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Polyfunctional organometallics of magnesium and zinc are readily prepared from organic halides via a direct
metal insertion in the presence of LiCl or a Br/Mg-exchange using iPrMgCl- LiCl (turbo-Grignard) or related

reagents. Alternatively, such functionalized organometallics are prepared by metalations with TMP-bases
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new Co- or Fe-catalyzed cross-couplings or aminations. It is shown that the use of a continous flow

DOI: 10.1039/d1sc00685a set-up considerably expands the field of applications of these methods and further allows the
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1. Introduction

The compatibility of functional groups with a carbon-metal
bond in an organometallic reagent is essential for broad
synthetic applications in modern organic synthesis. In this
perspective article, we will show that Mg and Zn organome-
tallics are unique for combining an excellent functional group
tolerance with a high reactivity toward various classes of
electrophiles. Furthermore, magnesium and zinc derivatives
are non-toxic and the moderate price of these two elements
makes them ideal candidates for industrial applications.
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preparation of highly reactive organosodium reagents.

Although, some innovative chemistry of lithium, sodium and
potassium will be presented considering some remarkable
properties of these species, the main part of this article will
concern the preparation and reactivity of polyfunctional Mg
and Zn reagents. The behaviour of aryl- and heteroaryl
organometallics will be especially emphasized because of their
importance in material, agrochemical and pharmaceutical
research. We will also show that continuous flow set-ups
involving such organometallic reactions further expands the
application scope, especially by allowing some new Barbier-
type procedures.
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2. Preparation of polyfunctional Zn
and Mg organometallics

2.1 Direct reaction of magnesium or zinc with organic
halides

The carbon-zinc bond is a covalent carbon-metal bond with
moderate intrinsic reactivity. Metallic zinc is a weaker reducing
agent compared to magnesium, and therefore a mixed metal
synthesis using magnesium dust in the presence of LiCl and
ZnCl, is an advantageous procedure for the preparation of aryl
and heteroaryl zinc reagents bearing sensitive functional
groups.' Under these conditions, methyl 4-bromobenzoate (1)
underwent a smooth conversion to the corresponding zinc
reagent within 3 h at 25 °C (see Scheme 1).

The addition of LiCl was essential for removing the organ-
ometallic species on the metal surface by forming a mixed
magnesium-lithium complex of the type RMgX-LiCl> Fast
magnesium insertion rates were observed with electron-
deficient substrates like electron-poor aromatics or heterocy-
clic chlorides such as 2.' The direct zinc insertion may require
the addition of a Lewis-acid catalyst whose role is to facilitate
electron transfer steps from the metal surface to the organic
halide. Thus, in the presence of In(acac); (3 mol%), 2-bromo-1-
chloro-4-(trifluoromethyl)-benzene (3) was converted to the
corresponding zinc reagent at 50 °C within 2 h.*> The use of
a polar co-solvent such as DMPU proved to be helpful.* Under
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Scheme 1 Magnesium and zinc insertions to functionalized (hetero)
aryl halides mediated by LiCl and indium salts.

these conditions, a sensitive functional group like an acetyl
group which is prone to enolization, like in 4-iodoacetophenone
(4), was perfectly tolerated. The mild conditions required for
these insertion reactions are also compatible with the presence
of acidic NH-groups.® Thus, the iodo-indole derivative 5 was
converted to the corresponding zinc reagent at 25 °C.° In the
presence of a palladium catalyst (2 mol% Pd(OAc),; 4 mol%
SPhos), a Negishi cross-coupling with an N-heterocyclic iodide
readily took place at 25 °C. Secondary alkyl iodides usually react
faster in these direct insertion reactions. Thus, cis-iodo-pyrrole
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6, which was readily available from ¢rans-2-aminocyclohexanol,
underwent a zinc insertion within 10 min at 25 °C leading to
a cis, trans-mixture of zinc reagent 7. This loss of stereochem-
istry is characteristic for Mg or Zn insertions which proceed
through radical intermediates. However, in the presence of
a palladium catalyst, a diastereoselective cross-coupling” took
place leading exclusively to the trans-cyclohexane derivative 8
(84%j; 99% ee; dr >99 : 1; see Scheme 2).°

