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convolutional neural network for
fragment-based lead optimization†

Harrison Green, a David R. Koesb and Jacob D. Durrant *a

Machine learning has been increasingly applied to the field of computer-aided drug discovery in recent

years, leading to notable advances in binding-affinity prediction, virtual screening, and QSAR.

Surprisingly, it is less often applied to lead optimization, the process of identifying chemical fragments

that might be added to a known ligand to improve its binding affinity. We here describe a deep

convolutional neural network that predicts appropriate fragments given the structure of a receptor/

ligand complex. In an independent benchmark of known ligands with missing (deleted) fragments, our

DeepFrag model selected the known (correct) fragment from a set over 6500 about 58% of the time.

Even when the known/correct fragment was not selected, the top fragment was often chemically similar

and may well represent a valid substitution. We release our trained DeepFrag model and associated

software under the terms of the Apache License, Version 2.0.
1 Introduction

Drug discovery is beneting from an upsurge in machine-
learning approaches for tasks such as binding-affinity predic-
tion,1–3 virtual screening,4–7 and quantitative structure–activity
relationship (QSAR).8 Massive molecular datasets have enabled
data-driven models that outperform handcraed algorithms in
nearly all applications. As these powerful new approaches come
of age, they are increasingly used to augment the drug-discovery
pipeline and reduce the time and cost of developing new
pharmaceuticals.

While classication and regression models for drug
discovery have been studied extensively, the problem of
molecular generation remains challenging. In the eld of
computer vision, generative models such as recurrent neural
networks (RNNs) and generative adversarial networks (GANs)
have had great success in performing tasks such as realistic
image synthesis9 and style transfer.10 Naturally one wonders if
this same technology can be applied to molecular synthesis.
Several recent works in generative molecular modeling have
demonstrated that it is possible to generate libraries of 2D
SMILES-string representations with desired properties11 as well
as 3D ligand pharmacophore-type maps from a given receptor
pocket.12

However, the eld still faces some challenges. First, it is
difficult to enforce the generation of valid molecular structures.
ty of Pittsburgh, Pittsburgh, Pennsylvania,

ems Biology, University of Pittsburgh,

tion (ESI) available. See DOI:

47
Models that produce SMILES strings may contain grammatical
errors, and 3D molecular shapes tend to be blurry and lacking
in detail. Second, the inner workings of generative models are
difficult to interpret. Failure cases are hard to diagnose both
during training and inference (i.e., prospective prediction).
Finally, while it is clear how to evaluate a regression model (e.g.,
by calculating L2 loss), it is not entirely clear how to quantita-
tively evaluate a generative model. The current best practice is to
demonstrate “enrichment” for some metric such as QED
compared to a random baseline.13

In this paper, we address some of these limitations by
restructuring the question of molecular generation as a type of
classication problem. Specically, we propose a new “frag-
ment reconstruction” task where we take a ligand/receptor
complex, remove a portion of the ligand, and ask the question
“what molecular fragment should go here?” To successfully
answer this question, a machine-learning model must consider
the surrounding receptor pocket and the intact portion of the
ligand. This task is immediately applicable to lead optimiza-
tion, which seeks to improve the binding of a known ligand by
swapping and/or addingmolecular fragments. It also represents
an important step towards fully de novo drug design.

We here demonstrate that a 3D convolutional network
trained on experimentally derived crystal-structure data can
select a missing fragment with roughly 58% accuracy from a set
of more than 6500 fragments. Even when the network does not
predict the correct answer, the top predictions are oen
chemically similar and may well represent plausible substitu-
tions. We release our trained model and associated soware
under the terms of the Apache License, Version 2.0. A copy can
be obtained free of charge from http://durrantlab.com/
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Fragment dataset details. Receptors: number of unique
receptor targets per split. Ligands: number of unique ligands per split
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deepfragmodel, where interested users can also nd a link to
a Google Colaboratory Notebook14 for testing.
(determined by SMILES comparison). Unique fragments: number of
unique molecular fragments per split. Examples: total number of
(receptor/parent, fragment) examples

TRAIN VAL TEST ALL

Receptors 22 968 7641 8093 38 702
Ligands 10 284 3677 4101 18 062
Unique fragments 4654 2070 2328 6522
Examples 185 198 55 221 68 270 308 689
2 Results and discussion

The fragment-reconstruction task we here introduce aims to
complete a partial, receptor-bound ligand (“parent”) by adding
a new molecular fragment such that the combined molecule is
highly complementary to the given receptor. For the purpose of
this work, a fragment is a terminal ligand substructure with
a mass less than 150 Da (Fig. 1A). The cutoff choice of 150 Da is
relatively arbitrary; this value allows for a large variety of frag-
ment types without including overly complex structures. The
fragment may be an explicit functional group with known
behavior such as a hydroxyl or phenyl group, but this is not
a requirement.

The intuition behind this task is that fragment selection is
a function of the local receptor environment and the existing
ligand scaffold (parent). Therefore, it should be possible to
learn a model that predicts appropriate fragments given the
structure of a receptor/parent complex. We here introduce just
such a model and show that it can be used to implicitly rank
a set of candidate complementary fragments. We expect such
a model to be useful for lead optimization (e.g., to generate
congeneric series of small-molecule ligands with improved
binding affinities). The same model could be used indirectly as
a way to evaluate the importance of each group in an existing
ligand by removing and re-predicting existing fragments.
2.1 Generating and representing molecular data

2.1.1 A dataset of (receptor/parent, fragment) examples.
Ideally, we would like to train a model to predict the single,
optimal fragment for any receptor/parent pair. But given that
there are roughly 1060 drug-like molecules,15 identifying optimal
fragments for training is impracticable. We instead trained on
datasets derived from the Binding MOAD16 database (Table 1),
which currently includes experimentally derived structural data
for 38 702 receptor/ligand complexes.
Fig. 1 DeepFrag workflow. (A) Receptor/ligand complex. Example “pare
yellow, respectively. (B) The ligand is cut along a single bond to separate
converted to 3D voxel grids (density channels). (D) Density channels are co
fingerprint. (E) The fingerprint is compared against a fingerprint library (l

© 2021 The Author(s). Published by the Royal Society of Chemistry
We make the assumption that because each ligand in the
dataset is known to bind the corresponding target, its structure
must be to some extent optimized relative to a random mole-
cule. It follows that each ligand fragment (i.e., substructure) is
also at least somewhat optimized—especially those fragments
that interact directly with the receptor. We therefore trained
a model to reconstruct correct fragments from known active
ligands, as a surrogate for training on optimal fragments
(Fig. 1A and B).

