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Predicting potentially dangerous chemical reactions is a critical task for laboratory safety. However,

a traditional experimental investigation of reaction conditions for possible hazardous or explosive

byproducts entails substantial time and cost, for which machine learning prediction could accelerate the

process and help detailed experimental investigations. Several machine learning models have been

developed which allow the prediction of major chemical reaction products with reasonable accuracy.

However, these methods may not present sufficiently high accuracy for the prediction of hazardous

products which particularly requires a low false negative result for laboratory safety in order not to miss

any dangerous reactions. In this work, we propose an explainable artificial intelligence model that can

predict the formation of hazardous reaction products in a binary classification fashion. The reactant

molecules are transformed into substructure-encoded fingerprints and then fed into a convolutional

neural network to make the binary decision of the chemical reaction. The proposed model shows a false

negative rate of 0.09, which can be compared with 0.47–0.66 using the existing main product

prediction models. To provide explanations for what substructures of the given reactant molecules are

important to make a decision for target hazardous product formation, we apply an input attribution

method, layer-wise relevance propagation, which computes the contributions of individual inputs per

input data. The computed attributions indeed match some of the existing chemical intuitions and

mechanisms, and also offer a way to analyze possible data-imbalance issues of the current predictions

based on relatively small positive datasets. We expect that the proposed hazardous product prediction

model will be complementary to existing main product prediction models and experimental investigations.
Introduction

Chemical reactions comprise a complex network of elementary
reactions between molecules. While the chemical process is
designed by carefully constructing the reaction network,
investigating uncharted reaction conditions entails risks in
formation of toxic or explosive materials. Thus, understanding
and potentially predicting the toxicity of reaction conditions
and byproducts in advance can be invaluable in the safety of
laboratories.
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Conventionally, numerous experiments are performed to
assess the reaction network in the reaction environment.
However, the time and cost for experimental reaction investi-
gations for possible safety issues are high. The advances of
algorithmic analysis in computational sciences have led to
several methods that can enumerate the reaction network and
predict possible intermediates and products. Methods such as
CAMEO,1 EROS,2 IGOR,3 SOPHIA,4 and Robia5 use heuristically
designed reaction templates and are repeatedly applied to
enumerate the reaction network. A more recently developed
Reaction Mechanism Generator (RMG)6 uses elementary reac-
tion templates trying to eliminate the heuristic component of
the reaction network generation. However, most of these
models require human-encoded knowledge in the target reac-
tion network (i.e. elementary reaction templates associated with
the target reaction) and are sometimes marginally extrapolated
to unknown chemical space.

On the other hand, matrix-based models7–9 use mainly
density functional theory (DFT) calculations to assess the
reaction network without signicant prior knowledge. These
models produce possible chemical reaction paths through
mathematical transformations of the graph theory
© 2021 The Author(s). Published by the Royal Society of Chemistry
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representation of molecules. By combining empirical chemical
intuitions such as octet rules and the elemental valence,
chemically valid reaction networks can be enumerated, the
paths of which are assessed by DFT calculations. Despite the
successful proof of demonstration for the chosen applications,
the major bottleneck of these methods is that DFT calculations
are still too computationally expensive to explore every path
plausible.

Another exhaustive reaction path and product prediction
method based on electronic structure calculations is the work of
Maeda and co-workers.10–12 In their approach, a scaled hyper-
sphere around the initial reactants is dened to optimize the
molecular structure along the reaction path. Various radii of the
hypersphere can be used to nd the appropriate transition
states and the corresponding paths, and bimolecular reactions
can also be considered by applying an articial force between
the two reactants. While the method can be applied to an
arbitrary chemical reaction with promising accuracy (hence
potentially usable for toxin predictions, the focus of this work),
the current drawback is, again, a very high cost of quantum
chemical calculations for numerous saddle point searches.

Incorporating machine learning methods in enumerating
reaction networks can thus enable fast and accurate prediction
of reaction products. For example, the template-based machine
learning model of Coley and coworkers13 automatically learns
the reaction conditions associated with each template and
predicts product candidates. The machine learning model is
signicantly faster than the methods discussed above, and is
also shown to achieve an accuracy higher than 90% in the top-5
predicted products. Some drawbacks include the fact that the
templates are based on prior knowledge,14 and reactions that
did not exist in the dataset cannot be predicted.

