.2 Combination treatment with PDT

It is difficult to completely eradicate solid tumors using PDT
treatment alone because of the inherent limitations just dis-
cussed. Even if delivery and selectivity are improved, PDT is
activated by light irradiation, so it is difficult to treat deep
tissues or metastatic tumors out of the reach of light. Therefore,
PDT is generally combined with other types of treatments to
complement the shortcomings and maximize the strengths of
each treatment and ideally produce synergistic effects.*

PTT is not oxygen dependent, so it can complement PDT that
uses oxygen to generate ROS. In addition, the increase in the
local temperature caused by PTT promotes blood flow, improves
drug delivery efficiency, and can alleviate hypoxia in tumor
tissue. Supramolecular PSs function not only as therapeutic
agents, but also as carriers, and can thus increase the efficiency
of delivering hydrophobic anticancer drugs to the tumor site. A
combination of phototherapy and chemotherapy reduces the
likelihood of tumor recurrence after PDT. Immunotherapy, the
most popular cancer treatment therapy in recent years, can offer
synergistic effects with PDT. Tumor cells that are killed by light
therapy have been shown to amplify the antitumor immune
response by triggering the release of immune-inducing
substances, thereby overcoming the low immune response
rate that is the biggest obstacle to clinical applications of cancer
immunotherapy.

1.3 Supramolecular approach to constructing
nanophotosensitizers

With the development of nanotechnology, supramolecular self-
assembled PSs that use non-covalent interactions are drawing
attention as innovative nanomaterials.®® Supramolecular
chemistry combines two or more molecules with non-covalent
forces such as electrostatic interactions (ions, hydrogen
bonding, and halogen bonding), -7 interactions, host-guest
interactions, hydrogen bonding, and metal coordination. In
particular, intermolecular interactions with PS molecules
caused by supramolecular self-assembly can affect ROS

© 2021 The Author(s). Published by the Royal Society of Chemistry
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production.®” The internal conversion rate and contact
quenching, which change depending on the intermolecular
distance, can control fluorescence emissions and PDT and PTT
efficiency. Controlling the ROS decrease or increase in cells is
important because it can be used to control PSs that are present
in an “always on” state to reduce side effects or produce
enhanced PDT effects. For this reason, the application of
supramolecular self-assembled nanoparticles to PDT therapy
has been accelerating in recent years.®® An even more attractive
feature of supramolecular chemistry is that it can break the
subtle balance maintained by assembled nanosystems using
small changes in pH, and temperature, or a trigger in the
surrounding environment.** This property can be used to
design activatable nanoassemblies specific to the tumor
microenvironment.

1.3.1 Reduction of ROS production by supramolecular
formation. Direct contact between molecules can produce
strong quenching of fluorescence and ROS generation. This is
attractive because it can be used as a control strategy to prevent
unwanted photodynamic activation from occurring before the
PS reaches the target tissue. If supramolecular assembly PSs are
designed to react to triggers that dissolve aggregation, they can
be switchable. Inducing an appropriate supramolecular
assembly is an efficient approach to induce desirable photo-
physical changes without causing chemical changes. Xing et al.
reported a co-assembly strategy for GO, albumin, and a PS
(chlorine e6, Ce6). The high level of aggregation caused by direct
contact between the GO and Ce6 meant that the nano-
composites produced less ROS than free Ce6. However, the
assembly underwent enzymatic degradation in intracellular
lysosomes and then exhibited very high fluorescence intensity.*
Liu et al. also reported a supramolecular PS that reduces ROS by
using the self-quenching state of tannic acid and Ce6. Fluo-
rescence quenching and a reduced ability to produce ROS were
observed after cell internalization.®® In addition, a supramolec-
ular assembly can induce “supramolecular photothermal
effects.”® In a densely packed system, intrinsic fluorescence is
severely dissipated by increased internal conversion (i.e., a non-
radiative process), and the remaining energy is converted into
heat. This mechanism is similar to the aggregation caused
quenching (ACQ) effect and can significantly improve the pho-
tothermal conversion efficiency of supramolecular assemblies.
Recently, the Yoon group observed fully quenched fluorescence
and reduced 'O, production following the direct self-assembly
of two water-soluble phthalocyanine derivatives. These experi-
ments produced nanoassemblies with high photoacoustic and
photothermal activity.®®

1.3.2 Increasing ROS production through supramolecular
formation. Enhancing the ISC efficiency can increase ROS
generation. Several recently published studies have reported
that coordinating certain metals or introducing heavy atoms
can increase the ROS production of PSs.®*”° Guo et al intro-
duced platinum (Pt) to increase the intersystem efficiency of the
BODIPY fluorophore, and found that nanoparticles composed
of Pt-BODIPY showed improved 'O, production ability.”
Aggregation generally induces self-quenching, but supramo-
lecular approaches of molecules that are bulky and space-

© 2021 The Author(s). Published by the Royal Society of Chemistry
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consuming can prevent self-quenching by aggregation. In
such systems, fluorescence emissions and photophysical
processes such as ISC can be improved on a principle similar to
the aggregation-induced emission (AIE) effect.”” The Liu group
applied nanoparticles from materials with AIE properties to
PDT.”»"*  Adjusting the distance between aggregated
compounds can also control the photothermal conversion
performance. In a study carried out by the Tang group, chro-
mophores kept far apart by a 2-decyl myristyl group maintained
high photothermal efficiency.” The energetic stabilization of
the twisted intramolecular charge transfer state increases pho-
tothermal properties by ACQ. On the other hand, closely
aggregated chromophores inhibit intramolecular motion and
charge transfer, resulting in the emission of less light and heat.

1.3.3 Photophysical changes by supramolecular assembly.
Supramolecular assembly can cause red or blue absorption
shifts by means of J-type or H-type aggregation.” The ] aggre-
gates involved in shifting absorption toward long wavelengths
are attracting particular scientific attention because they could
enable the development of a PS capable of absorbing a wave-
length long enough to be suitable for bio-applications. For
example, the BODIPY derivative compound reported by He et al.
exhibits an absorption peak with a red shift of about 100 nm in
the supramolecular assembly form compared with the mono-
mer form.”” This suggests the formation of J-shaped aggregates
of BODIPY molecules. Cheng et al. reported that aza-BODIPY-
lipid building blocks self-assemble into liposomal nano-
particles via J-aggregation. These particles have an absorption
wavelength in the NIR region and photoacoustic properties.”

1.3.4 Increasing light stability through supramolecular
assembly. Supramolecular encapsulation can also be a photo-
stabilizing strategy. Self-assembled molecular capsules such
as cyclodextrins, cucurbit[7]urils, and rotaxanes increase the
photostability of fluorescent dyes.”®*® Supramolecular assembly
preserves the photophysical and photochemical properties of
chemically unstable species by reducing the chance that
monomer molecules will come into contact with the external
environment or solvent.

1.4 Supramolecular approach to multimodal therapy

This review article summarizes the use of supramolecular
assemblies to make nanostructured PSs. The supramolecular
approach can improve the photophysical efficiency of PSs, and
supramolecular assemblies such as micelles and liposomes can
be used to carry drugs. Synergistic interactions between PDT
and other treatments that can be achieved through simple
supramolecular assemblies can produce a much stronger anti-
cancer effect than either treatment alone, along with providing
high stability, photoactivity, and tumor targeting ability.

2. Supramolecular agents to combine
PDT and PTT

PTT is another non-invasive phototherapy strategy that uses
PSs. Unlike PDT, which has to generate ROS to kill cancer cells,
photothermal agents excited by light release energy as heat

Chem. Sci., 2021, 12, 7248-7268 | 7251
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through non-radiative decay. Localized overheating caused by
PTT damages the surrounding cell membranes or causes
protein denaturation. In addition to killing cancer cells, pho-
tothermal agents offer the possibility of photoacoustic (PA)
imaging. PA imaging is the transformation of sound waves
generated by thermal expansion due to the PTT effect into visual
signals. The generated sound waves enable imaging of deep
tissues with minimal signal loss.