2.1.2 Voxelizing receptor/parent complexes. We repre-
sented the input receptor/parent complexes as 3D grids
(tensors, Fig. 1C) similar to those described elsewhere.4,5,17 Each
grid point corresponds to a cubic region of 3D space (a voxel),
analogous to a pixel in the 2D-image context. We chose a grid
representation because the 3D local context is certainly critical
for fragment binding. Converting molecular structures to voxel
grids also allowed us to easily translate machine-learning
techniques from other elds (e.g., computer vision). To learn
a rotation-invariant model and prevent overtting, each grid
was randomly rotated each time it was used (i.e., once per
training epoch).

2.1.3 Converting fragments to ngerprints. We repre-
sented the fragments (DeepFrag output) as continuous molec-
ular ngerprints rather than 3D grids. We converted the known
fragments in our dataset to ngerprints using the RDKFinger-
print algorithm (Fig. 1D).18,19 Each ngerprint is a vector (i.e.,
nt” and “fragment” portions of the ligand are highlighted in orange and
the parent and fragment. (C) Atoms from the receptor and parent are
ncatenated and fed to the DeepFragmodel, which predicts a fragment

abel set) to generate predictions.

Chem. Sci., 2021, 12, 8036–8047 | 8037
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a simple list of numbers) that serves as a numerical description
of the fragment's topology, or structure. These ngerprint
outputs distinguish DeepFrag from other methods that perform
more typical categorical classication tasks, where the output is
instead a vector containing class scores or normalized class
probabilities. In this typical formalization, classes must be xed
at training time (i.e., the model has no capacity to predict
unseen classes), and any prior knowledge about class relation-
ships is effectively stripped, precluding the training of a more
generalizable model. Instead of predicting from a limited
number of possible fragments (classes), we predict a contin-
uous representation of an RDKFingerprint describing the
desired output ngerprint. Substituting numerical values
(between zero and one) for the binary bits of a traditional
ngerprint allows for “fuzzy” matching to a greater variety of
chemotypes.
Table 2 The TOP-k % accuracy, for k ˛ {1, 8, 64}, of the final model
(DeepFrag with full rotation augmentation; N ¼ 32) evaluated on the
withheld TEST set (68 270 examples), using the LBL-ALL label set. For
reference, we also report the accuracy using the LBL-TEST set. The
expected accuracy of an equivalent random model is given in
parenthesis

TOP-1 TOP-8 TOP-64

TEST/LBL-ALL (6522) 57.77 (0.02) 66.16 (0.12) 72.26 (0.98)
TEST/LBL-TEST (2328) 57.80 (0.04) 66.67 (0.34) 74.28 (2.75)
2.2 The DeepFrag model

We systematically considered many combinations of machine-
learning and grid-generation parameters (hyperparameters) to
nd a combination well suited to our fragment-prediction task
(see ESI†). To evaluate each parameter combination, we trained
a corresponding model using a set of (receptor/parent, frag-
ment) examples set aside specically for training (the TRAIN
set, roughly 60% of the data; see Table 1 and Subsection 4.1.3).
We then evaluated how well the trained model performed when
applied to a distinct validation set, comprised of examples set
aside for identifying acceptable hyperparameters (the VAL set,
roughly 20% of the data; Table 1).

Aer identifying a reasonable set of machine-learning and
grid-generation parameters, we trained the nal model, which
we call “DeepFrag”. We again trained using the examples of the
TRAIN set, but this time we trained until full convergence (i.e.,
until we no longer saw substantial improvements in the accu-
racy of the VAL-set predictions; about ve days on a TITAN-X
GPU).

Although all grids were randomly rotated once per epoch
(training step) to encourage rotation-invariant training, the
model was still not perfectly robust to rotation. That is, other-
wise identical grids with different rotations generated slightly
different prediction ngerprints, and some rotations even
generated poor predictions. We found that averaging the
ngerprint predictions of multiple randomly rotated grids
improved accuracy by “smoothing out” any rotation depen-
dence of the DeepFrag model (see ESI†).

As a nal evaluation, we applied our fully trained DeepFrag
model to a distinct testing set comprised of examples set aside
specically for evaluating the nal model (the TEST set, roughly
20% of the data; see Table 1 and Subsection 4.1.3). For each
TEST-set example, we randomly rotated the associated receptor/
parent voxel grid 32 times and used DeepFrag to predict 32
fragment ngerprints. In all cases, we averaged the 32 nger-
prints to produce one fragment ngerprint per receptor/parent
pair.

This averaged ngerprint output is not easily human inter-
pretable, so as a nal step we selected fragments with similar
8038 | Chem. Sci., 2021, 12, 8036–8047
ngerprints from a look-up library of known fragments, which
we call a “label set” (Fig. 1E). This fragment-selection task is
entirely independent of the training and testing used to
generate the model itself and so can be seen as a post-
processing step.

