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Heterocyclic group transfer reactions with I(in) N-
HVI reagents: access to N-alkyl(heteroaryl)onium
salts via olefin aminolactonizationfy
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Pyridinium and related N-alkyl(heteroaryllonium salts are versatile synthetic intermediates in organic
chemistry, with applications ranging from ring functionalizations to provide diverse piperidine scaffolds
to their recent emergence as radical precursors in deaminative cross couplings. Despite their ever-
expanding applications, methods for their synthesis have seen little innovation, continuing to rely on
a limited set of decades old transformations and a limited subset of coupling partners. Herein, we
leverage (bis)cationic nitrogen-ligated I(i) hypervalent iodine reagents, or N-HViIs, as "heterocyclic group
transfer reagents” to provide access to a broad scope of N-alkyl(heteroaryllonium salts via the
aminolactonization of alkenoic acids, the first example of engaging an olefin to directly generate these

salts. The reactions proceed in excellent yields, under mild conditions, and are capable of incorporating
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Accepted 30th March 2021 a broad scope of sterically and electronically diverse aromatic heterocycles. The N-HVI reagents can be

generated in situ, the products
demonstrate the power of this platform for diversity-oriented synthesis of 6-membered nitrogen

isolated via simple trituration, and subsequent derivatizations
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Introduction

N-Alkyl-pyridinium and related (heteroaryl)onium salts (1) are
versatile functional handles that have applications across
Nature,' materials science,”® and medicinal and synthetic
chemistry* (Fig. 1). In organic chemistry, they serve as ionic
liquids® (2) and phase transfer catalysts,® exhibit a diverse range
of biological activities (3, 4), and have a long history as synthetic
intermediates, an area that has seen a recent surge of new
advancements. Representative of their versatile reactivity, pyr-
idinium and related salts can undergo full or partial reduc-
tions,” cycloadditions,'®"* photochemical isomerizations,
cross couplings,™ addition of one- or two-electron heteroatom
or carbon nucleophiles,*** and facile C-H metalations," and
many of these include asymmetric variants'**® (Fig. 1). The
breadth of available transformations makes pyridinium salts
valuable templates for accessing functionalized 6-membered

“Department of Chemistry, Towson University, 8000 York Road, Towson, Maryland,
USA, 21252

“*Department of Chemistry, Temple University, 1901 North 13" Street, Philadelphia,
Pennsylvania, USA, 19122. E-mail: sarahw@temple.edu

‘The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of
Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234,
China

t Electronic ~ supplementary
10.1039/d1sc00187f

1 These authors contributed equally to this work.

information  (ESI) available. See DOI:

© 2021 The Author(s). Published by the Royal Society of Chemistry

aza-heterocyclic scaffolds, which are prevalent in agrochemi-
cals, alkaloid natural products, and are the most commonly
encountered heterocyclic motif in FDA approved small mole-
cule drugs.* In addition to manipulations of the heterocyclic
ring, pyridinium salts can undergo ring openings to produce
Zincke aldehydes, which have shown utility as synthetic
building blocks,* and 2,4,6-triphenylpyridinium salts have
emerged as a new and powerful class of radical precursors for
deaminative metal-catalyzed cross couplings (Fig. 1).2*>*

At present, N-alkyl pyridinium salts are commonly accessed
either by reaction of a primary amine with an oxopyrylium or
Zincke salt, or via nucleophilic substitutions of primary or
activated electrophiles (Scheme 1a). While both of these strat-
egies have been widely applied, this provides just two functional
handles from which to devise a synthetic route to a pyridinium
salt, and the limited scope of available oxopyrylium scaffolds
renders this commonly employed approach intractable when
the goal is structural diversity at the heterocycle.** Recently,
our laboratory and others have been exploring the synthetic
applications of (bis)cationic nitrogen-ligated hypervalent iodi-
ne(m) reagents, or N-HVIs, possessing two datively bound
heterocyclic ligands (8, Scheme 1b).>**> Considering the versa-
tile group transfer reactivity of I(ur) reagents®~* we wondered if
N-HVIs could serve as “heterocyclic group transfer” (HGT)
reagents to access diverse N-alkyl(heteroaryl)onium salts
through incorporation of the heterocyclic ligand into
a substrate of interest.** Given the appealing features of I(ui)
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Fig. 1 N-Alkyl pyridinium salts as the active components in materials
and bioactive molecules as well as versatile synthetic intermediates.
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Scheme 1 (a) Current approaches to pyridinium salt synthesis from
either amines or activated electrophiles. (b) Novel approach via N-HVI
HGT of alkenes to access diverse pyridinium salts.

reagents, and the modular synthesis of N-HVIs, we envisioned
that this could serve as a convenient, general platform for the
synthesis of diverse (heteroarylJonium salts from alkenes,
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Scheme 2 This report: N-HVI mediated HGT enabled mild, general
synthesis of lactone pyridinium salts via aminolactonization.

providing a novel means of accessing these valuable functional
handles.