The most frequently studied photothermal materials are
nanoparticles of precious metals such as Au, Ag, and Pt.*
Although they have high photothermal conversion efficiency,
they are expensive and have low biodegradability, making them
largely inappropriate for biomedical applications. Carbon
materials such as graphene and carbon nanosheets have also
been studied, but their NIR absorption capacity is poor.*
Recently, metallic-nonmetallic compounds such as CuS and
organic semiconducting nanomaterials have been developed as
photothermal agents.*® Organic nanomaterials can solve the
non-biocompatibility problem of inorganic photothermal
materials, but their low photothermal conversion efficiency and
complex manufacturing processes remain limitations.®*

The difference between PDT and PTT is that PTT does not
depend on the oxygen concentration. Therefore, when they are
used in combination, PTT can complement the oxygen depen-
dence of PDT. In addition, the heat generated by PTT can
increase blood flow within the tumor to promote PS delivery to
the cells and enrich the tumor oxygen levels, increasing PDT
efficiency. Furthermore, multimodal imaging can use both the
fluorescence signal of the PDT and the PA signal caused by the
photothermal effect. Wang et al. connected Ce6 to a gold
nanorod surface using an aptamer switch probe.* The conju-
gated PS provided a significantly improved therapeutic effect
compared with PDT or PTT treatment alone. Liu et al. achieved
good PTT/PDT synergies by loading ICG molecules onto
upconversion nanoparticles.*®

Another notable fact about combining PDT and PTT is that
self-assembly of PSs for PDT often induces supramolecular
photothermal effects.?” For example, Lovell et al. self-assembled
a lipid-mimicking molecule containing pyropheophorbide-
a into nanovesicles called “porphysomes.”®® These vesicles
were capable of fluorescence quenching, PA imaging, and PTT,
and they showed an activatable fluorescence signal upon tumor
accumulation. Tumor-bearing mice showed complete tumor
remission and 100% survival 28 days after porphysome
administration and laser treatment. Furthermore, porphysomes
can be loaded with chemotherapeutic agents and radiolabeled,
making them a very promising therapeutic molecule. The
porphyrin-peptide assembled nano-dots reported by Zou et al.
achieved high-efficiency photothermal energy conversion by
completely quenching fluorescence and inhibiting the genera-
tion of ROS with strong m-stacking.®® Consisting of a single
component, this material acquired photothermal and PA
properties through self-assembly. In the sections that follow, we
introduce a variety of methods for engineering synergistic
photodynamic and photothermal nanosystems using supra-
molecular assembly.

7252 | Chem. Sci, 2021, 12, 7248-7268
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2.1 Single-component supramolecule—supramolecular
photothermal effects

The photothermal effects induced by supramolecular assembly
make possible an activatable supramolecular nano-
photosensitive agent. In 2017, Li et al. announced that
a phthalocyanine derivative can function as a photothermal
substance when self-assembled and then be partially decom-
posed by proteins in vivo and act as a photodynamic substance
(Fig. 1).*° The system can function as a one-for-all system con-
taining single components. Compared with the monomer, the
absorption spectrum of the nanostructure (NanoPcTBs) was
blue-shifted and expanded. In reference to Kasha's exciton
theory, the H aggregate was formed by face-to-face stacking.
This supramolecular assembly suppressed fluorescence emis-
sions through enhanced ISC, which resulted in super-
quenching of fluorescence emissions and high photothermal
activity. When the NanoPcTBs were irradiated with a laser, the
temperature increased by more than 33° compared with the
results with pure water and generated a PA signal that had
a high correlation with the photothermal effect. As a result, the
NanoPcTBs achieved photothermal activity and PA imaging
through supramolecular assembly, making them a material
suitable for fluorescence imaging and PDT activation with an
avidin trigger. The nanostructures actively and passively accu-
mulated in the tumor, which was confirmed by fluorescence
and PA imaging after an in vivo injection, and the photodynamic
efficacy was good, inhibiting 40% of tumor growth after laser
irradiation. This very promising tumor-targeting fusion therapy
with its nanostructure formation method enables synergistic
treatment by inducing photothermal effects from self-
assembled supramolecular formations of photodynamic
agents, and it minimizes side effects through switchable
photoactivity.

In 2019, Song et al. developed organic photosensitizers that
can initiate both PTT and PDT with a single wavelength of light
(Fig. 2). Their designed diiodo-distyryl-TEG-
borondipyrromethene (TBDP) forms stable nanoparticles
(TBDP NPs) in aqueous solutions and has photothermal and
photodynamic efficacy. In their intracellular experiment, irra-
diation with 635 nm light generated both a single antioxidant
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Fig. 1 Schematic illustration of the assembly and partial disassembly
processes of NanoPcTBs. Reproduced with permission from ref. 90.
Copyright 2017, American Chemical Society.
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Fig. 2 Chemical structure of TBDP and schematic illustrations of the
therapeutic process of TBDP NPs. Adapted with permission from ref.
91.

and heat, producing excellent phototoxicity and light stability.
Excellent phototoxicity was also confirmed in in vivo antitumor
experiments.

A two-dimensional covalent organic framework (COF) can
control the orderly spatial arrangement of organic molecules.**
In 2019, Wang et al. reported a strategy to provide simultaneous
PDT and PTT using a porphyrin-based COF of nanoparticles
(COF-366 NPs) (Fig. 3).” The ordered spatial arrangement of the
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Fig.3 Schematic illustration of the formation of COF-366 NPs and the
phototherapy process. Reproduced with permission from ref. 93.
Copyright 2019, Elsevier Ltd.
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COF-366 NPs reduced the aggregation and quenching of
porphyrin, which improved ROS generation over that with
single molecules. It also improved NIR absorption, making it
possible to implement PA imaging and induce PTT. The COF-
366 NPs provided simultaneous PDT and PTT in tumor-
bearing mice irradiated with a single-wavelength light source.

2.2 Co-assembly of PDT and PTT components

The simplest strategy for combining PDT and PTT would be the
supramolecular assembly of photodynamic and photothermal
agents. In a study by Yu et al., porphyrin derivatives (Pp4N) for
PDT and graphene nanoribbons (GNR-PEO2000) that exhibit
PTT functionality were supra-molecularly assembled through
electrostatic attraction and then used to treat bacterial infec-
tions (Fig. 4).** The negatively charged bacterial cell wall inter-
acted strongly with the Pp4N, a cationic porphyrin
functionalized with four ammonium groups, which effectively
treated the bacterial infections. Transmission electron micros-
copy (TEM) confirmed that the Pp4N aggregate was adsorbed
onto GNR-PEO2000. Because the fluorescence intensity of the
Pp4N increased as the ratio of GNR-PEO2000 increased during
supramolecular assembly, the adsorption of Pp4N nano-
particles onto the GNR surface reduced the degree of aggrega-
tion, thereby reducing the aggregation-induced quenching
effect and allowing the PS to work even in an aqueous solution.
In addition, this supramolecular assembly provided much
improved photostability compared with commercially available
PSs. The Pp4N/GNR-PEO2000 nanocomposite acts as an excel-
lent dual-mode PS by performing both ROS production (in PDT)
and temperature elevation (in PTT) when irradiated with light at
660 nm and 808 nm, respectively. The system achieved the
impressive antimicrobial effect of completely killing Gram-
positive, Gram-negative, and drug-resistant bacteria both in
vitro and in vivo.