In addressing the latter limitations of template-based
models, template-free models have also been developed,
including the graph convolution model (GNN)15,16 and Molec-
ular Transformer (MT) model.17 The graph convolution model
directly identies ve chemical bonds that would most likely
undergo transformation. The generated product candidates are
ranked by a scoring neural network. This model results in
93.4% accuracy for the top-5 candidates. The molecular trans-
former model adapts the attention-only neural translator
model18 to translate reactant SMILES19 into product SMILES,
similar to a language translation task. The molecular trans-
former's accuracy is 95.8% in the top-5 candidates.

While these data-driven product prediction models have
yielded very reasonable accuracy to predict the main products,
these methods may not be suitable for predicting the dangerous
reactions since the laboratory safety requires a particularly low
false negative prediction rate in order not to miss any toxin- or
explosive molecule-forming reactions. In this work, we propose
a machine learning model that can predict the formation of the
target toxins or explosive substructures in a binary decision. The
proposed binary classication model with ngerprint repre-
sentations of molecules and reactions yields a signicantly
lower false negative rate (0.09) than those of the existing
product prediction models (0.47–0.66). To further understand
the decision making process of the convolutional neural
© 2021 The Author(s). Published by the Royal Society of Chemistry
network, we implemented an input attribution method, Layer-
wise Relevance Propagation (LRP),20 which provides reason-
able explanations for the formation of hazardous reaction
products that are consistent with usual chemical intuitions.
Methods
Data

We use the chemical reaction data extracted from the USPTO
(United States Patent and Trademark Office) by Lowe21,22 and
Reaxys data from Elsevier.23 The USPTO reaction database
includes about 3.8 million reactions in reaction SMILES
format,19 and the Reaxys database includes about 49 million
chemical reactions.23 As hazardous chemicals, we consider in
this work toxins and potentially explosive molecules as dened
below.

The target toxins were taken from Toxic Release Inventory
(TRI) 2018 24) from the United States Environmental Protection
Agency (EPA). TRI 2018 contains 694 molecules that can cause
more than one of three conditions, cancer or other chronic
human health effects, signicant adverse acute human health
effects, or signicant adverse environmental effects.24 These
toxins were converted to SMILES data by OPSIN,25,26 where 482
toxins were successfully converted into a valid SMILES string.
We extracted the relevant positive reaction data from the USPTO
and Reaxys database by a keyword search which involves the
target toxins in the product list but not in the reactant list using
rdkit.27 We then removed the duplicate reactions, reactions with
more than 10 reactants, and reactions with elemental mismatch
between the reactants and products. Among the 482 toxins, 17
toxins which have more than 100 positive data (i.e. reactions
that produce the given toxin) are selected.

For explosive chemicals, while the EPA provides a list of
explosive compounds,28 the number of data points that contain
the particular explosive compound is too small for machines to
learn its chemistry. Instead, therefore, 22 potentially explosive
substructures taken from the safety data of EH&S and Division of
Research Safety are used in this work.29,30 These substructures
are dened to potentially cause a sudden release of pressure,
gas, and heat when subjected to sudden shock, pressure, or
high temperature.30 We used the top 8 potentially explosive
substructures with the highest number of data points from the
USPTO database.

The list of toxins and potentially explosive substructures
considered in this work is summarized in Table 1. The poten-
tially explosive substructures with the number of positive data
points > 10 000 were trimmed to 10 000 by random selection.

Since both positive and negative data are necessary to train
a binary classication model, we collected negative data that do
not contain target hazardous materials in reactants or products
from the USPTO reaction database. We then removed the too
obvious negative reaction data where none of the chemical
elements of the target compounds appear in the reactants since
they can be judged easily even without machine learning. The
10 000 reactions with the highest yields among the relevant
negative reaction data are then nally chosen since they would
Chem. Sci., 2021, 12, 11028–11037 | 11029
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Table 1 The list of toxins and explosive substructures considered in
this work. The number of available positive data points used for training
and testing is included in parentheses

Toxins Explosive substructures

Butyl acrylate (43) *OO (258)
Ethylene oxide (91) *OO* (270)
Acrylic acid (275) *N]O (366)
Quinoline (328) *N]N* (590)
Cumene (335) *N]N]N (3378)
Nitrobenzene (389) *CNO (7940)
Sulfuric acid (709) *C^C* (10 210)
Benzamide (712) *C]C* (38 516)
Styrene (1054)
Naphthalene (1142)
Propene (1273)
Cl (1618)
Formaldehyde (2306)
Phenol (2614)
Acetophenone (2703)
Ammonia (3126)
Biphenyl (3165)