2.2 The halogen/metal exchange

The halogen/lithium exchange (Hal = I, Br) is a fast reaction,
independently discovered in 1939 by Gilman and Wittig.® In
comparison, the halogen/magnesium-exchange is a much
slower reaction, which had only found applications in the
preparation of some heterocyclic Grignard reagents® and
magnesium carbenoids.'® However, by using organomagnesium
halides complexed by LiCl such as iPrMgCl-LiCl (9, turbo-
Grignard reagent) fast I/Mg- and Br/Mg-exchanges took place
producing functionalized aryl and heteroaryl magnesium
reagents under mild conditions (see Scheme 3)."*

The kinetics of the Br/Mg-exchange' as well as the mecha-
nism of the reaction have been well studied.*® It was postulated
that the rate of a halogen/metal exchange depends on the ionic
character of the carbon-metal bond: the more electro-positive
the metal is, the faster the halogen/metal exchange takes
place. This hypothesis led to the discovery of halogen/
lanthanide exchange reactions.* The replacement of LiCl in
the turbo-Grignard reagent (9) with lithium alkoxides (LiOR) led
to even more powerful exchange reagents (sBuMgOR'-LiOR"
and sBu,Mg-2LiOR"; R' = 2-ethylhexyl) soluble in toluene.
These reagents allowed the performance of some Cl/Mg-
exchanges™ as well as regioselective exchanges on various
dibromopyridines such as 10.'® Furthermore, the use of the
corresponding zinc reagents (sBu,Zn - 2LiOR? or ptol,Zn - 2LiOR>
11) allowed the performance of an I/Zn-exchange on function-
alized aryl iodides in toluene (see Scheme 4)."”

2.3 Directed magnesiation and zincation with TMP-bases
complexed with LiCl

In general, magnesium amides (R,NMgX or (R,N),Mg) are
poorly soluble in THF and display moderate kinetic basicity.*®
However, by using a sterically hindered amine (2,2,6,6-
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Scheme 2 Zn-Insertion to alkyl iodides bearing an indolyl NH-group
and (or) a B-N-pyrrolyl group.
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Scheme 3 Br/Mg-Exchange on functionalized aryl bromides using the
turbo-Grignard reagent (9).

tetramethylpiperidine, TMP-H), it was possible to prepare
a series of metallic amides complexed with LiCl
(TMPMgCI-LiCl, TMP,Mg-2LiCl, TMPZnCl-LiCl and TMP,-
Zn-2LiCl) with high solubility in THF (1.2-1.4 M) and excep-
tional kinetic basicity.” The preparation of polyfunctional
magnesium reagents became now possible from halide-free
precursors. Thus, the highly functionalized arene 12 was
magnesiated with TMPMgCI-LiCl at —20 °C leading to an
arylmagnesium species 13 bearing several sensitive func-
tional groups (OBoc, CO,Et, COPh).** A copper-mediated
acylation afforded the penta-substituted arene 14 in 88%
yield. By using TMPZnCl-LiCl, aryl and heteroaryl zinc
organometallics 15-17 were produced.** Since a carbon-zinc
bond is much more covalent than a carbon-magnesium bond,
the inherent reactivity of the carbon-zinc bond is much lower
and therefore it becomes possible to prepare highly
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Scheme 4 Halogen/magnesium and zinc exchanges using the
exchange reagents sBu,Mg-2LIORY, sBu,Zn-2LIOR? or pTol,-
Zn-2LiOR? (11).
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functionalized organozinc derivatives. Due to the presence of
low lying p-orbitals at the zinc centre, various trans-
metalations with transition metal salts proceeded readily,
providing transition metal intermediates which underwent
new reaction pathways not possible for main-group organo-
metallics (oxidative addition, reductive elimination, insertion
reaction). This behaviour allowed an efficient reaction with
numerous electrophiles (see Scheme 5).