In 2018, Han et al. developed oxygen-independent PDT and
PTT systems (Fig. 5).* Three-block copolymer PEG-b-PCL-b-
PPEMA co-encapsulates cypate and singlet oxygen-donor
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Sl e PEO chains

Electrostatic

Fig. 4 Structure of Pp4N and GNR-PEO2000 and schematic illustra-
tions of the double light-activated photodynamic and photothermal
therapy for drug-resistant bacteria. Reproduced with permission from
ref. 94. Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim.
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dent photothermal/photodynamic  therapy. Reproduced with
permission from ref. 95. Copyright 2018, Elsevier B.V.

diphenylanthracene endoperoxide (DPAE) via self-assembly to
obtain a new synergistic nano-micelle system (C/O@N-Micelle).
The micelles exhibited 2.1-fold improved internalization under
tumor pH conditions compared with neutral conditions. Under
808 nm NIR irradiation, cypate can generate strong heat by the
PTT process, which induces the thermal cycle regression of
DPAE to produce singlet oxygen. The oxygen-independent
photothermal-induced PDT and PTT combination effectively
inhibited tumor growth without causing significant systemic
toxicity.

Gong et al. reported a multifunctional polymeric nano-
micelle system containing IR825, a NIR dye, and photosensi-
tive Ce6.°° They first made a Ce6-grafted amphiphilic polymer
(C18PMH-PEG-Ce6) and then used it to encapsulate IR825 and

S §

Self-assembling

e Gadolinium . IR825

0 Chlorin e6

Fig. 6 A scheme showing the structure of the IR825@C18PMH-PEG-
Ce6 nano-micelles. Reproduced with permission from ref. 96.
Copyright 2014, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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create IR825@C18PMH-PEG-Ce6 nano-micelles containing
both a PS and a photothermal agent (Fig. 6). Ce6 also acts as
a chelating agent for Gd**, enabling magnetic resonance (MR)
imaging. With their high NIR absorbance, these theranostic
micelles can be used as contrast media for triple mode MR,
fluorescence, and PA imaging. The synergistic antitumor effect
of the combined PTT and PDT was confirmed in a tumor-
bearing mouse model.

To combine PTT and PDT, Chen et al. developed nano PSs
using AIE materials (Fig. 7).°” The novel AIEgen MeO-TPE-indo
(MTi) can selectively target the mitochondria and effectively
generate ROS. The authors formed PMTi, a nanocomposite of
MTi and polydopamine nanoparticles by w-m lamination and
hydrogen bonding. Polydopamine has strong absorbance and
a high photothermal energy conversion efficiency in the NIR
region. The resulting PMTi nanoparticle inhibited the growth
rate and volume of mouse tumors in vivo when it was activated,
respectively, by white light and an NIR laser.

In 2020, Wang et al. reported a PDT-PTT supramolecular
assembly with the ability to supply its own oxygen (Fig. 8).” The
photothermal agent polydopamine, the photodynamic agent
Ce6, and hemoglobin (Hb) formed supramolecular assemblies
([PHC]PP@HA NPs). The rapid oxidation that hindered Hb's
functioning as an oxygen donor was prevented through supra-
molecular assembly with polydopamine.®*'*® In addition, as
reported by a previous study,'** the combination of NIR dye and
polydopamine can improve photothermal efficiency. Therefore,
the supramolecular assembly in this design helped to overcome
the hypoxia of the tumor microenvironment and increase
photothermal efficiency. Polydopamine, Hb, and Ce6 formed
nanoparticles under the ideal ratio conditions, and then they
were packaged in polymer micelles and surface-modified with
hyaluronic acid. The benzoimine bond between the poly(-
ethylene glycol) (PEG) and poly(ethylenimine) constituting the

mitochondria targeted

o
'

PDA Nanoparticles

Fig. 7 Chemical structure of MTi and schematic illustration of the
mitochondria-targeting white-light/NIR laser-activated photody-
namic and photothermal therapy of the PMTi nanoparticle. Adapted
with permission from ref. 97. Copyright 2019, WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim.
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Fig. 8 Schematic illustration of the design and preparation of [PHC]
PP@HA NPs for synergistic tumor PTT and PDT. Reproduced with
permission from ref. 98. Copyright 2020, American Chemical Society.
All rights reserved.

micelles is unstable under acidic conditions. Therefore, when
the nanocapsule reached the tumor site, it degraded rapidly
through the breaking of the benzoimine bond. Because the
breakdown of nanosystems is faster in actively growing tumors
and weaker in areas with weakly active tumor tissue, the effi-
ciency of the treatment can be adjusted to match the tumor
activity. This intelligent feedback treatment strategy can
prevent damage to normal tissue. The [PHC]PP@HA NP showed
strong absorption in the NIR region and achieved a temperature
increase of 38.1 °C, much higher than that of free Ce6 and
polydopamine, within 10 minutes of irradiation with an 808 nm
laser. Laser irradiation at 670 nm followed by laser irradiation at
808 nm induced rapid ROS generation. In vivo experiments
demonstrated that this nanosystem can accumulate tumor-
selectively and that real-time fluorescence imaging is possible.
When the antitumor effect of the PTT/PDT was measured in
vivo, the tumor inhibition rate (TIR) was close to 100% within 30
days.

2.3 Other supramolecular structures

Two-dimensional nanomaterials have a variety of interesting
properties. In 2014, Liu et al. reported physical adsorption of the
photodynamic agent Ce6 on non-toxic PEGylated MoS, with

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig.9 Schematic illustration showing the fabrication and PDT and PTT
process of MnO,/DVDMS. Adapted with permission from ref. 103.
Copyright 2017, John Wiley and Sons.

a very high surface area.'*> They used the powerful NIR absor-
bance of this nanomaterial to improve coupled PDT and PTT in
both in vitro and in vivo animal experiments. Recently, Chu et al.
deduced that Mn”>* can harmonize with the porphyrin ring and
carboxylate radical of the sinoporphyrin sodium (DVDMS)
molecule (Fig. 9).* Surprisingly, DVDMS formed nano-
assemblies when it was simply dropped into a Mn** solution.
The fluorescence of DVDMS mixed with Mn**, NanoDVD, was
slightly quenched, but the efficiency of both PDT and PTT was
increased. In the formation of supramolecules, the Mn** is
thought to have strengthened the ISC and increased ROS
production by increasing the population of the triplet state of
DVDMS. The improved PTT effect was thought to result from
stacking the porphyrin at a high density. As a result, the
supramolecular binding of Mn®* and DVDMS enabled the
assembly of nanostructures that could simultaneously exhibit
enhanced PDT and PTT activity. Next, the authors adsorbed
DVDMS onto MnO, nanosheets because MnO, can be reduced
to Mn>* by intracellular glutathione (GSH), which also converts
H,0, into O,. Using MCF-7 cells, they confirmed that the MnO,/
DVDMS downregulated the expression of hypoxia inducer 1a
(HIF-1a), which was expected to improve the efficiency of PDT
by alleviating hypoxia. The MnO, nanosheets improved the
efficacy of phototherapy by supplying oxygen and releasing
nanoDVDs, as well as by being a carrier for successful PDT. In
vivo, the MnO,/DVDMS provided fluorescence, MR, and PA
imaging. The MR and PA signals disappeared within 24 hours,
whereas the reduction of MnO, by GSH in the tumor environ-
ment and drug release increased the fluorescence signal. In
addition, tumor-bearing mice injected with MnO,/DVDMS
showed a more marked reduction in tumor growth than mice
receiving DVDMS and DVDMS combined with Mn>". This
supramolecular engineering nanoplatform using coordination
bonds achieved a synergistic combination of PTT and PDT
along with multimodal imaging (fluorescence, MR, and PA
imaging).
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3. Supramolecular agents to combine
PDT and chemotherapy

Chemotherapy (CHT) is the most commonly used traditional
treatment modality in the field of oncology. However, CHT often
requires multiple administrations, which can lead to drug
resistance. In addition, therapeutic efficacy is limited by the
ability of the drug to accumulate in the tumor.'**** PDT works
locally to treat primary tumors, but it cannot treat metastatic
cancer, and recurrence is often seen. Using PDT in combination
with CHT is an interesting concept that could provide a more
potent effect by treating tumor tissue that PDT cannot reach.'*®
In addition, supramolecular nanocarriers made of PSs could
selectively bring small-molecule anticancer drugs to tumor
tissue. Although improved treatment results can be obtained
with simple combination therapy, the combination of PDT and
CHT shows a clear synergistic effect.