To assess accuracy on the TEST set, we constructed the LBL-
ALL label set, which includes the correct fragment ngerprints
from the TEST set as well as the other ngerprints seen during
training, from the TRAIN and VAL sets. By comparing the
DeepFrag output ngerprint to those ngerprints in the label
set, one can identify the k fragments that are most similar. TOP-
k accuracy is simply the frequency with which the correct frag-
ment is among those k fragments. We found that the correct
fragment and the single most similar LBL-ALL fragment were
the same 57.77% of the time (i.e., the TOP-1 accuracy of the nal
DeepFrag model was 57.77%; Table 2).
2.3 Fragment selection: label-set size and composition

A large label set such as the LBL-ALL set (6522 fragment nger-
prints) is advantageous in that it gives the model the freedom to
select from a wider range of fragments. On the other hand,
smaller sets may also have their advantages. For example, allow-
ing DeepFrag to choose from a smaller label set could conceivably
improve accuracy. Using smaller sets comprised of easily syn-
thesizeable fragments may also be critical when chemical syn-
thesizeability is a concern. Even a few dozen fragments can cover
a wide range of potential biochemical interactions.

In some circumstances, generating smaller label sets
composed only of fragments with druglike chemical properties
may also be benecial. For example, in creating the LBL-ALL
label set, we considered all TRAIN-, VAL-, and TEST-set frag-
ments, regardless of their chemical properties. Some crystallo-
graphic ligands in our original dataset are not particularly
druglike, so occasionally DeepFrag recommends a fragment
that is not suitable for drug discovery (e.g., *OOOH, derived
from crystal structure 1U21;20 see Fig. 2). We opted to retain
these fragments based on the assumption that an expert end
user will be able to select those that are most promising for
further evaluation. Furthermore, even fragments that are not
druglike might serve to inspire a trained medicinal chemist in
search of optimization strategies. But researchers generating
alternative label sets may wish to further lter by chemical
properties so that only druglike fragments can be selected.

Given that some users may wish to use smaller label sets, we
specically evaluated the impact of label-set size on accuracy.
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Example predictions using the final model. Examples are drawn from the (unseen) TEST set, and fragments are selected from the LBL-ALL
label set (6522 choices) each predicted fingerprint is the average of 32 predictions obtained by randomly rotating the corresponding input voxel
grid. Left: the ground-truth (correct) fragments. Right: the top eight predicted fragments, labeled with the cosine similarity (1 – cosine distance)
to the respective averaged prediction fingerprint.
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We applied DeepFrag to all the (receptor/parent, fragment)
examples in the TEST set (68 270 examples) and recalculated
TOP-k accuracy using a much smaller label set comprised of
only the fragment ngerprints present in our TEST set (LBL-
TEST, 2328 ngerprints, Table 1). Remarkably, the correct
label was the closest roughly 58% of the time (Table 2),
regardless of the label set used. Increasing the size of the label
space by nearly threefold (LBL-TEST / LBL-ALL) thus bears
little cost on accuracy. In other words, model predictions are
fairly precise; despite “cluttering” the label space with many
more incorrect fragments, top predictions from the smaller
space are generally also top predictions in the larger space.

By default, DeepFrag uses a label set that includes the frag-
ment ngerprints “seen” during training (i.e., the 5564 nger-
prints in the TRAIN and VAL sets), which we call the LBL-SEEN
label set. The LBL-ALL and LBL-TEST label sets described above
are useful for evaluating DeepFrag accuracy on the TEST set
because they include the correct TEST-set fragments. But the
LBL-SEEN set is more appropriate for standard use (when
a specic correct fragment need not be known beforehand)
because it excludes TEST-only fragments, which are artifacts of
data-set selection and do not contribute to the training of the
model.
© 2021 The Author(s). Published by the Royal Society of Chemistry
2.4 Parent and receptor information both improve accuracy

DeepFrag considers the atoms of both the parent ligand and
protein receptor when predicting potential fragments. Several
factors informed our decision to train using both these atom
sets. We trained using the parent-atom information because we
reasoned that it would be critical for selecting appropriately
sized fragments (i.e., ideal fragments should be able to t within
the available space between the parent and receptor). Including
parent atoms may also allow DeepFrag to deduce fragment
orientation (i.e., the general direction towards which the
selected fragments must extend). Finally, information about the
parent atomsmay allow DeepFrag to learn some limited rules of
chemical synthesizability. For example, if the user-specied
connection point falls at the location of a parent oxygen atom,
fragments that connect through carbon atoms are more
appropriate than those that connect through nitrogen atoms
because oxygen–carbon bonds are more common than oxygen–
nitrogen bonds.

Our decision to include receptor atoms was similarly moti-
vated. We expect that DeepFrag leverages this information to
select appropriately sized fragments. The receptor atoms also
provide DeepFrag with the information needed to select frag-
ments that can participate in complementary interactions (e.g.,
Chem. Sci., 2021, 12, 8036–8047 | 8039
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fragments with hydrogen-bond acceptors are best if the adja-
cent receptor atoms form a hydrogen-bond donor).

To test the relative importance of parent and receptor atoms,
we trained two additional machine-learning models using
either the parent-atom information or the receptor-atom
information, but not both. In Table 3 we report the accuracy
of these two model variants on the withheld TEST set when
selecting fragments from the LBL-TEST label set. The nal
(parent + receptor) DeepFrag model performed substantially
better than the models trained on the parent or receptor
information alone (Table 3). Somewhat surprisingly, the model
trained on the parent-atom information alone outperformed
themodel trained on the receptor-atom information (Table 3). It
may be that the model learned implicit “ligand-like molecule”
priors. For example, asking the model to predict a fragment on
an aromatic ring will likely yield a fragment such as a single
uorine atom or a nitro group. These types of predictions match
intuitions of what a “drug-like” molecule might look like.
Additionally, while the “parent” model retains information
about the specic placement of the target fragment, the
“receptor” model simply sees a receptor pocket with no orien-
tation or placement information. It is surprising that the
receptor model performs as well as it does, given these
limitations.
2.5 Examples demonstrating effectiveness

2.5.1 DeepFrag generalizability.We were encouraged to see
evidence that our model can generalize beyond the correct
fragments used for training. The true optimal fragment for
a given protein/parent pair is unlikely to ever be in any chosen
label set. Generalizability ensures that the model can never-
theless predict chemically similar fragments that are well suited
for a given binding-pocket region. Synthesizing and testing
congeneric series of distinct compounds that each incorporate
a different top-scoring fragment may enable the rapid discovery
of optimized ligands with improved binding affinities.