In contrast to TMPMgCl-LiCl, TMPZnCl-LiCl is less prone
to undergo kinetic metalations and thermodynamic consid-
erations are relevant for predicting the zincation regiose-
lectivity. Thus, the site of metalation can be readily
determined by calculation of the pK,-values of various
unsaturated substrates. The zincation of new heterocyclic
systems such as 18-20 were predicted by this model and
subsequent functionalizations were performed successfully
(see Scheme 6).*> In general, TMPMgCI-LiCl and
TMPZnCl-LiCl are valuable reagents for the metalation of
various heterocycles.”® Remarkably, the compatibility of these
bases with various Lewis acids including BF;-OEt, has also
been observed.**

For example, this possibility of forming frustrated Lewis
pairs has been exploited for the regioselective functionalization
of uridines such as 21. By using TMPMgCl-LiCl in THF
a complexation occurred at the heterocyclic amide function
directing the magnesiation at the adjacent position leading to
products of type 22a-b. On the other hand, using TMP,Zn - 2LiCl
in the presence of MgCl, similarly led to a complexation of
MgCl, at the amide function and hampered the approach of the
zinc base which eventually deprotonated at position 6 leading to
products of type 22c-d (see Scheme 7).>* The performance of
kinetically controlled metalations (usually triggered by a pre-

246
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Scheme 6 Calculation of the pK,-values of condensed N-heterocy-
cles to predict their reactivity with TMPZnCl-LiCl and subsequent
quenching with electrophiles.

complexation of the base to a Lewis-basic centre of the
substrate)*® is often amplified by the use of a low polarity solvent
such as toluene. Thus, designing a new toluene soluble base
(BuMgTMP) allowed a regioselective kinetic metalation of
various aryl azoles at the ortho-position of the aryl ring resulting
in products of great interest for pharmaceutical research
(Scheme 7).

3. Reactions of polyfunctional
organozinc reagents

Cobalt salts are ca. 1000 times cheaper than palladium salts and
many cobalt-catalyzed cross-couplings require only inexpensive
N-ligands such as 2,2'bipyridine (bipy) or 4,4’-di-tert-butyl-2,2’-
dipyridyl (dtbbpy). Thus, 2-bromopyrimidine underwent dia-
stereoselective cross-couplings with secondary alkylzinc
reagents furnishing products in high diastereomeric ratio (see

o CO,Et 6 6
MOM‘N MOM‘N
| e |

Method A: R.O”°N R_O

TMPMgCI-LiCI
OBoc (1.1 equiv) OBoc
COPh  (ca.12m,inTHE) CI coph
THF, 20°C, 2h
R R R R

13

@[&M

15

al
NN TMPZNCHLICI (11 equiv) N~y 2O
"\J Z THF,25°C,0.5h 7\‘1‘ Z

cl cl

16

12
R = COEt

CHO

o

TMPZnCI-LiCI (1.1 equlv
THF 25°C,05h

ZnCl

1) CuCN-2 LiCl (20 mol%)

EtCOCI

—40°Cto25C° 1h

2) TFA, 25 °C, 5 min

Pd(dba); (2 mol%)
tfp (4 mol%)

MeO :

25°C,2h
tfp: tri-(2-furyl)-phosphin

CuCN-2LiCI (1.1 equlv)

/CCOC\

-20°Ct0 10°C,0.5h

OH

Etcoj(\i[copn
R R

14: 88%

85%
(50 mmol scale)

cl o

N
il
N~ E

Cl

9%6%

1) TMPVgCI-LiCI o
R (1.2-1.8 equiv) w O
THF, -40 °C, 24 h 0_0 o_0
MOM-NN 5 2)EX X
2\ | : Mé "Me Mé Me
Ry O "N 22a: 66% 22b: 71%
7
o o
0l i0
RS MOM. MOM.
Mé "Me Method B: N N
2 1) TMP,Zn-2LiCI-2\ioCl, . 0)\N ' . O)\N tBu
R = OTBS (1.2 equiv) o o o
THF, -30°C, 72 h
2)EX 0_0 o><o
Me Me Me Me
22¢: 95% 22d: 95%
L BulgTMP N 1) ZnCly (1.2-1.5 equiv) N
x (1.0 equiv) ' 25°C, 10 min S
toluene/hexane ©/ 3 2) ArBr (2.0-2.5 equiv) ar
25°C, 16 h PdCly(dppf) (1 mol%)