3.1 Co-assembly of PDT and CHT components

As discussed above, supramolecular assembly can suppress or
improve the fluorescence and 'O, production of photodynamic
materials, and it can also regulate activity through the mecha-
nisms of its decomposition. The supramolecular assembly of
a molecule that exhibits chemical drug activity and a PDT
molecule is not only a simple method for combining PDT and
CHT but can also be a strategy to modulate the activity of both
therapeutics. A study by Li et al. introduced a supramolecular
assembly of zinc(u)phthalocyanine with substituted anionic
groups (PcS) and mitoxantrone (MA), a common anticancer
drug (Fig. 10)."”” UV-Vis results showed a reduced and extended
Q band compared to the monomer, which suggests that the
supramolecular assemblies could exist as H aggregates
according to Kasha's exciton theory. The super-quenched
properties of the supramolecular assembly quenched fluores-
cence completely and singlet oxygen production by 96.7%. As
shown above, the suppressed fluorescence emission and ISC
indicate that PcS-MA could be used as a photothermal agent.
The anticancer mechanism of MA begins with its insertion into
DNA, and the binding constant of MA and DNA is similar to that
of PcS. Therefore, this supramolecular assembly is selectively
dissociated by nucleic acids and shows activatable 'O, genera-
tion. Compared with the PcS monomer, PcS-MA showed
a higher fluorescence signal and lasted for a longer time in
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Fig. 10 Structures of octasulfonated phthalocyanine (PcS) and
mitoxantrone (MA) and schematic illustration of the construction of
the PcS—MA nanotheranostic agent. Adapted with permission from ref.
107. Copyright 2018, American Chemical Society.
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tumor tissues. Even without laser irradiation, the antitumor
effect of PcS-MA was better than that of MA alone, which means
that the supramolecular assembly can increase the CHT effect
through increased accumulation and long-term action. Partial
degradation of PcS-MA caused by the limited nucleic acid
concentration allowed the PcS-MA to exhibit a mild PTT effect
that improved the PDT effect by increasing blood flow in the
tumor and alleviating tumor hypoxia. The subsequently
released chemotherapy agent, MA, destroyed tumor -cells
outside the PDT range, and the antitumor effect of the supra-
molecular assembly was much improved over that of the mon-
otherapy formulation.

Cheng et al. self-assembled a photothermal agent, Ag,S, and
a PS, Ce6, into nanoclusters (Fig. 11).'°® In the nanocluster state,
the fluorescence of Ce6 was quenched by 89.6% by the Ag,S, and
the singlet oxygen production capacity was quenched by 92.7%.
Thus, in this cluster, Ag,S controlled the photodynamic effi-
ciency and fluorescence by acting as a switch in the supramo-
lecular structure. The nanoclusters were wrapped in a polymer
into which a targeting group was introduced with doxorubicin
(DOX), an anticancer drug. This supramolecular assembly,
ACD-FA, selectively accumulated in tumor cells and then
released Ce6, restoring its ability to produce singlet oxygen. The
DOX loaded onto the nanostructures was released much faster
in the acidic tumor microenvironment than in normal tissue. In
vitro experiments confirmed that this nanomaterial was deliv-
ered specifically to FA receptor-expressing tumor cells and that
it released Ce6 after transduction. In vivo experiments
confirmed that this nanostructure could be used to track
tumors using real-time fluorescence and PA imaging, and they
confirmed that Ag,S, Ce6, and DOX were effectively released by
means of PTT and the acidic tumor microenvironment. In
tumor suppression experiments, the PDT effect of the Ce6
combined with the PTT effect of the Ag,S to show better efficacy
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Fig. 11 Schematic illustration of the preparation of ACD-FA and the
mechanism of its tumor targeting treatment. Reproduced with
permission from ref. 108. Copyright 2018, WILEY-VCH Verlag GmbH &
Co. KGaA, Weinheim.
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than the single treatment, and the CHT effect of the released
DOX inhibited tumor recurrence.

Most existing fluorophores have a disadvantageous
quenching effect when aggregated, but AIE fluorogens (AIE-
gens) increase their fluorescence signal through high-
concentration accumulation.'®*"* Therefore, AIEgens have an
excellent signal-to-noise ratio, and they have been widely used
in organelle imaging.">™** In addition, AIEgens can function as
a therapeutic agent through CHT or PDT. Hu et al. reported that
AIE-Mito-TPP molecules can selectively accumulate in the
mitochondria of cancer cells, inducing apoptosis by reducing
the mitochondrial membrane potential and inhibiting ATP
synthesis.”® Chen et al developed supramolecular nano-
particles through self-assembly of AIE-Mito-TPP and AlPcSNay,
a PS for PDT, to further improve cancer treatment efficiency
(Fig. 12).*** The fluorescence of the supramolecular nano-
particles was completely quenched by the fluorescence reso-
nance energy transfer process between the two components and
the self-quenching effect of m-m stacking. The AIE-Mito-TPP/
AlPcSNa, NPs were absorbed by cancer cells through endocy-
tosis and then decomposed by the lysosomal acidic environ-
ment and released into the cytoplasm. This process can be
monitored in real time with dual-emission fluorescence
tracking of the green emissions from the AIE-Mito-TPP and the
red emissions from the AlPcSNa,. The photodynamic effect of
AlPcSNa, to destroy lysosomes combined with the ability of the
AIE-Mito-TPP to efficiently destroy the mitochondrial function
in vivo. This theranostic probe, capable of improved photody-
namic efficacy and self-monitoring by double-luminescent
fluorescence, has the potential benefits of developing supra-
molecular assembly therapeutics using AIE molecules.
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Fig. 12 (a) Scheme showing the preparation of AIE-Mito-TPP/
AlPcSNay NPs. (b) Schematic illustration of the synergistic chemo-
photodynamic therapy functions of the AIE-Mito-TPP/AIPcSNa, NPs.
Reproduced with permission from ref. 116. Copyright 2018,
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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Some researchers achieved a combination PDT and CHT
therapy by loading AIEgens onto a self-assembled polymer
prodrug. Yi et al. reported a nanoassembly that captured TB, an
AIE-PS, with an anticancer prodrug containing paclitaxel
(Fig. 13a)."” High intracellular concentrations of GSH in tumor
cells can release paclitaxel from polymeric prodrugs. In addi-
tion, decomposition of the polymer micelles led to the release of
TB, with photodynamic effects. In vivo mouse experiments
confirmed that the nanoassembly, TB@PMP, preferentially
accumulated in the tumor area by EPR after intravenous injec-
tion. The results of antitumor experiments demonstrated that
the nanoassemblies had synergistic tumor suppression effects
compared with using PDT or CHT alone. Zhen et al. (Fig. 13b)"*®
used a similar approach in 2019. They constructed DEB/
TQR@PMP micelles by encapsulating the drug resistance
inhibitor tariquidar (TQR) and NIR fluorophores (DEB-BDTO)
within a polymeric prodrug (PMP). The DEB/TQR@PMP
micelles also showed a remarkable synergistic antitumor
effect by combining PDT and CHT.