To illustrate, we randomly selected six TEST-set (protein/
parent, fragment) examples and identied the eight LBL-ALL
fragment ngerprints that were most similar to each
DeepFrag-predicted ngerprint (Fig. 2). The correct fragment
was selected rst in two of the six cases, and among the top ve
in another two cases. But it is telling that the other top-ranked
fragments are oen very plausible substitutes. Interestingly, the
Table 3 Impact of parent vs. receptor information. In all cases, the
TOP-k accuracy (%) was calculated using the LBL-TEST label set (2328
fragments). We here used DeepFrag without rotation augmentation
(i.e., N ¼ 1, see Table S5). The architectures of the parent- and
receptor-only models are identical except for the number of input
layers

Model TOP-1 TOP-8 TOP-64

Random baseline 0.04 0.34 2.75
Parent and receptor 57.74 65.36 72.16
Parent only 47.85 56.70 66.34
Receptor only 38.39 46.61 58.46

8040 | Chem. Sci., 2021, 12, 8036–8047
single-atom halogen fragments (*Cl, *Br, and *F) share no
common ngerprint bits, yet the model learned to group them
together. This result suggests that our model may be more
predictive than even the TOP-k metric would suggest. It is
entirely possible that in some cases where DeepFrag does not
select the correct fragment, the selected fragment may in fact be
superior.

2.5.2 Human and DeepFrag intuition are complementary.
To provide a simple comparison of human and DeepFrag
“intuition,” we next considered H. sapiens peptidyl-prolyl cis–
trans isomerase NIMA-interacting 1 (HsPin1p), a cancer drug
target,21 bound to a phenyl-imidazole ligand (IC50 ¼ 8 mM, PDB
2XP9,22 Fig. 3). Importantly, neither HsPin1p nor the ligand
were included in the DeepFrag TRAIN or VAL sets.

Intuitively, carboxylate A (Fig. 3, highlighted in pink) seems
well optimized, per the crystal structure. It forms electrostatic
interactions with R69 and K63, and hydrogen bonds with C113
and S114. We removed this carboxylate group and used Deep-
Frag to predict replacement moieties from among those in the
default LBL-SEEN set. The top predicted fragment was the
correct carboxylate group. Interestingly, the second- and third-
place fragments were chemically similar: *CO and *CC(¼O)O.

Phenyl B (Fig. 3, highlighted in blue) also appears to be well
optimized. It binds near multiple hydrophobic residues (L122,
F134, M130, and L61) and forms p–p interactions with H59. We
repeated the same DeepFrag analysis multiple times, this time
removing phenyl B. Multiple runs are useful in some cases
because DeepFrag is not strictly deterministic; it randomly
rotates the default 32 grids it uses for output-ngerprint aver-
aging, so different DeepFrag runs can in some cases predict
different outputs. While some of our DeepFrag runs targeting
Fig. 3 A crystal structure of HsPin1p bound to a phenyl-imidazole
ligand (PDB 2XP9 (ref. 22)). The crystallographic ligand is also shown in
2D representation (overlaid). A, B, and C indicate a carboxyl (pink) and
two phenyl (blue and green) fragments that we reassessed with
DeepFrag. The DeepFrag-suggested bicyclic and ethyl replacements
for phenyl B and phenyl C, respectively, are shown in yellow. Frag-
ments were positioned using RDKit19 (see ESI†). Figure rendered using
BlendMol.23

© 2021 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1sc00163a


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
M

ay
 2

02
1.

 D
ow

nl
oa

de
d 

on
 1

1/
13

/2
02

5 
3:

08
:3

4 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
phenyl B did identify a phenyl group as the correct fragment, we
focus on a run in which the top predicted fragment was the
bicyclic moiety *c1ccnc2c1C(¼O)N(C)C2 (Fig. 3, in yellow). This
fragment may preserve the p–p interactions with H59 while
enhancing hydrophobic interactions with M130 and L122
(Fig. 3), illustrating how DeepFrag can serve as a useful tool for
lead optimization.

To provide further evidence that the bicyclic substitution is
reasonable, we positioned it relative to the parent molecule
using RDKit. We then used the docking program smina24 to (1)
optimize the geometry (i.e., pose) of the composite (fragment +
parent) compound within the binding pocket and (2) map that
pose to a score that ideally correlates with binding affinity (see
ESI† for important details). Computer docking is a useful tool
for rst-pass assessment, but, as is the case with all docking
scoring functions, the correlation between smina scores and
experimentally measured binding affinities is far from perfect.
That is, if one compound has a slightly better score than
another, one cannot condently conclude that it has a better
binding affinity. On the other hand, if a compound has a far
better docking score, an actual difference in affinity is more
likely.

Given that the original HsPin1p ligand is itself the product of
experimental lead optimization,22 it is noteworthy that the
DeepFrag bicyclic modication did not substantially impact the
smina score. The docking scores of the DeepFrag compound
and original crystallographic ligand were �7.13 and
�7.17 kcal mol�1, respectively. This suggests that the DeepFrag
substitution is reasonable (i.e., it ts well within the protein
binding pocket and so does not substantially impact the dock-
ing score).

As negative controls, we similarly generated three additional
molecules by substituting phenyl B with random fragments.
These fragments were selected by sampling the same distribu-
tion as the training data (i.e., TRAIN + VAL); that is, small
fragments such as *O and *C, which occur more frequently, had
a better chance of being selected than larger rare fragments.
The three randomly generated compounds had an average
smina score of �5.55 � 0.26 (stdev) kcal mol�1. Given that the
crystallographic ligand is already the product of careful exper-
imental optimization, it is not surprising that random moiety
replacements would worsen the docking score. That the score of
the DeepFrag compound resembles that of the crystallographic
ligand—and not the randomly generated negative controls—
provides additional evidence that DeepFrag has successfully
identied an effective fragment in this case.