55°C, 18 h

R

Ph
N=(

O2ND TMPZICILCI (11 eau) o L cucNaLicl (1.1 equi)
P THF, 25°C, 5h |
o N N7 /©/cocw oN
17 c o N
30°C1025°C, 3h 7%

(50 mmol scale)

Scheme 5 Directed magnesiations and zincations using mixed Mg-Li
or Zn-Li-TMP-bases.
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Scheme 7 Regioselective magnesiations and zincations of uridines
with TMP-bases and magnesiations of aryl azoles in toluene with
BuMgTMP.
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Scheme 8). These cross-couplings were also extended to 1-
bromoalkynes.*®

Furthermore, a range of cobalt catalyzed cross-couplings™
proceeded well with functionalized organozinc and organo-
magnesium reagents.*® For example, highly diastereoselective
cross-couplings were achieved with o-bromo lactones (see
Scheme 9).**

Novel Csp’-~Csp® cross-couplings catalyzed by CoCl,
(20 mol%) in the presence of  trans-1,2-bis-
dimethylaminocyclohexane or neocuproine (20 mol%) allowed
the preparation of polyfunctional products. Furthermore, ring
closures and openings indicated the occurance of radical
intermediates in the course of such cross-couplings (see
Scheme 10).*

3.1 Preparation of organozinc pivalates with enhanced air
and water stability

Organozinc pivalates are mixed zinc-magnesium organome-
tallics bearing a carbon-zinc bond and magnesium or zinc
pivalate (OCO?Bu) units.*® These organometallic reagents are
readily prepared by various methods and produce, after solvent
evaporation, solid organozinc species with enhanced air and
water stability.** Polyfunctional organozinc pivalates under-
went Pd-catalyzed cross-couplings with peptidic aryl halides
bearing various acidic protons.** They proved also very
advantageous for performing other transition metal catalyzed
cross-couplings. Thus, a cobalt-catalyzed acylation of thiopyr-
idyl esters allowed the preparation of a-chiral ketones as well
as a short synthesis of the pharmaceutical fenofibrate (see
Scheme 11).%

Organozinc pivalates often undergo challenging cross-
couplings better than analogous organozinc halides. There-
fore, the nickel-catalyzed cross-couplings of various aryl, het-
eroaryl and alkenyl triflates or nonaflates with aryl- and
heteroarylzinc pivalates were achieved in good yields and with
high stereoretention (see Scheme 12).%”

3.2 Transition-metal catalyzed electrophilic aminations
using organozinc reagents

Organozinc pivalates®® and halides® are also useful for the
performance of cobalt-catalyzed electrophilic aminations.
Drugs like paroxetine 24 or sertraline 25 were functionalized by

M
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Scheme 8 Diastereoselective cobalt-catalyzed cross-couplings.
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Scheme 9 Cobalt-catalyzed diastereoselective cross-couplings.

this method and converted into the new valuable derivatives 26
and 27 (see Scheme 13).

Furthermore, organozinc chlorides were converted to
secondary amines by iron(m) chloride mediated reactions with
various organic azides.*’ For this amination procedure both the
organozinc reagent and the aryl azide** could be generated in
situ. In addition, chiral azides with peptidic structures led to the
corresponding arylated, chiral secondary amines (see
Scheme 14).%

4. Lewis pairs involving organozinc
and organomagnesium reagents; new
Barbier-reactions

Various magnesium and zinc organometallics are compatible
with strong Lewis acids such as BF;-OEt, and this behaviour
has already been exploited for performing selective metal-
ations.”* The field of Barbier reactions remained largely unex-
plored although remarkable selectivities were achieved.”” A
recent example concerned the regioselective metalation of 2,4-
dichlorobenzonitrile 28 (see Scheme 15).*