Natural products that have traditionally been used as phar-
maceuticals have good biodegradability and biocompatibility
because they are derived from natural biological metabolisms.
Various natural products are approved for use as anticancer
drugs or are in clinical trials. Cheng et al. proposed a supra-
molecular system containing an anticancer drug (ergosterol)
and a PS (Ce6) (Fig. 14)."*° A UV-Vis spectrum analysis of the
Ergo-Ce6 NPs confirmed the presence of mw-m stacking and
hydrophobic interactions and showed that the Ce6 molecules
existed mainly as monomers between stacked ergosterol mole-
cules. In water, the Ergo-Ce6 NPs showed a fluorescence
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Fig. 14 Schematic illustration of the preparation of Ergo-Ce6 NPs and
their efficiently combined antitumor therapy. Reproduced with
permission from ref. 119. Copyright 2019, American Chemical Society.

quenching efficiency of about 93.7% compared to the monomer
Ce6, but the heat generation process was not promoted. Sup-
pressed fluorescence and vibrational relaxation can be expected
to be transferred to the ISC process, leading to improved ROS
generation. As expected, the Ergo-Ce6 NPs showed 1.4 times
more ROS generation than Ce6. More specifically, the ‘OH
production of the Ergo-Ce6 NPs was 10 times higher than that of
Ce6. Thus, the -1 interaction between Ce6 and the carrier
ergosterol molecule caused by the encapsulation of Ce6 in the
Ergo-Ce6 NPs mainly induced a type I photoreaction. In the
hypoxic tumor microenvironment, type I reactions can exhibit
higher efficiency than the oxygen-dependent type II reactions.
The Ergo-Ce6 NPs demonstrated excellent tumor targeting
ability and long-term blood circulation in in vivo fluorescence
imaging. In an in vivo antitumor experiment, mice treated with
Ergo-Ce6 NPs achieved 86.4% anticancer efficiency, which was
much higher than that found in mice treated with Ergo NPs
(51.0%) or Ce6 (59.5%) alone. The Ergo-Ce6 NPs, which were
constructed using natural products without complex chemical
modification, eliminated the aggregation problem of Ce6 and
promoted the type I reaction. Thus, the supramolecular
assembly with ergosterol provided synergistic anticancer effects
while also providing biocompatibility and physical stability to
ensure safe tumor treatment.

In 2017, Gao et al. developed a carrier-free nanosystem with
self-assembly of the natural product ursolic acid (UA), the
chemical drug paclitaxel (PTX), and photodynamic ICG based
on electrostatic and m- stacking interactions (Fig. 15)."2° UA
induces apoptosis of cancer cells and prevents metastasis, but
its low solubility hinders its clinical application. PTX is one of
the most clinically used CHT drugs, but it also has low solu-
bility. ICG is an FDA-approved NIR fluorescent probe that can
be used in PTT and PDT. The three components self-assembled
into a uniform size in an aqueous solution to form a stable
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120. Copyright 2017, American Chemical Society.

nanodrug delivery system, ICG@UA/PTX NPs. The UV spectra of
the ICG@UA/PTX NPs showed a noticeable absorbance peak red
shift and reduced fluorescence emissions due to the w-m
conjugation effect. This supramolecular assembly improved the
low-light stability of ICG and slowed the release rate of PTX. In
addition, the NPs showed improved photodynamic and photo-
thermal efficacy compared to free ICG. In vivo fluorescence
imaging confirmed that the ICG@UA/PTX NPs showed excellent
accumulation and long-term retention at the tumor site due to
the EPR effect. In a tumor growth inhibition experiment in
a tumor-bearing mouse model, when NIR laser-irradiated mice
were injected with ICG@UA/PTX NPs, the TIR by tumor weight
was 89.18 £+ 1.19%, significantly higher than that when UA
(14.22 + 4.72%), PTX (25.75 + 5.15%), and free ICG with NIR
laser irradiation (66.50 + 7.80%) were used separately.

In 2020, Zhang et al. went beyond the combination of PDT
and CHT to investigate an improved synergistic combination
using ultrasound (US) irradiation (Fig. 16).*** They found that
clinically used albumin-paclitaxel (HSA-PTX) nanoparticles
could be combined with large amounts of DVDMS in an
aqueous solution by simple mixing. The HSA-PTX-DVDMS
nanoparticles (HPD) obtained in that way exhibited excellent
stability and intratumoral accumulation after intravenous
administration. Interestingly, the HPD showed an improved
fluorescence signal and PDT efficacy compared with the
aqueous DVDMS solution. Focusing on the fact that low-
frequency US irradiation can promote drug release and
cellular uptake,” 10-30 minutes of US irradiation was per-
formed intracellularly on the HPD. This treatment promoted
the intracellular absorption of HPD and improved its antitumor
effect. HPD is a biocompatible, synergistic, nano-therapeutic
agent consisting entirely of drugs already in clinical use.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 16 Chemical structure of HSA-PTX-DVDMS (HPD) nanoparticles
and schematic illustration of their combined PDT/CHT process
enhanced by ultrasonic irradiation. Adapted with permission from ref.
121. Copyright 2020, American Chemical Society.

3.2 Supramolecular drug carrier containing a PS

Nanocarriers that mimic the structure of liposomes (hydro-
philic core and hydrophobic bilayer) are widely used in the field
of drug delivery. In 2011, Lovell et al. reported a liposome self-
assembly structure composed of a phospholipid-porphyrin
complex under the name ‘porphysome’.®® The porphyrin-
implanted lipids in the nanovesicles were conjugated at
a high density, resulting in fluorescence quenching and
remarkable heat generation. This liposome system is a prom-
ising way of making nanomaterials for PDT and PTT. In 2011,
Liang et al. introduced an excellent supramolecular nanosystem
for synergistic PDT and CHT using previously reported
porphyrin-transplanted lipids (PGL).**® Hameed et al. used
porphyrin-containing phospholipids to encapsulate DOX,
a water-soluble CHT drug, as a multifunctional nanocarrier for
fluorescent imaging-induced synergistic chemo-PDT (Fig. 17)."**
The interaction between DOX and PGL decreased the absorp-
tion of the Soret band of porphyrin and shifted the 4 nm
wavelength of the maximum absorption field, but the fluores-
cence was not completely quenched. The system maintained its
optical properties even after the DOX was encapsulated in the
PGL NPs. As the DOX concentration increased, the fluorescence
intensity of the PGL gradually decreased. This change demon-
strates that resonance energy transfer from PGL to DOX occurs
within the nanosystem. The interaction of PGL and DOX can

PGL
DSPC pH Gradient Method
Choleslarol

6
/‘/'/*.

ODOX

Fig. 17 Schematic illustration of the synthesis process for PGL-DOX
NPs. Adapted with permission from ref. 124.
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improve the circulation half-life by preventing explosive drug
release during circulation. The PGL-DOX NPs prevented aggre-
gation and provided a useful fluorescence signal while
achieving very high porphyrin loading. Intracellular fluores-
cence imaging experiments confirmed that the PGL-DOX NPs
were specifically delivered to lysosomes and that high cell
delivery efficiency was achieved. The tumor inhibition efficiency
of the PGL-DOX NPs in vivo, evaluated in a subcutaneous
xenograft mouse model, was significantly higher than that
found in the single-treatment group.