Herein, we report the first example of the heterocyclic group
transfer (HGT) reactivity of I(m) N-HVIs, demonstrated in the
aminolactonization of alkenoic acids to give N-alkyl(heteroaryl)
onium lactones (Scheme 2),***¢ the products of which represent
core scaffolds in a wide array of bioactive natural products.*®
This represents the first general method for the direct conver-
sion of alkenes to (heteroaryl)onium salts.*”*® Furthermore, this
is rare example of an I(m)-mediated olefin oxyamination with an
exogenous amine nucleophile and therefore represents
a significant advancement in I(m)-mediated olefin functionali-
zations.**** The reactions proceed in excellent yields, under
mild conditions, and are capable of incorporating a broad scope
of sterically and electronically diverse aromatic heterocycles.
The N-HVI reagents can be generated in situ, the products iso-
lated via simple trituration, and subsequent derivatizations
demonstrate the power of this platform for diversity-oriented
synthesis of 6-membered nitrogen heterocycles. Mechanistic
studies indicate the reaction proceeds via initial olefin activa-
tion followed by lactonization and subsequent intermolecular
nucleophilic displacement of an (alkyl)(aryl)iodonium salt
hypernucleofuge.

Results and discussion

To begin our studies, 2,2-diphenyl-pentenoic acid (12) was used
as a model substrate along with pyridine-ligated N-HVI (Py-HVI,
9) and complete conversion to desired pyridinium lactone 13
was observed after only 20 minutes in CH3;CN at room
temperature (Scheme 3a). The product (13) could then be iso-
lated via trituration with Et,O, yielding pure 13 in 96% yield.
Control reactions indicated that the N-HVI was required for
high yields of 13, as typical halo-lactonization or oxy-
lactonization conditions using NIS, NBS, or PhI(OAc), in the
presence of pyridine gave no conversion to the desired pyr-
idinium lactone (see ESIt for full details). Attention then turned
to maximizing the efficiency and operational simplicity of the
transformation by developing an in situ protocol for the gener-
ation of N-HVIs, thereby eliminating the additional step of

© 2021 The Author(s). Published by the Royal Society of Chemistry
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y-HVI (9) (1.5 equiv) o ‘oT
Ph CH3CN, rt, 20 min.; Ph
= trituration with Et,0 @N _
12 96% yield 13 \ /

Activation with NBS, NIS, Phl(OAc),: 0% yield of 13

b- PhI(OAc); (1.1 equiv)
TMSOTf (2.2 equiv) o
pyridine (2.2 equiv); Ph
then alkenoic acid (12) (1.0 equiv) S
- Ph o OTf
CH3CN, rt, 20 min
Standard conditions: 94% ®N o
“Precaution-free” 91% 13 N /
Scheme 3 Initial reaction development and in situ N-HVI protocol. (a)

Conversion of 2,2-diphenyl-pentenoic acid (12) to pyridinium lactone
13 with N-HVI. (b) Operationally simplified variants including insitu
generation of N-HVIs and “precaution-free” protocol which does not
rigorously exclude air or moisture.

Table 1 N-Heterocycle scope in HGT of alkenoic acids with N-HVIs
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reagent isolation. It was found that a one-pot protocol involving
sequential addition of PhI(OAc),, TMSOT{, and pyridine in
CH;CN, leading to formation of 9, followed by addition of 12,
gave 13 in nearly equivalent yield of 94% (Scheme 3b).
Furthermore, the reaction could be run “precaution-free”,
where stringent drying of glassware and use of inert atmosphere
was omitted, with minimal effect on the reaction yield (Scheme
3b).

With efficient procedures in hand, the scope of the hetero-
cycle was examined (Table 1). Substitution at the 2-position was
well tolerated, with 2-Me-pyridine, 2-OMe-pyridine, and 2-OEt-
pyridine all incorporated in excellent yield to give (14-16);
somewhat unsurprisingly, use of sterically encumbered 2,6-
lutidine led to only 21% yield of lactone 17. Turning to the 4-
position of the pyridine, both electron-donating (18-23) and
electron-withdrawing groups (25-28) were well tolerated and
gave the corresponding pyridinium lactones in high yields, with
the exception of 24, possessing a free carboxylic acid, wherein
we postulate the low yield could be due to the formation of
zwitterionic protonated pyridinium salts. Both pyridine (13) and

o PhI(OAc), (1.1 equiv), TMSOTf (2.2 equiv) o
N-heterocycle (2.2 equiv); Ph
Ph . 4 S)
then alkenoic acid (1.0 equiv) (o) oTf
Ph CH Ph
CH3CN, rt, 20 min -6 h ®/—\ R
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@ Reaction was heated to 50 °C. ” Reaction performed under “precautlon -free” conditions, without exclusion of air or moisture.
“ Reaction time was 4 days.