Fig. 1 (a) Schematic of the positive and negative reaction extraction,
and fingerprint representation of the reaction. (b) Fingerprint-based
binary classification model architecture. Input fingerprints pass 2
convolutional layers of 256 and 128 channels with ReLU, max pooling
and 2 fully connected layers of 128 and 64 channels with the sigmoid
function. The final output is a number between 0 (normal) and 1 (toxic
or explosive).
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have a smaller chance of byproduct formation which may be
hazardous compounds considered in this study.

We split the data into test, validation, and training sets. Test
and validation sets are rst built by randomly selecting 10% of
positive and negative data, and the remaining 80% is used for
training. As the number of positive and negative data points are
not balanced for some target compounds (see Table 1), we
introduce a random oversampling approach which duplicates
data in the minority class (i.e. positive data in this work) during
training.31,32
Model

The ngerprint bit vector is used to represent the reactant
molecules. The existence and absence of each substructure are
represented by binary numbers 0 and 1 in each bit, respectively.
Morgan ngerprinting33 is a widely used method to represent
molecules that map a substructure bit to a vector of constant
length. However, the number of ngerprints can become larger
than the vector size, and one bit in the vector can involve
multiple substructures, reducing the descriptor interpretability.
Thus, we modied the Morgan ngerprinting algorithm to
improve interpretability. For every data point in the training set,
substructure SMARTS (SMILES arbitrary target specication)34

of radius 0 to 2 is extracted and built into a substructure library.
To reduce the computational cost of training and avoid over-
tting, the substructures that appear less than 5 times in the
training data were removed. The number of substructures in the
library becomes the length of the ngerprint vectors and the
index of each substructure in the library becomes a bit in
ngerprints (see Fig. 1a). The maximum number of reactants is
ten; thus, for each reaction, the input descriptor matrix is
ℝ10�NF , where NF is the number of substructures (e.g. NF ¼ 6472
for the ammonia prediction model in this work). In addition to
this modied Morgan ngerprint, other molecular representa-
tions including the SMILES string-based RNN model35 and
11030 | Chem. Sci., 2021, 12, 11028–11037
MEGNet,36 one form of graph convolution based model, were
also used as baseline models for comparison.

The model architecture is shown in Fig. 1b. For each data
point, a reactant-wise convolution, the same convolution oper-
ation used in PointNet,37 is performed with ReLU nonlinearity.38

Aer 2 convolution layers of 256 and 128 channels, max pooling
is applied to ensure a permutation invariance in the reactant
order (predicting the same result for different orders of reac-
tants). Then 2 fully connected layers and the sigmoid function
are applied to obtain an output between 0 (negative) and 1
(positive). The center value of 0.5 was set to a decision
boundary. Pytorch39 was used for model implementation, and
L2-regularization with strength of 0.01 was applied during
training.

To compare the proposed binary model accuracy, we also
benchmarked the GNN15 and MT17 models toward the predic-
tion of hazardous materials in Table 1. For this purpose, we
used the GNN as published15 without re-training the model with
the toxin and explosive substructure data since most of these
reaction data do not have a proper atom mapping between
reactants and products needed in GNN. For the molecular
transformer model, however, we used the published pre-trained
model (pre-MT), and in addition we re-trained the model
(denoted as re-MT) with the current set of hazardous compound
data in Table 1.
Results and discussion
Model accuracy

While the product prediction models predict the chemical
structures of potential products, the binary classication model
predicts whether a particular target compound will be produced
or not. To compare the performance of the product prediction
and binary classication models, 2 product prediction models
© 2021 The Author(s). Published by the Royal Society of Chemistry
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and 3 binary classication models were tested on the same
dataset. The GNN top-n (n ¼ 1, 10, 100) accuracy measures the
probability that the target hazardous product would exist within
the n highest-score-products. Two MT models, pre-MT and re-
MT, were also tested as discussed in the Model section.
Binary classication models considered here use three different
descriptors, a modied Morgan ngerprint-based model,
SMILES-based RNN binary prediction model, and molecular
graph-based MEGNet model.