Jiet al. reported a nanosystem that improved the efficiency of
PDT by using an AIE photodynamic effect (Fig. 18).">® The
constituents of the prodrug monomer were the RGD protein
that binds oyf; to facilitate tumor-selective delivery, the anti-
cancer drug camptothecin (CPT), and the PS ICy5. No spectral
overlap or peak shift was observed in the CPT and ICy5 moieties
after chemical conjugation, suggesting that no charge or energy
transfer occurred between the two fluorophores. ICy5-CPT-RGD
is amphiphilic and can easily self-assemble in water to form
micelles, PTN, with hydrophilic surfaces and hydrophobic inner
parts. In the examination of the 'O, generation efficiency of the
PTN, using DPBF (1,3-diphenylisobenzofuran) as a probe, the
@('0,) of PTN was 26.2%, about 10 times stronger than the
2.7% of the single-molecule ICy5-CPT-RGD in DMSO. The
enhanced photodynamic effect was attributed to enhanced ISC.
When PTN generates singlet oxygen through PDT, the decom-
position of ICy5 could be induced, and the nanoparticles might
collapse. In cell experiments, the red fluorescence of ICy5
coincided with the green fluorescence of Lysotracker Green,
confirming that PTN accumulated in lysosomes. The acidic
conditions of lysosomes also allow hydrolysis of the ester bonds
in the PTN, which can lead to CPT release. In vivo fluorescence
images showed that a strong signal accumulated at the tumor
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Fig. 18 (a) Chemical structure of ICy5-CPT-RGD formed as PTN. (b)
Schematic illustration of the characteristics and delivery process of
PTN. Reproduced with permission from ref. 125. Copyright 2018,
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
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site 24 hours after injection, indicating an excellent tumor tar-
geting ability and long residence time. The tumor growth
inhibition rate of the PTN combination therapy was 77.5%,
which was higher than that of PDT (33.1%) or CPT (less than
20%) alone. This study was the first to reveal the aggregation-
induced photodynamic effects of cyanine dyes.

Su et al. reported a polymer micelle loaded with hydrophobic
DOX in a self-assembled star-shaped polymer PEG(-b-PCL-Ce6)-
b-PBEMA (Fig. 19).**° The Ce6 part of the polymer was used as
a PS, and polycaprolactone served as a hydrophobic segment for
micelle assembly. The third segment induced GSH depletion by
releasing quinone methide by means of H,0,. Compared with
free Ce6, the emission peak of the polymer micelles was strongly
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red shifted, from 673 nm to 820 nm, due to the -7 stacking
interaction of the hydrophobic aromatic ring. The accumula-
tion of this micelle, DIR, was trackable into the tumor site
through fluorescence imaging. Antitumor experiments showed
improved anti-tumor efficiency compared with each
monotherapy.

3.3 Other supramolecular structures

The host-guest complexing strategy is one promising method to
create supramolecular structures, allowing convenient control
of the ratio between components. In 2015, Meng and colleagues
reported a supramolecular system in which DOX was loaded
into supramolecular vesicles based on host-guest interactions
between water-soluble PA [5] and a BODIPY derivative (WP52G)
(Fig. 20a).**” In 2018, a vesicle encapsulating the prodrug tira-
pazamine, which is activated in hypoxia, was reported
(Fig. 20b)."® These researchers used NIR-absorbing
diketopyrrolopyrrole-based guest G as a photothermal agent
and PS to construct multifunctional supramolecular vesicles
based on the recognition of water-soluble pillars [5] arene (WP5)
and G. In late 2018, Yang et al. built a multifunctional supra-
molecular system based on a host-guest complex between an
ada-functionalized Ru(u) complex and B-CD (Fig. 20c).** Three-
dimensional self-assembled nanoparticles of Fu/LD@RuCD
were co-loaded with two drugs (5-fluorouracil and ronid-
amine) that act on different targets. Upon visible light irradia-
tion, the Fu/LD@RuCD showed excellent PDT ability, and its
anticancer efficacy was much better than that of the single
treatment modality.

Lim et al introduced a self-assembled supramolecular
nanocarrier (PEG-Por-CD:oxliPt (IV)-ada) that can deliver PSs
and prodrugs simultaneously (Fig. 21)."*° The adamantane-
modified oxaliplatin prodrug (oxliPt(IV)-ada) and a B-
cyclodextrin-binding porphyrin PS (PEG-Por-CD) were assem-
bled via host-guest binding between the adamantane and B-
cyclodextrin. After constructing the supramolecular system, the
Soret band and Q bands of porphyrin showed a slight red shift,
but the shape and intensity of the peak were almost maintained.
In addition, when the supramolecular assembly was irradiated

Fig. 20 Schematic illustration of (a) WP52 G, (b) WP5/G, and (c) Fu/LD@RuCD. Adapted with permission from ref. 127-129. Copyright 2018, The

Royal Society of Chemistry.
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Fig. 21 Schematic illustration for the formation of PEG-Por-CD:ox-
liPt(IV)-ada nanoparticles and their application in combined photo-
dynamic therapy and chemotherapy for cancer. Adapted with
permission from ref. 130. Copyright 2019, American Chemical Society.

with light at 630 nm, it showed slightly less efficient singlet
oxygen generation than free porphyrin, likely due to self-
quenching, but it was still sufficient for use in treatment. In
in vivo antitumor experiments, the PEG-Por-CD:oxliPt(IV)-ada
nanoparticles provided better tumor growth inhibition than
PDT or CHT alone.

4. Supramolecular agents to combine
PDT and immunotherapy

The 2018 Nobel Prize in Medicine or Physiology was awarded to
James P. Allison of the University of Texas MD Anderson Cancer
Center and Tasuku Honjo of the University of Kyoto for their
contribution to cancer immunology.”** Allison and Honjo's
research in the field of cancer immunity has been a major
breakthrough in cancer therapy. The simple summary of cancer
immunotherapy is treating tumors by training antitumor
immune cells to attack tumor cells that have been hiding to
evade the immune system. Cancer treatment using an immune
response can kill both primary and metastatic tumor cells and
establish an immune memory that prevents tumor recurrence.

It should be noted that apoptosis induced by PDT results in
the release of tumor-specific antigens, which enhances immu-
nogenicity in the tumor microenvironment." Because the
effectiveness of phototherapy is localized and limited to the
surface, tumor recurrence after treatment is common. Light
therapy and immunotherapy are an ideal combination therapy
that can simultaneously increase the immune response and
prevent recurrence through the antigen release caused by PDT.
Various PDT-immunotherapy combination strategies have been
published to date, and this article summarizes those that used
supramolecular assembly strategies.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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4.1 Co-assembly of PDT and immunotherapy components

Immune checkpoint blocking therapy releases the brake on
effector T cells using monoclonal antibodies that inhibit the
signaling pathway of cell death 1 (PD-1) and its ligand (PD-
L1)."*> Adaptive immune resistance is a self-protective mecha-
nism that tumor cells use to defend against host immune
responses.” PD-1 and PD-L1 are two important immune
checkpoint molecules that are closely related to immune
resistance.'** Abnormally expressed in many cancers, including
melanoma and breast cancer, PD-L1 promotes immune evasion
and ultimately leads to tumor recurrence and metastasis."** PD-
1-immunotherapy, which uses anti-PD-1 or anti-PD-L1 anti-
bodies to block the PD-L1 signaling pathway, has shown anti-
tumor effects in clinical studies.****”