performed with pre-formed, isolated N-HVI, as shown in Scheme 3a.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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4-CN pyridine lactone 28 were also obtained under precaution
free conditions; while the former saw almost no drop in yield
(91%), the latter saw a decrease to 53% from 91%, reflective of
the high moisture sensitivity of highly electron-deficient N-
HVIs, and thus incorporation of electron-poor heterocycles
would benefit from rigorously dried conditions. Pyridines pos-
sessing substitution at the 3- and 5-position were of particular
interest as access to these substitution patterns on the corre-
sponding piperidines can be challenging due to a lack of
inherent activation or directing ability and in turn have limited
commercial availability. 3-Acyl, 3-bromo, and 3-fluoro-pyridine,
as well as 3,5-disubstituted derivatives were all found to give the
pyridinium salts (29-31) in high yields. An oxidatively sensitive
boronic ester was compatible with the mild conditions, yielding
the versatile 3-Bpin (34) or 4-Bpin (35) pyridinium salts. Finally,
we examined other aromatic azaheterocycles; benzofused
derivatives including quinolines and isoquinoline could be
efficiently incorporated (36-39), as well as both pi-deficient and
pi-excessive diazines, including pyrazines to give 40 and 41, and
N-Me-imidazole to give lactone 42.

During the course of the N-heterocycle scope studies, it was
found that amino acid derived pyridines 43 and 44 were

mined due to lack of suitable resolution of diastereomers. unsuccessful under the standard conditions, giving no
Table 2 Alkenoic acid scope in N-HVI mediated HGT reaction
o PhI(OAC), (1.1 equiv), TMSOTS (2.2 equiv)
pyridine (2.2 equiv); A
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conversion to desired products 45 and 46 (Scheme 4). This was
hypothesized to be due to the amino acid functionality being
incompatible with formation of the N-HVI. To circumvent this
issue, we envisioned an activation strategy wherein an N-HVI
possessing relatively non-nucleophilic “dummy ligands” would
be used for olefin activation followed by incorporation of the
heterocycle of interest (Scheme 4). Not only would such
a “dummy ligand” protocol allow for the incorporation of
heterocycles possessing sensitive functionality, but it would
also only require one equivalent of the heterocycle of interest,
which is advantageous when considering use of either expen-
sive heterocycles or those that require multi-step sequences to
produce. To this end, we looked to 2,6-lut-HVI (10) as the

a. Proposed Mechansim

o Step 1 o] Step 2

gj\ N-HVI C-Ovia Cng intermolecular e
OH  olefin OH 5-exo-trig 0 Sp2 o OTf

R-— [ e
— S R =R -
v activation ( oTf \—Q—’I[NQ N/:\/R R \_L /:‘\/R
\ N/ N@ /
Ph

63 /> x
Ph
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activator due to the low nucleophilicity of 2,6-lutidine which
had already translated to a low yield in pyridinium salt forma-
tion (17, Table 1). Gratifyingly, it was found that treatment of
alkenoic acid 12 with 2,6-lut-HVI 10 in the presence of just one
equivalent of either Boc-3-(3-pyridyl)-L-alanine methyl ester (43)
or Fmoc-3-(4-pyridyl)-t-alanine methyl ester (44) under other-
wise standard conditions now produced the desired pyridinium
lactones (45, 46) in 71% and 41% yield respectively.

Having established a broad scope with respect to the
nitrogen heterocycle, we then turned to diversity at the alkenoic
acid (Table 2).* Beginning with substitution at the a-position,
2,2-dimethyl, 2-Me, 2-Bn, 2-(CH,),-OBn and o-methylene
lactones (47-51) could all be produced in high yields, indicating

o Step 3 o

64

I e R Alternate Mechanistic Considerations -----------------------

Step 1: Substrate Activation

Step 3: C-N Bond Formation

N-HVI O-activation via —OTf intermediate Intramolecular ligand coupling

o
/
C
R — e o R V&ow

| . |
! o) 77 Q oTf 3
! | -
A N )ko e |
s . s

S}

b. Step 1: N-HVI O-activation

Py—HVI (1.1 equiv)
CH3CN rt, 15 min
12,R=H
68, R = Me

c. Step 3: S\2 triflate displacement

o 0
o diti P o]
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=
P 69

Forcing Path A-OTf
PhI(OACc),/TMSOTH, rt, 30 min; then 4-CN pyridine

CH4CN, rt, 14 h 4
Standard Conditions
4-CN-Py-HVI, CH4CN, rt, 40 min 1

from 12, R =H: 94%

Q from 68, R = Me: 95%

c)
+ Ph o OTf
Ph _
oTf CN
28 N C\B /)