The performance of the models is measured by three
metrics: accuracy, false-positive rate, and false-negative rate.
The accuracy, the most widely used performance metric, is the
ratio of correct prediction (true positive and true negative)
among all test data. Because of an imbalance between positive
(minimum 43) and negative data (10 000), the conventional
accuracy is not sufficient to explain the performance of models.
The false-positive rate is the rate of the wrong positive predic-
tion among negative data, meaning that the model incorrectly
predicts that target hazardous compounds will be produced
when they are not hazardous. High false positive rates would
cause extra expenses to investigate the corresponding reactions
and take unnecessarily preventive actions. The false-negative
rate, on the other hand, is the rate of the wrong negative
predictions among positive data, meaning that the model
incorrectly predicts that the target hazardous molecules will not
be produced even though they actually yield potentially
dangerous products. If the false negative rate is high, potentially
dangerous reactions can be missed out which can cause critical
accidents. Thus, false-negative rates can be thought of as the
most important measure of the model performance for the
prediction of hazardous materials.

The average performances are summarized and compared in
Table 2. All models show relatively high overall average accu-
racy, due mostly to a large number of negative data points and
low false-positive rates. For false-negative rates, however, the
difference between product prediction models and binary
classication models is clear; the false negative rates for GNN
and MT models are relatively high, ranging between 0.47 and
0.83, and those for binary models range between 0.09 and 0.21.
Thus, while the existing product prediction models are
Table 2 Comparison of the overall accuracy, the false-positive rate,
and the false-negative rate for various baseline product prediction
models and binary classification models

Overall accuracy False-positive False-negative

Product prediction
GNN top-1 0.902 0.011 0.805
GNN top-10 0.910 0.034 0.622
GNN top-100 0.885 0.087 0.472
pre-MT 0.899 0.003 0.832
re-MT 0.884 0.025 0.656

Binary classication
Fingerprints 0.975 0.021 0.093
RNN 0.975 0.015 0.213
MEGNet 0.964 0.028 0.168

© 2021 The Author(s). Published by the Royal Society of Chemistry
promising and applicable for general purpose main product
predictions, they show clear limitations toward the prediction
of hazardous materials. On the other hand, the binary classi-
cation models show low false negative rates. The ngerprint-
based model, in particular, shows the lowest false negative
rate, 0.093, among the tested models.

To nd out whether the difference in performance between
models originates from the difference of the model or the
training data, the MT was re-trained with the same data that the
binary classication models used. As one can expect, this
retrained model, re-MT, achieved a lower false-negative ratio
(0.66) than pre-MT (0.83). However, a false-negative rate of 0.66
of re-MT is still signicantly higher than the 0.09 of the binary
classication model, suggesting that binary classication
models are more suitable to predict hazardous products than
main product prediction models.

The overall performance in Table 2 is further decomposed
into false-positive and negative rates of individual toxins and
potentially explosive substructures in Fig. 2 and 3, respectively.
The x-axis in Fig. 2 and 3 is sorted by the number of positive
cases. The compounds on the le-side of the x-axis have
a smaller number of positive reaction data points and mole-
cules located on the right-side have a larger number of positive
reaction data points. As the number of positive data points
increases, the false-negative rate of binary classication models
decreases for both toxins and potentially explosive substruc-
tures. We note that the pre-trained toxin prediction models
(such as pre-MT) do not show such a systematic performance
increase with the amount of data.
Interpretations using layer-wise relevance propagation (LRP)

In order to understand the decision making process of the
neural network, we implemented an input attribution method,
Layer-wise Relevance Propagation (LRP) for our ngerprint-
based model. LRP was originally developed in image-based
neural network models to determine each pixel's contribution
to the nal outcome of an image classication model. In this
work, LRP computes the contribution of each ngerprint bit as
calculated by backward propagation of the relevance (classi-
cation) score as shown in Fig. 4b.20 The sum of all contributions
from neurons within the same layer is thus always the same as
the classication score taken from forward prediction (see
Fig. 4b). By this analysis, we attempt to gain insights into which
chemical substructures of reactants are mainly responsible for
the formation of toxins and explosive substructures (see Fig. 4c).