Xu et al. found that the PS Ce6 interacts with immunoglob-
ulin G (IgG) antibodies with a higher affinity than it has for its
endogenous carrier, human serum albumin (Fig. 22)."*® In the
presence of polyvinylpyrrolidone (PVP), a pharmaceutical
excipient, Ce6 and IgG spontaneously formed nanostructures
about 30 nm in size called Chloringlobulin. This supramolec-
ular assembly method improved the pharmacokinetics of Ce6.
Nanosized PSs have traditionally been found to achieve tumor
accumulation through the EPR effect, but Chloringlobulin used
the “IgG hitchhiking” approach based on the high affinity of
Ce6 for IgG. The Ceb6 release profile confirmed that the IgG-Ce6
complex was stably present in serum, and after 2 hours,
a significant amount of Ce6 was released and redistributed to
the serum components. Unlike conventional nanostructures,
Chloringlobulin showed increased tumor accumulation during
the first few hours, and then the Ce6 was quickly eliminated by
“hitchhiking” away from the IgG. Chloringlobulin was used in
a glioma-bearing mouse model for Ce6-based intraoperative
fluorescence image-guided resection, and it enabled more
accurate tumor resection. When it was injected into colon
cancer-bearing mice, metastatic lesions were found through
fluorescence imaging. Chloringlobulin enabled fluorescence
image-guided PDT, and it induced the highest survival rate,
strong antitumor immunity, and improved memory T cells
compared with the control group.
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9> _of Ce6 to IgG
ces (% ' 9 9 Immune checkpoint blockade
’sl'- X o Self- therapy
PVP assembly Chlonnglobuhn .
leverse immuno-
\? \Q )’ @ suppressive
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Fig. 22 Schematic illustration of a Chloringlobulin for photodynamic
therapy combined with immune checkpoint blockade therapy.
Reproduced with permission from ref. 138. Copyright 2019, American
Chemical Society.
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Fig. 23 Chemical structure of the acid-responsive POP micelleplex co-loaded with PPa and siRNA and a schematic illustration of photodynamic
therapy combined with immunotherapy. Adapted with permission from ref. 139. Copyright 2016, American Chemical Society.

Wang et al. reported a multifunctional micelle nanoplatform
(POP micelleplex) that can be activated in an acidic environ-
ment (Fig. 23)."*® POP micelleplex consists of a pH-responsive
di-block copolymer and a covalently bonded pheophorbide A
(PPa). These building blocks self-assemble into micelles under
neutral conditions, and fluorescence is quenched by homoge-
neous fluorescence resonance energy transfer between the PPa
molecules encapsulated inside the core. PD-L1-specific siRNA,
the second component of the POP micelleplex, suppresses the
immune tolerance of tumor cells regulated by the PD-L1
pathway. The third component, 1,2-epoxy tetradecane alky-
lated oligoethylene imine, is an amphiphilic polycation that
causes the endosome escape of siRNA payloads. The POP
micelleplex generated a fluorescent signal after entering the
weakly acidified tumor microenvironment. PPa, which is
delivered to tumor cells by the breakdown of the micelles,
underwent PDT and stimulated antitumor immune responses.
The combined effect of the PDT-induced antitumor immune
response and the blockade of the PD-L1-PD-1 pathway effec-
tively inhibited tumor growth and metastasis.

4.2 Supramolecular drug carriers containing PSs

PDT induces immunogenic cell death of tumor cells, accom-
panied by the release of damage-related molecular patterns
(DAMPs)."** However, it has been reported that cellular
apoptosis induced by conventional cytoplasmic localized PDT
(CP-PDT) is less immunogenic than plasma membrane local-
ized PDT (PM-PDT) due to slower DAMP release.'** Zhang et al.

7262 | Chem. Sci, 2021, 12, 7248-7268

achieved rapid DAMP release after PDT using the chimeric
peptide PpIX-C¢-PEGyKKKKKKSKTKC-OMe (PCPK), which
targets the plasma membrane (PM) in tumor cells (Fig. 24)."*>
The PCPK formed a supramolecular micelle structure in an
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Fig.24 Structures of PCPK, and PCPK-SR and schematic illustration of
plasma membrane-targeted PDT (PM-PDT) combined with PD-1
checkpoint blockade therapy. Adapted with permission from ref. 142.
Copyright 2019, American Chemical Society.
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aqueous solution. The PM-targeted K-Ras-derived peptide
KKKKKKSKTKC-OMe that is composed of PCPK can be deliv-
ered from the cytoplasm to the PM through subsequent enzy-
matic conversion by the protein farnesyl transferase.'**'** PM-
selective rupture of the PCPK micelles induced by PDT could
make tumor cells potently immunogenic, resulting in a signifi-
cantly improved antitumor immune response compared with
conventional CP-PDT. Both in vitro and in vivo experiments
confirmed that PM-PDT not only showed an improved anti-
tumor effect compared with CP-PDT, but also induced
a stronger immune response. The combination treatment of the
chimeric peptide PCPK and the checkpoint blocker, anti-PD-1,
achieved high antitumor effects in both primary and distant
tumors.

He et al. developed self-assembled nanoscale coordination
polymers (NCP)** to further develop their previously published
NCP@pyrolipid, which has excellent anticancer efficacy
(Fig. 25)."¢ The NCP@pyrolipid combines the FDA-approved
CHT drug oxaliplatin, CHT with a pyropheophorbide-lipid
conjugate (pyrolipid), and an anti-PD-L1 checkpoint blockade
for the treatment of colorectal cancer. Treatment with
NCP@pyrolipid induced cancer cell apoptosis and activated an
immune response through CHT and PDT. In a mouse model of
colorectal cancer, NCP@pyrolipid inhibited primary tumor
growth and enhanced the PD-L1 checkpoint blockade therapy to
achieve excellent anticancer efficacy.
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Fig. 25 Schematic illustration of the structure of NCP@pyrolipid and
the Induction of ICD by chemotherapy and PDT. Adapted with
permission from ref. 146. Copyright 2016, Springer Nature.
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Indoleamine 2,3-dioxygenase (IDO), an enzyme overex-
pressed in tumor tissue, is an immune checkpoint that
enhances the immunosuppression modulated by CD4" and
causes the anergy and apoptosis of CD8" T cells.!¥” Therefore,
inhibiting IDO can strengthen the immune response to a tumor
and prevent tumor recurrence. 1-Methyltryptophan (1MT) is
a drug that inhibits IDO, but its use as a monotherapy has not
shown satisfactory anticancer effects.’*®* As mentioned above,
the explosive release of tumor antigens by PDT can promote an
immune response, so PDT might compensate for the defi-
ciencies of 1IMT immunotherapy. Song et al. combined the PS
PpIX and the IDO inhibitor 1MT with Asp-Glu-Val-Asp, a cas-
pase-3-sensitive peptide released from tumor cells (Fig. 26)."*°
The chimeric peptide PpIX-1MT formed well-dispersed nano-
particles of about 50 nm in an aqueous solution. The formation
of self-assembled nanoparticles, PpIX-1MT NPs, prevented the
coagulation-induced quenching of PpIX so that high ROS
generation could be maintained even in aqueous solutions. In
in vivo distribution and tumor imaging experiments, distinct
fluorescence was observed at the tumor site 2 hours after
injection of the PpIX-1MT NPs. In the tumor growth inhibition
experiment, the group irradiated with a laser after a PpIX-1MT
NP injection showed maximal tumor growth inhibition
compared with the other groups. It was also confirmed that lung
metastases, in addition to primary tumors, were greatly sup-
pressed by combination therapy with 1MT. The immunocy-
tometry and immunofluorescence results also confirmed the
improved immune response in vivo.

In 2019, an activatable PDT prodrug vesicle using a strategy
similar to the IDO-mediated immune evasion was reported
(Fig. 27).**° NLG919, consisting of a PS and an IDO inhibitor
linked by an enzyme-reactive PEG linker, maintained a stable
nanostructure in the bloodstream, prevented drug leakage, and
silenced the PDT effect to prevent phototoxicity in blood
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Fig. 26 Chemical structure of the chimeric peptide PpIX-1MT and
self-assembled PplIX-1IMT NPs and schematic illustration of the light
activated therapeutic process. Adapted with permission from ref. 149.
Copyright 2018, American Chemical Society.
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Fig. 27 Chemical structure of PDT prodrug vesicle and schematic
illustration of photodynamic cancer immunotherapy by means of
IDO-1 mediated immune invasion. Adapted with permission from ref.
150. Copyright 2020, American Chemical Society.

circulation. The prodrug vesicles accumulated and were acti-
vated specifically at the tumor site, and fluorescence imaging
showed excellent antitumor efficacy and the induction of
immune responses.