Finally, human intuition suggests that phenyl C (Fig. 3,
highlighted in green) is not well optimized. Aside from possible
hydrophobic interactions with a portion of the R68 side chain,
there are no other specic interactions with HsPin1p. This
phenyl group also appears to be more solvent exposed than is
phenyl B. When we applied DeepFrag, it in fact did not suggest
aromatic groups at this position. The top predicted fragments
were methyl and ethyl groups. Interestingly, the methyl
compound maintains the potential hydrophobic interactions
with the R68 side chain (Fig. 3, in yellow). Its smina score was
comparable to that of the original ligand (�6.30 vs.
© 2021 The Author(s). Published by the Royal Society of Chemistry
�7.17 kcal mol�1; see ESI†). The average score of three similar
compounds generated using randomly sampled moiety substi-
tutions was worse than that of the original and DeepFrag-
optimized ligands (�5.85 � 0.04 kcal mol�1), again suggesting
that DeepFrag selected an effective fragment.

This analysis suggests that DeepFrag has learned much of
the same chemical–biology intuition typical of experts in the
eld.

2.5.3 Predicting diverse interaction types. To evaluate
whether the DeepFrag model can account for a wide range of
interaction types (e.g., electrostatic, hydrophobic, halogen,
hydrogen-bond, and aromatic interactions), we selected three
additional protein/ligand complexes for testing. These
complexes were well suited for our purposes because (1) the
associated PDBs were among those in the TEST set, not the
TRAIN or VAL sets; (2) the associated ligands had diverse low-
weight fragments of the type commonly considered during
lead optimization; and (3) visual inspection conrmed that
those fragments formed specic interactions with their
respective protein receptors.

2.5.3.1 Myeloid cell leukemia 1 (Mcl-1). We rst applied
DeepFrag to the cancer-implicated protein myeloid cell
leukemia 1 (Mcl-1) bound to a low-nanomolar inhibitor desig-
nated “10d” (Kd ¼ 24 nM; Fig. 4A; PDB 6QZ8 (ref. 25)). As
a demonstration of DeepFrag's ability to optimize for electro-
static interactions, we removed the ligand carboxylate group,
which forms a strong electrostatic interaction with R263, and
used DeepFrag to predict appropriate replacement fragments
from among those in the default LBL-SEEN set. The top pre-
dicted fragment was in fact a carboxylate group, and the second-
and third-ranked fragments were chemically similar: *C(¼O)OC
and *C(¼O)OO.

To demonstrate DeepFrag's ability to optimize for hydro-
phobic interactions, we separately removed a terminal methyl
and ethyl group from the ligand. Both appear to be well opti-
mized. The methyl group forms hydrophobic contacts with
F270, F228, and M231; and the ethyl group forms hydrophobic
contacts with F270, V253, V249, M250, and M231. In both cases,
DeepFrag identied the correct fragment as the top-ranked
candidate and also suggested other chemically plausible
hydrophobic fragments.

We also removed the ligand chlorine atom, which is pre-
dicted to form a halogen bond with the A227 backbone carbonyl
oxygen atom (Fig. 4A, marked with an asterisk). The top-ranked
replacement fragments were methyl, methyl alcohol, and ethyl
groups. Although methyl halide fragments did rank well (e.g.,
methyl oride, methyl chloride, methyl bromide, and methyl
iodide ranked 8th, 12th, 13th, and 15th, respectively), it is
reasonable that DeepFrag preferred a small, hydrophobic frag-
ment (methyl) at this location because surrounding amino acids
(F228, A227, andM231) are also hydrophobic. Indeed, swapping
the chlorine for a methyl group slightly improved the smina
score over the original ligand (�8.03 vs. �7.92 kcal mol�1).
Encouragingly, the average score of three similar compounds
generated via random moiety substitutions was again worse
than that of both the original and DeepFrag-optimized ligands
(�7.51 � 0.65 kcal mol�1).
Chem. Sci., 2021, 12, 8036–8047 | 8041
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Fig. 4 Crystal structures used to explore DeepFrag's ability to predict a broad range of molecular interactions. Two-dimensional depictions of
the corresponding crystallographic ligands are overlaid in the lower right-hand corners. (A) Protein myeloid cell leukemia1 (Mcl-1) (PDB 6QZ8
(ref. 25)). A key ligand chlorine atom is marked with an asterisk. (B) Family GH3 b-D-glucan glucohydrolase from barley (PDB 1X38 (ref. 26)). A key
ligand hydroxyl group is marked with an asterisk, and an original phenyl group is shown in yellow. (C) NanB Sialidase from S. pneumoniae (PDB
4FOW (ref. 27)). A key ligand primary amine, which DeepFrag replaced with an ethylamine, is marked with an asterisk. Fragments were positioned
using RDKit19 (see ESI†). Figure rendered using BlendMol.23
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2.5.3.2 Family GH3 b-D-glucan glucohydrolase (barley). We
next applied DeepFrag to family GH3 b-D-glucan glucohydrolase
from barley, bound to the low-nanomolar inhibitor gluco-phe-
nylimidazole (1.7 nM; Fig. 4B; PDB 1X38 (ref. 26)). To show how
DeepFrag can optimize for hydrogen-bond interactions, we rst
removed the hydroxyl group at position 8 (Fig. 4B, marked with
an asterisk), which participates in hydrogen bonds with R158
and D285. The top-ranked replacement fragment was in fact
a hydroxyl group, and other top-scoring fragments were chem-
ically similar (e.g., *OC and *COO).

To test DeepFrag's ability to optimize for aromatic stacking
interactions, we next removed the ligand phenyl group (Fig. 4B,
in yellow), which participates in p–p stacking interactions with
W286 and W434. Phenyl groups are larger than those tested
above, making it less likely that DeepFrag will select the exact,
correct fragment. But DeepFrag does oen produce reasonable
alternatives in these cases, showing that it has learned a certain
degree of chemical intuition. The top replacement fragments
were in fact all aromatic. The best fragment, *c1ncnc2c1C(C)
CC2(O), has a bicyclic structure that may enable more extensive
contacts with W286 (Fig. 4B). Interestingly, the fragment also
overlaps with a crystallographic glycerol molecule (not shown),
suggesting the expanded ligand may now occupy a new but
“druggable” subpocket. The bicyclic addition also had a smina-
score estimate of binding affinity comparable to that of the
original ligand (�10.10 vs. �10.72 kcal mol�1), suggesting the
substitution is sensible given the known crystallographic pose.
The average score of three similar compounds generated using
moiety substitutions sampled randomly from the training data
was substantially worse than that of both the original and
DeepFrag-optimized ligands (�8.00 � 0.15 kcal mol�1), lending
further credence to the DeepFrag fragment selection.