For quantitative understanding of the LRP scores, we rst
dene a term, target reconstruction reaction. The latter is
dened as a reaction in which the most highlighted (or
contributed) ngerprint bit (substructure) in the reactant is part
of the target toxins or potentially explosive molecules (see
Fig. 5a). The target reconstruction ratio for a toxin is then the
number of target reconstruction reactions out of all the reac-
tions that produce a specic toxin, and similarly for an explosive
substructure. According to the results summarized in Fig. 5b,
the majority of the toxin-producing reactions correspond to
target reconstruction in which the most highlighted reactant
Chem. Sci., 2021, 12, 11028–11037 | 11031
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Fig. 2 False negative (bottom two) and false positive rates (top two) for various models (product prediction models GNN and MT vs. binary
classification models fingerprint, RNN and MEGNet) considered in this work for toxins.
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substructures are indeed part of the target hazardous
compounds. For further analysis, we denote the toxins (or
explosive substructures) with target reconstruction ratios > 0.5
as target reconstruction dominant toxins (or explosive
substructures). With this denition, 14 toxins (out of 17) and 5
Fig. 3 False negative (bottom two) and false positive rates (top two) fo
classification models fingerprint, RNN and MEGNet) considered in this w

11032 | Chem. Sci., 2021, 12, 11028–11037
explosive substructures (out of 8) are target reconstruction
dominant cases.

To understand which part of the toxins contributed the most
to the positive predictions in target reconstruction dominant
cases, we considered the average LRP contribution score for
r various models (product prediction models GNN and MT vs. binary
ork for potentially explosive substructures.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (a) The proposed fingerprint-based binary classification model. (b) With layer-wise backward relevance propagation (LRP), the contri-
bution of each substructure is calculated. (c) Substructures with higher contribution scores in the reactants are highlighted to gain chemical
intuition for the toxin formation reaction.

Fig. 5 (a) Schematic cartoon of the target reconstruction reaction in
which the most highlighted (or contributed) substructure is part of the
target. (b) Ratio of the target reconstruction reactions for the chosen
toxins and explosive substructures. (c) The color-coded average
contribution scores for atoms and bonds for all target reconstruction
dominant toxin molecules. ① butyl acrylate, ② ethylene oxide, ③
acrylic acid,④ quinoline,⑤ cumene,⑥ nitrobenzene,⑦ sulfuric acid,
⑧ benzamide, ⑨ styrene, ⑩ naphthalene, ⑪ propene, ⑫ phenol, ⑬
acetophenone, ⑭ biphenyl.

Fig. 6 (a and b) Plots of the average contribution score of benzamide
and phenol and most highlighted substructures except the target
reconstruction substructure. The ratio of the most non-target
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every atom and bond for the 14-target reconstruction dominant
toxins (see Fig. 5c). That is, the LRP score of each substructure
in the reactant ngerprint is projected onto atoms and bonds in
the corresponding toxin product. The average contribution
score of an atom (or bond) is computed by taking the average of
the LRP scores of all substructures that contain that particular
atom (or bond), then normalize it by the highest LRP score for
that reaction. For all toxins that contain an aromatic ring, the
aromatic rings show relatively high contribution scores
© 2021 The Author(s). Published by the Royal Society of Chemistry
compared to the other parts, indicating the latter ring-type
substructures in the reactants are essential, not surprisingly,
to generate aromatic-containing target toxins. It also implies
the stability of aromatic rings that are mostly retained under
most reaction conditions. However, since these most high-
lighted target reconstruction units cannot alone produce the
toxins (for example, for phenol, one needs a hydroxyl group in
the reactant, in addition to the most highlighted benzene ring,
to form the target toxin), we statistically analyzed the remaining
substructures not present in the target toxin with high LRP
scores in Fig. 6. We present the results for benzamide (#8 in
Fig. 5c) and phenol (#12 in Fig. 5c). For benzamide in Fig. 6a,
the two most highlighted substructures in SMILES format
(which are not part of the toxin's substructure) are c1(C(]O)N*)
cc:*:cc1 (29.0% among positive predictions) and N(*)]* (23.2%
among positive predictions), whose chemical structures are
shown in Fig. 6. For phenol in Fig. 6b, c1cc:*:cc1O* (51.6%
among positive predictions) and O(*)* (14.5% among positive
predictions) are the twomost highlighted substructures that are
not part of the target toxin. These substructures can be trans-
formed into low-scored substructures in target toxins.
reconstruction substructure among every positive prediction.