1 ( "H NMR ratio)

9 ( "H NMR ratio)

d. Step 3: Intramolecular Ligand Coupling— Crossover experiment

o)
o)
Ph
Ph N 2-OMe-Py-HVI (11) (1.1 equiv) 0o OTf o OTf
Ph OH o+ || Ph
P N~ SOEt CH4CN, 1t

12 15 (2-OMe) : 16 (2-OEY)

1.2

supports intermolecular Sy2

1.
0 MeO ElO

Scheme 5 Mechanistic investigation of N-HVI HGT aminolactonization. (a) Proposed mechanism for HGT aminolactonization and considered

alternatives (inset). (b) Probing Step 1: Umpolung O-activation. Probing
C-N bonding forming event.

© 2021 The Author(s). Published by the Royal Society of Chemistry

Step 3: (c) Intermolecular —OTf displacement. (d) Inter- vs. intramolecular
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the Thorpe Ingold effect is not required for efficient cyclization.
Substitution on the alkene was then examined, and it was found
that 2,2-disubstituted alkenes performed very well, giving 52
and 53 in high yields. Interestingly, a 2-phenyl substituted
alkene gave rearranged pyridinium lactone 54, likely through
a 1,2-aryl shift via iodonium intermediate 55, which has been
previously observed in hypervalent iodine-mediated alkene
functionalizations.** Use of an internal olefin resulted in lac-
tonization, however, unfortunately, no heterocycle incorpora-
tion, with the major product arising from elimination to give
a terminal alkene (not shown, see ESIT for details). Lactone ring
size was not limited to butyrolactones, with 6-membered
lactone 56 produced in 52% yield. Vinyl benzoic acid derivatives
were then examined and found to give both 5- and 6-membered
benzofused pyridinium lactones 57-59 in good yields. Inter-
estingly, 57 and 58 still displayed excellent levels of 5-exo-
selectivity, complimentary to the 6-endo-selectivity typically
observed for I(m)-mediated lactonizations of vinyl benzoic
acids.®® Finally, several more complex substrates, or those
containing other reactive functional handles, were examined.
Reaction of a protected dehydrocholic acid derivative gave
lactone pyridinium salt 60 in 59% yield. Excitingly, even the
presence of other reactive alkenes was well tolerated, with

Ph o OTf
Ph &
/=
N X
N/
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protected indole lactones 61 and 62, the latter possessing an
additional terminal alkene in a proximal position, being
produced in high yields. These examples indicate the potential
utility of this method for late stage incorporation of pyridinium
salts in synthetic sequences.

With regards to the mechanism, our proposed mechanism
involved olefin activation (Step 1) followed by 5-exo-trig lacto-
nization to form an intermediate (alkyl)(aryl)iodonium salt (64)
(Step 2),**¢ and C-N bond formation would then occur via Sy2
displacement with the nitrogen heterocycle (Step 3), (Scheme
5a). Beginning with the substrate activation step, we also
considered an alternative pathway involving ligand exchange at
iodine by the carboxylic acid to give 65, promoting attack of the
olefin on the umpoled oxygen (65, Scheme 5a, inset), more akin
to our previous findings on oxygen activation with N-HVIs.”**”
To test this, the reaction was run with methyl ester 68, which
would not participate in ligand exchange; this gave near iden-
tical yield and reaction rate as the alkenoic acid, lending
support to olefin activation being operative (Scheme 5b).
Regarding the proposed lactone (alkyl)(aryl)iodonium interme-
diate 64, unfortunately, all attempts at direct characterization
via 'H-NMR or X-ray crystallography were unsuccessful;
however prior literature lends strong support to formation of

(o}
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Ph R
[y
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Nt/

70-82
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Scheme 6 Derivatizations of pyridinium lactones to diverse aminola

82, 46%, dr4:1

ctonization products. * 74 was produced as a ~1: 1 mixture of diaste-

reomers however lack of baseline resolution using several analytical methods prevented definitive determination of ratio. ® NaBH, was used as

the reducing agent. “ NaCNBHs was used as the reducing agent.
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such a species via a kinetically favored 5-exo-trig lactonization
on a 3-membered iodonium.***¢