2.5.3.3 NanB sialidase (Streptococcus pneumoniae). Finally,
we applied DeepFrag to NanB Sialidase from S. pneumoniae
bound to 3-ammoniopropane-1-sulfonate (Fig. 4C; PDB 4FOW
(ref. 27)). The primary amine of the ligand (marked with an
asterisk) is likely positively charged because it is positioned
8042 | Chem. Sci., 2021, 12, 8036–8047
among three negatively charged amino acids (E541, D327, and
D270). To further illustrate how DeepFrag can account for
electrostatic interactions, we removed the amino group and
used DeepFrag to replace it. Though the correct amino group
was among the top-ranked fragments (8th), the top fragment
was in fact ethylamine (*NCC). The secondary amine can still
form electrostatic interactions, but the expanded ethyl group
may form additional hydrophobic interactions with I246 and
P492, possibly explaining why DeepFrag preferred the larger
fragment at this position. The ethyl addition also slightly
improved the smina-score estimate of binding affinity over that
of the original ligand (�4.94 vs. �4.86 kcal mol�1).

In this case, the average score of three similar negative-
control compounds (�4.99 � 0.41 kcal mol�1) was compa-
rable to the scores of the crystallographic and DeepFrag ligands.
We note that the crystallographic ligand (3-aminopropane-1-
sulfonic acid) is a notably weak inhibitor (25.7% inhibition at
500 mM, and no inhibition at 100 mM) that had not previously
been subject to extensive experimental lead optimization.27

While docking-score and/or DeepFrag inaccuracies cannot be
ruled out, the affinity of the (unoptimized) crystallographic
ligand may in fact be comparable to the affinities of the
chemically similar compounds with random substitutions.
2.6 DeepFrag optimization by moiety addition

Thus far we have shown that DeepFrag can identify effective
moiety replacements. While moiety swapping is a useful lead-
optimization strategy, optimization oen involves the addi-
tion of new moieties rather than the replacement of existing
ones. To demonstrate the utility of our approach in this addi-
tional context, we turned to a recently published crystallo-
graphic screen targeting the SARS-CoV-2 main protease (MPro).28

This screen identied multiple non-covalent ligands that bind
in the protease active site. We used DeepFrag to recommend 24
moieties from the default LBL-SEEN set that might replace the
various hydrogen atoms of 13 crystallographic ligands. We then
used RDKit19 and smina24 to position the resulting molecules
© 2021 The Author(s). Published by the Royal Society of Chemistry
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within the MPro active site and to predict binding affinities (see
ESI† for details).

The smina scores of the 24 DeepFrag-optimized compounds
were on average 0.16 kcal mol�1 better than those of the cor-
responding original ligands, suggesting the added moieties are
sensible given the known crystallographic binding poses of the
parents. When only the best-scoring DeepFrag-optimized
compound associated with each crystallographic ligand was
considered (13 compounds), the average improvement was
0.38 kcal mol�1.

The DeepFrag modication that ranked rst in terms of
smina-score improvement is shown in Fig. 5A. This example
shows how a DeepFrag addition can notably improve receptor/
ligand shape complementarity. Adding a fused bicyclic moiety
to the known Z1619978933 ligand (PDB 5RGH (ref. 28))
improved the smina score by 0.85 kcal mol�1 (from �4.46 to
�5.31 kcal mol�1). Fig. 5B illustrates the third-ranked DeepFrag
optimization in terms of score improvement, chosen because it
provides a good illustration of an optimization that enables
a novel interaction with the protein receptor. The addition of
a single hydroxyl group to compound Z1367324110 (PDB 5R81
(ref. 28)) improved the score by 0.73 kcal mol�1 (from �6.09 to
�6.82 kcal mol�1; see ESI† for details).

Encouragingly, in each of these cases the average score of
three similar compounds generated by adding randomly
sampled fragments (negative controls; �4.97 � 0.42 kcal mol�1

and �6.66 � 0.03 kcal mol�1, respectively) was worse than that
of the corresponding DeepFrag-optimized compound. These
negative controls were generated via moiety additions (not
substitutions) to unoptimized, presumably low-affinity
Fig. 5 Optimized compounds derived from crystallographic ligands kno
shown in yellow sticks (crystallographic pose), and the DeepFrag-optim
smina;24 see ESI†). (A) In one case (compound Z1619978933; PDB 5RGH (
into a distinct subpocket, enhancing shape complementarity with the pr
fragment and DeepFrag-suggested moiety (2D) are overlaid, with conn
Z1367324110; PDB 5R81 (ref. 28)), DeepFrag suggested a hydroxyl additio
The hydroxyl hydrogen atom was manually rotated to illustrate the bo
sentation of the original crystallographic fragment is overlaid, with the lo
using BlendMol.23

© 2021 The Author(s). Published by the Royal Society of Chemistry
fragments identied in a crystallographic screen,28 so it is only
somewhat surprising that they have better scores (on average)
than the original crystallographic fragments.
2.7 Comparison with other approaches

Recently, machine-learning techniques have been applied to
many tasks in computer-aided drug discovery. Specically, the
use of 3D-voxel descriptors in conjunction with convolutional
neural networks is now commonplace, in part because the use
of voxel-grid descriptors allows researchers to re-purpose
machine-learning techniques from computer vision. But vox-
elation approaches do have their limitations. For example,
molecular structures have no canonical orientation, so effec-
tively training a machine-learning model on these descriptors
requires “tricks” such as rotation augmentation in order to
learn rotation invariance. In contrast, graph-based machine-
learning models such as PotentialNet8 have rotation and
translation invariance “built-in” and could therefore represent
an effective alternative. We pursued a voxelation-based
approach because it has been successfully applied to related
tasks such as binding-affinity prediction,1–3 virtual screening,4–7

and QSAR,8 but graph-based methods are promising
alternatives.