In accordance with the pK,.values of the ring hydrogens,
the most acidic 3-position of benzonitrile derivative 28 was
readily zincated by TMPZnCl-LiCl. As indicated above, this
base is especially prone to undergo thermodynamically driven
metalations.”” After 12 h at 60 °C and subsequent iodolysis,
nitrile 29 was obtained as the only regioisomer. However, with
the strong lithium base TMPLi, a complexation driven
deprotonation was triggered by coordination of this base to
the cyano group inducing an ortho-deprotonation. Performing
this lithiation only with TMPLI led to extensive decomposi-
tion due to the high reactivity of the resulting aryllithium

: H
: 0l o
Co-catalysis cri O Zn  Co-catalysis ~
N PSR ORI :
27/, K\/‘ N\\rN\) ' X B \)
: A
N &N : [j; o
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Zn Co-catalysis Me Me : Zn  Co-catalysis
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Ne 2 62% ; R ! Me
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Scheme 10 Cobalt-catalyzed alkyl—alkyl
organozinc reagents.
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Scheme 13 Cobalt-catalyzed electrophilic aminations for the func-
tionalization of secondary amine pharmaceuticals.

species. However, mixing 29 with the THF-soluble salt
ZnCl,-2LiCl and adding TMPLi at —78 °C led to a fast kinetic
deprotonation followed by a transmetalation with the zinc(i)-
salt, providing a stable arylzinc reagent which after iodolysis
produced regioselectively the iodonitrile 30. This behaviour
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Scheme 14 Iron-mediated electrophilic aminations of organic azides

with organozinc reagents.

proved to be quite general and MgCl, or CuCN-2LiCl allowed
similar reactions. However, the scale-up of these reactions
proved to be difficult. This problem was solved by performing
these metalations in continuous flow using micro-reactors
(see Scheme 16).**

It was possible to perform a short-cut in such Barbier-
reactions by mixing the electrophile (E-X) directly with the
substrate bearing an acidic proton avoiding the need of trans-
metalations. Thus, the treatment of mixtures of various form-
amides (HCONR'R?) and electrophiles such as ketones,
aldehydes, allylic bromides, disulfides, morpholino- and
Weinreb amides in continuous flow provided a very convenient
and readily scalable synthesis of functionalized amides (see
Scheme 17).%

Organosodium chemistry has been mostly of academic
interest, despite the low costs and toxicity of metallic sodium as
well as its easy handling and recycling.*® The use of a contin-
uous flow set-up allowed the sodiation of various unsaturated
heterocyclic and aromatic substrates (see Scheme 18).*

5. Preparative aspects

All reactions were performed using standard Schlenk-line
techniques under argon atmosphere.*®* TMPMgCIl-LiCl and
iPrMgCl-LiCl are commercially available (Sigma-Aldrich, Acros
Organics, Albemarle, etc.) and were as all other organometallic

CN 1) ZnCly'2LiCI (1.1 equiv) cN 1) TMPZCI-LiCl (1.1 equiv) cN

2) TMPLI (1.5 equiv)
‘ ° THF, ~78 °C, 5 min 3 o _THR.60°C,12h cl
3l 30 21 2) L ‘

cl Cl thermodynamlcally driven cl
28 deprotonatlon 29:78 %
fast 4Cl.
G
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AH o+ TMPLI
slow | MCly stable

i
AH  + TMPMOX

Scheme 15 Kinetic and thermodynamic deprotonation of aryl nitrile
28.
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reagents used after titration.*” No glove-box or special apparatus
were required. Only dry solvents and analytically pure starting
materials were used.

6. Conclusions

Broadly applicable preparations of functionalized Zn- and Mg-
organometallics are now available and described in this
perspective article. A range of transition metal catalyzed reac-
tions including Negishi cross-couplings and acylation reactions
allow a straightforward functionalization of these polyfunc-
tional organometallics.”® The use of continuous flow further
broadens the scope of these organometallics. Also, the perfor-
mance of new Barbier-type reactions opens up new synthetic
applications. Thus, the chemistry of these functionalized main-
group organometallics should pave the way for further discov-
eries and give an even more prominent place in organic
synthesis to these ecologically friendly metals.
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