Chem. Sci., 2021, 12, 11028–11037 | 11033
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Some other small molecule toxins such as ammonia and HCl
are already undecomposable unique substructures by them-
selves within our ngerprint representation (ammonia ¼ N and
HCl ¼ Cl). For these toxins, we analyzed the substructures that
have a higher LRP score than the hypothetical equally distrib-
uted LRP score (i.e., nal classication score divided by the
number of substructures), which we denote as positively
contributing substructures. For example, in Fig. 7a, four most
frequently appearing positively contributing substructures for
ammonia production are depicted. These four substructures
correspond to a well-known ammonia formation from urea if
NH2 is attached to any heavy atom site * of the substructure. We
discuss the result of LRP analysis for ammonia formation
further in the Limitations section below. Another example is the
formation of the *–N]O substructure. As shown in Fig. 7b,
oxidation of the –OH group with the *–N]* substructure leads
to the formation of *–N]O.
Limitations and opportunities

We performed target reconstruction-based analysis on several
toxins. However, for the explosive substructures, the molecular
size of the explosive substructures is too small to perform
meaningful analysis. In this work, all reactions in which the
target explosive substructure already exists in the reactants were
removed for meaningful training. Therefore, the target recon-
struction ratio is only dened using the remaining substruc-
tures. The remaining substructures are oen too small in
number for explosive substructures. For example, *N]N* has
only one substructure (*N]*) that is not identical to the target
*N]N*, thus the average contribution score for each atom and
bond cannot be calculated. Therefore, for small toxins such as
ammonia and hydrogen chloride and potentially explosive
substructures, the target reconstruction-based analysis such as
Fig. 7 The statistical LRP analysis for (a) ammonia production reactio
percentage of each substructure which contributes positively (i.e., whose
total number of substructures) to the hazardous material formation (also

11034 | Chem. Sci., 2021, 12, 11028–11037
in Fig. 5c is not feasible. Despite this limitation in performing
target reconstruction analysis for simple molecules with one
heavy atom and explosive substructures, one can still get a valid
chemical intuition on the importance of the highlighted
substructures by analyzing the hazardous materials case-by-
case as shown in Fig. 7a and b.

We note that not every high-scored substructure can be
derived from the known reaction mechanisms and some
predictions and their interpretations are not chemically intui-
tive. These cases arise due likely to a data imbalance in which
the machine makes a decision based on the observation that
simply a particular substructure appears frequently in positive
data but rarely in negative data, not necessarily based on
chemical principles. For example, the second most frequently
highlighted substructure for the *–N]O prediction model is
[B–](F)(F)(F)F (simply, BF4). The BF4 substructure is contained
in 86 reactions among positive reaction data (about 29% of
positive data) but is contained in only 5 reactions among
negative data (only 0.005% of negative data). The substructure
is highlighted maybe because BF4 does play an important role
in the formation of *–N]O, or just due to data imbalance.
These cases cannot be distinguished only with the model itself,
and demonstrate the importance of the data to further improve
the model.

To further understand how much data imbalance affected
the model, we performed additional analysis. We rst calcu-
lated, for every substructure for a given toxin database, the ratio
of the given substructure occurrence in the positive training
data to that in the negative data, and if this ratio is more than
5 : 1 (i.e. the given substructure is observed 5 times or more in
the positive training data than in the negative data), we dene
that the corresponding substructure may have a potential data-
imbalance issue. Next, the prediction of a given toxin formation
for a chosen chemical reaction is said to be “a potentially biased
ns and (b) *–N]O production reactions. The numbers refer to the
LRP scores are higher than the final classification score divided by the
see the main text).

© 2021 The Author(s). Published by the Royal Society of Chemistry
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prediction by data-imbalance” if the LRP analysis of a given
prediction yields the data-imbalanced substructure as the most
highlighted substructure. We denote them as “potentially”
biased prediction by data-imbalance since the two possibilities
of chemically meaningful prediction vs. data-biased prediction
may be difficult to distinguish solely by considering the data-
imbalance ratio.

Fig. 8 shows the percentage of potentially biased predictions
by data-imbalance for each of the toxins and explosive
substructures. It is notable that most predictions for all toxins
are not biased due to data-imbalance. In fact, statistically, we
nd that the substructures without data-imbalance were iden-
tied by LRP as the most important factors for 98.9% of all
predictions in the test datasets of toxin formation, and this
percentage remains at 98.6% even if the denition of data-
imbalance is set more aggressively down to positive : negative
¼ 2 : 1 (ESI†).