DeepFrag is also unique among programs for generative
modeling. Several authors have repurposed generative archi-
tectures used in computer vision for use in drug design (e.g.,
generative adversarial networks, GANs; variational autoen-
coders, VAEs). For example, Skalic et al. developed a generative
adversarial model derived from BicycleGan29 that can create 3D
wn to bind SARS-CoV-2 (MPro).28 In both cases, the original ligand is
ized compound is colored by element (positioned using RDKit19 and
ref. 28)), DeepFrag suggested a fused bicyclic addition that may extend
otein receptor (shown in surface representation). The crystallographic
ection points marked with asterisks. (B) In another case (compound
n (marked with an asterisk) that may form a hydrogen bond with R188.
nd, given that smina does not position hydrogen atoms. A 2D repre-
cation of the added hydroxyl marked with an asterisk. Figure rendered

Chem. Sci., 2021, 12, 8036–8047 | 8043
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pharmacophoric maps from a receptor target. A subsequent
step generates SMILES strings using a recurrent “captioning
network”.11 Several other authors have created models that
generate molecular analogues independently of a target
receptor using a continuous, learned latent space,30,31 generative
recurrent networks,32 or deep reinforcement learning.33 While
promising, these approaches are difficult to evaluate quantita-
tively, making it challenging to decide when to use them in
a production pipeline. In contrast, DeepFrag is unique in that it
(1) formulates small-molecule lead optimization as a classica-
tion problem rather than a generative modeling problem and
(2) predicts a fragment ngerprint given a 3D-voxel grid repre-
sentation of a ligand/protein complex. To the best of our
knowledge, ours is the rst system to perform data-driven lead
optimization in this way.

Others have applied more traditional approaches to
fragment-based lead optimization that do not leverage machine
learning.34,35 For example, a recent publication by Shan et al.34

proposed FragRep, a program that also aims to guide local
fragment optimization in the context of a binding pocket.
Whereas FragRep uses hand-craed rules to identify suitable
fragments, DeepFrag infers these rules from a large dataset of
examples. Additionally, generating a prediction in DeepFrag
takes roughly 0.3 seconds on a GPU, compared to 60–120
seconds for FragRep. On the other hand, FragRep is advanta-
geous in that it can also generate predictions for internal scaf-
fold fragments (i.e., non-terminal fragments).

3 Conclusions

Lead optimization is a critical early step in the drug-discovery
process. DeepFrag, a free machine-learning program aimed at
guiding this important process, will thus be a useful tool for the
computational-biology community. Though not a substitute for
a trained medicinal chemist, DeepFrag is highly effective for
hypothesis generation. It provides fragment suggestions that
trained chemists and biologists can then evaluate, synthesize,
and experimentally test.

Although DeepFrag accuracy is impressive, the approach has
several notable limitations. Two of these limitations stem from
our use of crystallographic data for training. First, crystallo-
graphic artifacts (e.g., due to crystallographic packing36) occa-
sionally produce ligand/receptor conformations that differ from
the physiological conformations that are most useful for drug
discovery. Second, even when a crystallographic conformation
is physiologically relevant, it represents only a single confor-
mation. In reality, binding pockets are oen highly dynamic,
sampling multiple druggable conformations. And ligand/
fragment binding can inuence those dynamics via
conformational-selection and induced-t mechanisms.37

Our approach also assumes that adding a fragment does not
substantially impact the binding geometry of the initial parent
portion of the ligand, an assumption that underlies many lead-
optimization approaches. A common goal of moiety swapping
or fragment addition is to improve binding affinity by enabling
additional interactions with the receptor. When a chemical
modication does not change how the remainder of the ligand
8044 | Chem. Sci., 2021, 12, 8036–8047
interacts with the protein, structure-based rational design is
possible because improvements to affinity can be largely iso-
lated to the modied fragment itself. For example, the bovine
trypsin inhibitor N-cyclooctylglycyl-N-(4-carbamimidoylbenzyl)-
L-prolinamide has a Kd of 276 nM.38 When its cyclooctyl moiety
is replaced with a cyclohexyl moiety, the Kd improves to 239 nM.
Crystal structures of both ligands bound to trypsin reveal that
the binding geometries of their common (parent) substructures
are nearly superimposable (PDBs 2ZQ2 and 3LJO, respec-
tively38), so the improvement in affinity can be largely attributed
to the cyclooctyl-to-cyclohexyl modication.

In contrast, if a molecular modication forces the rest of the
molecule to shi substantially within the binding site, it is more
difficult to attribute changes in affinity to the modication
alone. Rational design is complicated in these scenarios
because ligand–receptor interactions distant from the fragment
may be disrupted in unpredictable ways, and new unexpected
interactions may form. For example, the endothiapepsin
inhibitor N-ethyl-2-({N-[2-(1H-indol-3-yl)ethyl]glycyl}amino)-4-
phenylthiophene-3-carboxamide has a Ki of 4.0 mM.39 In
contrast, the very similar compound N-benzyl-2-[(N-benzyl-beta-
alanyl)amino]-4-phenylthiophene-3-carboxamide, which can be
derived from the rst by swapping a methyl for a phenyl group
and a tryptamine for a benzyl(methyl)amine, has a Ki of 545 nM.
Crystal structures reveal that the binding geometries of these
two ligands are entirely different, despite their chemical simi-
larities (PDBs 4L6B and 4LAP, respectively39). In those rare cases
where small chemical modications fundamentally alter the
binding modes of entire ligands, DeepFrag will also likely fail.