This left us to consider the final C-N bond formation event
(Step 3), where we envisioned two alternative pathways: (1)
a triflate intermediate such as 66 (Scheme 5a, inset) could form
in situ and be competent for product formation, or (2) an
intramolecular ligand coupling event from 67.*” To first probe
the potential intermediacy of the triflate lactone, 66 was
generated in situ via treatment with PhI(OAc),/TMSOTT{,**** fol-
lowed by addition of 4-CN-pyridine (Scheme 5c). While standard
conditions for N-HVI HGT gave 90% conversion to the desired
salt 28 after 40 minutes by 'H-NMR, 69 gave just 20% product
after 14 h. Therefore, while triflate lactone 69 is a viable
substrate for heterocycle displacement, it does not appear to be
the major operative intermediate. Additionally, this result
further emphasizes the unique effectiveness of N-HVIs HGT for
(heteroaryl)onium salt synthesis from olefins, as even the highly
reactive I(u1) species generated from PhI(OAc),/TMSOT{***° was
an ineffective activating agent. Finally, a cross over experiment
was used to probe for an intramolecular ligand coupling event
(67, Scheme 5a, inset), wherein 2-OMe-Py-HVI (11) was used as
an activator in the presence of free 2-OEt-pyridine. This exper-
iment showed yielded a 1.2 : 1.0 mixture of lactones 15 and 16,
supportive of an intermolecular C-N bond forming event.
Taken together, these mechanistic studies support our initially
proposed mechanism as shown in Scheme 5a.

Finally, in order to demonstrate the versatility of the result-
ing (heteroaryl)onium lactones for heterocycle synthesis, we
explored a variety of derivatizations to access functionalized
and lower oxidation state derivatives (Scheme 6). Full reduc-
tions to give saturated piperidines or piperazines (70-74) in
excellent yields could be achieved upon hydrogenation with
Adam’s catalyst (Scheme 6a), providing a means of accessing
piperidines with substitution patterns that are either expensive
to purchase or challenging to install, such as 3-fluoro- or 3-acyl
piperidines (73, 74). Partial hydride reductions led to 3,4-
dehydropiperidines 75-78 with complete regioselectivity in all
cases, providing vinyl halides or nitriles that serve as functional
handles for further diversification (Scheme 6a). Demethylation
of 2-OMe pyridinium 15 with Nal gave the corresponding 2-
pyridone 79 in 95% yield (Scheme 6b). We then examined the
addition of carbon nucleophiles and found addition of a tri-
fluoromethyl group could be achieved with C2-selectivity on 13
to give 80 (Scheme 6¢) or that aryl Grignard (Conditions A) or
cuprate additions (Conditions B) proceeded with C-2 or C-4
selectivity on 3-Ac- and 3-Bpin-pyridiniums, respectively, to
give functionalized 1,2- and 1,4-dihydropyridines (81, 82)
(Scheme 6d). In all the above cases, completely selective reac-
tion at the (heteroaryl)onium salt was observed with no
competitive reactivity of the lactone moiety, leaving it available
for further downstream manipulations.

Conclusions

In conclusion, we report the first example of “heterocyclic group
transfer” (HGT) reactions of I(m) N-HVI reagents, providing
a new platform for the synthesis of structurally diverse

© 2021 The Author(s). Published by the Royal Society of Chemistry
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(heteroaryl)onium salts directly from olefins, demonstrated in
the aminolactonization of alkenoic acids or esters. The reaction
proceeds under remarkably mild conditions, tolerates a broad
heterocycle and alkenoic acid scope, can be run without special
considerations for air or moisture, and the N-HVIs can be
generated in situ, making this strategy both general and prac-
tical. For cases involving valuable or sensitive heterocycles,
those that are incompatible with N-HVI formation, an enabling
“dummy ligand” activation strategy was also developed that
allows for their efficient incorporation, further broadening the
potential of the methodology. Mechanistic studies indicate that
the reaction proceeds via initial olefin activation followed by
lactonization and intermolecular Sy2 displacement of a (alky-
)(aryl)iodonium salt hypernucleofuge. Representative derivati-
zations of the resulting (heteroaryl)onium salts demonstrate the
power of this platform for broadening the scope of available
substitution patterns on the venerable piperidine scaffold for
medicinal chemistry. Building on this seminal report, ongoing
efforts in our laboratory are working to expand the upon the
HGT reactivity of I(m) N-HVIs with the goal of providing
a general platform for the incorporation of (heteroaryl)onium
salts into organic molecules, fueling the current renaissance of
these moieties as functional handles across synthetic
chemistry.
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