On the other hand, for explosive substructures, except for
*N]N* and *C]C*, the prediction of other explosive
substructures may have been potentially biased from the data-
imbalance with the positive : negative data ratio of 5 : 1 or
more. This high data-imbalance ratio for explosive substruc-
tures seems to be related to the simple chemical formula of
most explosive substructures (such as *C^C*, *N]N]N, etc.).
That is, the latter simple explosive substructures are mostly part
of the reactants already in the form of their slight variations,
rather than newly formed from reactions. For example, HC^*

(where * means any heavy atoms) is the most frequently high-
lighted substructure for the *C^C* prediction model because
96% of the reactions that produce *C^C* in the USPTO data-
base do not newly form the C^C triple bond but generate
*C^C* by substituting H in HC^* with another heavy atom. In
another example, [N–]][N+]] [N–] (azide anion) is the most
frequently highlighted substructure for the *N]N]N predic-
tion model, and we nd that 98% of the reactions which
produce *N]N]N include sodium azide (NaN3) as a reactant.
For these cases, one may conclude that the predictions are
heavily affected by data-imbalance, but it might also be possible
to interpret it as, based on LRP, the prediction may still be
Fig. 8 The percentage of the potentially biased predictions by data-
imbalance for the chosen toxins and explosive substructures identified
by the LRP analysis. The substructure is defined to have potential data
imbalance if the ratio of the given substructure occurrence in the
positive training data to that in the negative data is more than 5 : 1. See
the ESI† for additional analysis using the positive : negative¼ 2 : 1 ratio
as a data-imbalance criterion.

© 2021 The Author(s). Published by the Royal Society of Chemistry
chemically sensible (C^* leading to a *C^C* or azide group in
the reactants leading to *N]N]N).

Related to a potential data-imbalance issue, we make
a further note on the case of ammonia production. For NH3

data, we note that all negative data that do not include N in the
reactants have been removed since it is too obvious that reac-
tants without N would not produce NH3. With this in mind, the
most frequently highlighted substructure analyzed by LRP is
*]O. The substructure occurrent counting shows that there are
1222 reactions in the positive training data that contain *]O in
the reactants while there are 5754 reactions in the negative
training data which contain *]O in the reactants. That is, the
NH3 prediction model is not data-imbalanced (quite the oppo-
site), and the *]O analyzed to be the important substructure
for ammonia formation suggests that the *]O in the reactant
would lead to the NH3 formation only in the presence of other
functional groups such as *–NH2, for example, as in Fig. 7a. The
fact that most (96%) of the latter 5754 negative reactions are still
predicted not to produce NH3 (even if they include *]O) indi-
cates that the model did not simply memorize data imbalance,
and the decision derived from the model is indeed the result of
learning the correlation with other reactant substructures
included in the dataset.

Our work may be used in combination with generative
models such that the generatedmolecules do not contain toxins
or explosive substructures. In the literature, individual units of
generative models which are in charge of making visual units
were revealed.40 However, it is not explicitly studied which units
in the generative models are in charge of generating molecules
with toxic or explosive effects, and such an extension would be
an interesting subject of future study. We also note that the
proposed model is not restricted to the prediction of toxins or
hazardous compounds, but can be extended to the prediction of
general molecules or substructures of interest when sufficient
amount of data is available. LRP would then offer an explana-
tion to clarify the chemistry of the particular molecular forma-
tion that can complement the existing expert intuitions.

Conclusions

We have implemented a ngerprint-based binary reaction
classication model to predict the formation of a given
hazardous product. By focusing on the formation possibility of
one target, our model can predict the formation of toxins with
greater accuracy. The present binary classication model ach-
ieves a signicantly lower false negative rate of 0.09 than those
(0.47–0.66) of previously reported broad product prediction
models. The developed model is analyzed using an input attri-
bution method, layer-wise relevance propagation, to chemically
understand the decision making process. The most important
substructures of the reactants that are responsible for the
formation of the given toxins are identied by decomposing the
nal classication scores into a sum of contributions from all
substructures representing the reactants. The latter analysis
reproduces some common prior knowledge on chemical reac-
tion mechanisms. We expect that the current ngerprint-based
binary classication approach for hazardous compounds could
Chem. Sci., 2021, 12, 11028–11037 | 11035
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be complementary to the existing universal main reaction
product prediction models to explore the chemical reaction
space oriented towards a particular target formation.

Data availability

The reaction data used in this research, ngerprint based
model, and the LRP analysis code are available at https://
github.com/kaist-amsg/HazardousPredetection.
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