In addition, Liu et al. reported a strategy for loading an IDO
inhibitor (NLG-8189) into self-assembled liposomes with
phospholipid-porphyrin conjugates that respond to the high
levels of GSH in the tumor microenvironment (Fig. 28)."** The
prepared IND@RAL suppressed fluorescence and photoactivity
by means of a supramolecular assembly that can rapidly release
PPa and an IDO inhibitor by cleaving a reduction-sensitive
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Fig. 28 Chemical structure of IND@RAL and schematic illustration of
GSH-induced PDT and immunotherapy. Reproduced with permission
from ref. 151. Copyright 2019, American Chemical Society.
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disulfide bond in a reducing tumor environment. Therefore,
although the fluorescence signal and photoactivity maintain
silence during blood circulation, the fluorescence signal (>100
times) and photoactivity (>100 times) are activated by the
reducing microenvironment after tumor transfer. This also
enables the selective release of IDO inhibitors in the tumor
microenvironment. A flow cytometric analysis performed after
laser irradiation demonstrated that IND@RAL-based PDT
induced immunogenic cell death (ICD) responses in tumor
cells, which could induce immune responses. In vivo fluores-
cence imaging in an orthotopic 4T1 tumor bearing mouse
model confirmed that the IND@RAL signal successfully accu-
mulated in the tumor, and its ability to inhibit primary and
distant tumors and prevent lung metastases was demonstrated
in antitumor experiments.

5. Conclusion and outlook

In summary, this review has summarized and discussed recent
combinations of PDT with other therapeutic modalities that
have been achieved using supramolecular approaches. The first
point of the studies presented in this review is that they are
supramolecular assembly nanomaterials. This review has
described a variety of supramolecular nanosystems that
improve treatment efficiency through the properties of supra-
molecular assembly. Supramolecular assembly can induce (i)
controllable photophysical properties such as fluorescence,
ROS production, and photothermal effects, (ii) activation in
response to specific triggers, and (iii) the EPR effect to induce
the selective accumulation of supramolecular nanosystems in
tumors. The AIE and ACQ effects caused by supramolecular
assembly create completely different photophysical properties
from single molecules. As a result, useful changes can be ach-
ieved to make more effective treatments such as long wave-
length absorption, PDT or PTT efficiency control, and
fluorescence/PA imaging properties. The difference in photo-
physical properties between the supramolecular assembled
nanostructure and the single component enables the formation
of an activatable supramolecular therapeutic agent using the
disassembly of supramolecular structure according to environ-
mental changes. Supramolecular assembly can also be
a method of imparting tumor selectivity. Nano-sized agents
obtained by supramolecular assembly can be selectively deliv-
ered to tumors through the EPR effect, and higher tumor
selectivity can be achieved by supramolecular assembly with the
active targeting ligands.

The second point of the studies covered in this review is the
combination of PDT with other therapies. Many nanostructured
PS systems have already been developed to improve the trans-
port and selectivity properties of PDT agents. However, no
matter how improved the delivery efficiency, PDT is activated by
light irradiation, so it is inherently difficult to use it to treat
deep tissues or metastatic tumors untouched by light. There-
fore, light therapy alone is usually unable to completely remove
a tumor without recurrence, so combination therapy is
required. In this review, we introduced novel studies that have
achieved fusion with PTT, CHT, and Immunotherapy to

© 2021 The Author(s). Published by the Royal Society of Chemistry
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compensate for the shortcomings of the existing PDT. Several
methods are being studied to integrate two or more treatments
into one treatment system. Among them, supramolecular
assembly is an efficient and simple method to fuse PDT with
other therapies without covalent bonds. The design of supra-
molecular PS systems, including the self-assembly of PSs, co-
assembly with functional molecules, and loading of active
agents into nano-delivery systems via supramolecular
approaches, is a very promising strategy to induce new photo-
physical properties and overcome the shortcomings of existing
PDT paradigms.

The first combination therapy we have introduced is a dual
therapy of photodynamic and photothermal agents. In Section
2, we introduced various PDT and PTT combination therapy
systems, including therapeutic systems in which PTT properties
are induced by supramolecular assembly. Unlike PDT, PTT kills
tumor cells through local heat generation by laser irradiation.
Therefore, PTT can complement the oxygen-dependent prop-
erties of PDT because it does not use oxygen in tissues for
cytotoxicity. Also important, self-assembly of some PSs can
induce PTT properties by intermolecular interactions. However,
because both PDT and PTT are local treatments activated by
laser irradiation, the possibility of residual tumors cannot be
excluded by using them in combination. In addition, the simple
combination of a photodynamic agent and a photothermal
agent can be cumbersome in clinical practice because it
requires the use of two or more wavelength and intensity
conditions.

Supramolecular PSs can function not only as therapeutic
agents, but also as carriers. CHT is the most commonly used
method of tumor treatment, but it has its disadvantages with its
lack of tumor selectivity and several inherent side effects.
Studies that have used this feature to address the shortcomings
of CHT are discussed in Section 3. Nanosystems with the ablility
to carry hydrophobic anticancer drugs with poor delivery effi-
ciency to a tumor site improve the efficiency of CHT through
passive or active delivery systems. The key to this combination
is that because PSs are used as a nanocarrier to selectively
deliver anticancer drugs, it is not simply a combination therapy,
but a clear synergistic effect. The combination of phototherapy
and CHT can reduce the likelihood of tumor recurrence after
PDT. However, the laser irradiation time for PDT to achieve
maximum efficiency needs further study to account for the
timing of CHT drugs, and limitations such as insufficient
loading efficiency remain.

Immune checkpoint blockade is a cancer treatment method
that is receiving the most attention recently and is a new
milestone in the field of cancer treatment. Despite its proven
and impressive clinical efficacy, this treatment is still not
applicable to most patients. Because the immunosuppressive
tumor immune microenvironment (TIME) prevents the full
expression of the anti-tumor efficacy of immune checkpoint
suppression, this treatment is only applicable to a small
number of patients. The release of immune substances through
phototherapy can improve the low immune response rate, the
biggest obstacle to clinical application of cancer immuno-
therapy. Several studies discussed in Section 4 indicate that

© 2021 The Author(s). Published by the Royal Society of Chemistry
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phototherapy induces an antitumor immune response that
produces higher therapeutic efficiency than monotherapy and
prevents recurrence. However, research on the immune
response induced by PDT is still insufficient. Future research is
needed on the cell-killing mechanism and immune response
induced by PDT.

Considering the limitations of monotherapy, combination
strategies hold promise for clinical applications. Supramolec-
ular assembly is the most useful method for fusing several
therapeutic substances. However, the clinical translation of
supramolecular fusion systems is still very scarce and more
research and development is needed. Studies on intermolecular
interactions are still required to ensure that the photophysical
changes induced by supramolecular assembly can be precisely
controlled. An in-depth study of the self-assembly exercise
process is essential. In addition, there is a need to increase the
stability of supramolecular assemblies so that they respond only
to the correct trigger and are stable against other stimuli. The
investigation of the toxicity of each of the various components
of the supramolecular assembly is also an important part.
Although more research is needed, most supramolecular PSs
are promising candidates for effective cancer treatment due to
their biocompatibility and ease of manufacture.
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