These limitations aside, we expect DeepFrag to be useful in
many applications. To encourage broad adoption, we release
the DeepFrag model and soware under the permissive Apache
License, Version 2.0 (http://durrantlab.com/deepfragmodel).
The git repository also includes a link to a Google Colaboratory
Notebook14 for testing.

4 Materials and methods
4.1 Training datasets: receptor/ligand complexes

Our goal was to train a supervised model to complete a 3D
structure of a receptor-bound partial ligand (“parent”) with
a molecular fragment, such that the resulting composite
molecule (parent + fragment) is highly complementary to the
receptor. To this end, we constructed a library of (receptor/
parent, fragment) examples, where each fragment is a well-
suited choice for the corresponding receptor/parent complex.
We assembled this library from the Binding MOAD dataset,16

which includes experimentally derived structure data for 38 702
receptor/ligand complexes (Fig. 1A).

4.1.1 Data pre-processing. The crystal structures contained
water molecules as well as crystallographic additives (e.g.,
buffers, salts). The Binding MOAD specically catalogues which
ligands are biologically relevant. We used these annotations to
strip irrelevant artifacts before generating fragments. Addi-
tionally, some complexes contain several bound ligands per
receptor. In these cases, we isolated each ligand as a separate
receptor/ligand complex.
© 2021 The Author(s). Published by the Royal Society of Chemistry
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4.1.2 Ligand fragmentation. For each receptor/ligand
complex, we generated multiple (receptor/parent, fragment)
training examples by iterating over all ligand single bonds and
performing a cut (Fig. 1B). We retained the resulting example if
it satised the following criteria:

� The cut split the ligand into two disconnected pieces (e.g.,
cutting a ring was not permitted)

� The smaller piece contained at least one heavy atom.
� The smaller piece had a molecular weight < 150 Da.
� The connection point between the parent and fragment

was within 4 Å of a receptor atom.
When these conditions were met, we labeled the smaller and

larger pieces of the ligand the fragment and parent, respec-
tively. All fragments were standardized using MolVS trans-
formation rules.40 Specically, for each fragment, we
neutralized the charge and generated a canonical tautomer. By
constraining our dataset to only fragments located near the
receptor surface, we ensured that they were likely to form
interaction(s) with their respective receptors. There were ulti-
mately 308 689 (receptor/parent, fragment) examples that met
these criteria.

4.1.3 Data splits. The examples were partitioned into three
sets (TRAIN, VAL, and TEST), in the approximate ratio 60/20/20.
We trained models on the TRAIN set and used the VAL set to
monitor performance, tune hyperparameters, and prevent over-
tting. We report nal results on the withheld TEST set.

Some protein targets are repeated in the Binding MOAD. To
ensure our model generalized to unseen receptors, we created
a three-way “vertical split” so that homologous targets were not
shared between the TRAIN, VAL, or TEST sets. The Binding
MOAD provides 90% similarity families that we used to deter-
mine if two targets were homologous.

Similarly, many ligands bind to multiple targets, and some
metabolites such as ATP occur very frequently. To prevent the
model from simply memorizing common ligands, we further
ensured that ligands (in addition to receptors) were not shared
between the TRAIN, VAL, and TEST sets. We examined the
previous “vertical split” dataset and identied ligands shared
across multiple splits by comparing canonical SMILES strings.
Each shared ligand was then randomly assigned to one of the
sets, and examples from the other set(s) were discarded.
4.2 Receptor/parent complexes as voxel grids

We converted the structures of each receptor/parent example
into a 3D voxel grid (Fig. 1C). To generate each grid, we placed
a virtual box in the receptor pocket, centered on the fragment/
parent connection point (i.e., the location of the parent atom
from which the fragment should branch). A technical descrip-
tion of the approach can be found in the ESI.†

4.2.1 Data-handling optimizations. We used two optimi-
zations to accelerate data handling. First, to load the receptor/
parent data faster, we stripped all irrelevant information from
the source PDB les and saved only atomic coordinates and
atom types to a packed HDF5 le. During training, we loaded
this entire dataset into memory for rapid access, thereby dras-
tically decreasing training startup time.
© 2021 The Author(s). Published by the Royal Society of Chemistry
Second, to convert this data to a voxel grid, we developed
a GPU-accelerated grid-generation routine using Numba, a high-
performance Python just-in-time compiler.41 As others have
noted,42 a GPU-accelerated approach reduces grid-generation wall-
time substantially (more than 10� in our case). We therefore
opted to generate all grids on the y each time they were needed
(i.e., once per epoch), without ever saving them to the disk or
storing them long-term in memory. As part of the grid-generation
process, we randomly rotated each example. The model was thus
trained on differently rotated grids every epoch, a form of data
augmentation aimed at encouraging rotation-invariant learning.
4.3 Representing fragments as ngerprint vectors

We converted the fragments of the TRAIN, VAL, and TEST sets
to ngerprint vectors by applying the RDKFingerprint algo-
rithm18 provided by the RDKit library.19 RDKFingerprint is an
implementation of a daylight-like topological ngerprint, which
enumerates subpaths in a molecule and computes hashes. Each
hash seeds a pseudo-random number generator, which is used
to randomly set bits in the ngerprint bitstring. Molecules with
matching subpaths share common bits. Specically, we allowed
the subpath enumeration to consider all paths of size #10 to
differentiate between larger fragments (e.g., alkanes). We folded
the nal bitstring to a size of 2048. The generated ngerprints
contained only 0's or 1's, but we allowed our model to predict
continuous vectors with each element in the range (0, 1)
(enforced with a sigmoid activation layer).
4.4 DeepFrag model

4.4.1 Architecture.We used a deep 3D convolutional neural
network to predict fragment RDKFingerprints from voxel-grid
representations of receptor/parent complexes (Fig. 1D). The
model consists of several repeated blocks of 3D convolution
layers followed by a global average pooling layer and several
fully connected layers. Each convolution block starts with
a batch normalization layer and ends with a 3D max pooling
layer (except the last block). In the fully connected section, we
use dropout layers to prevent overtting. All intermediate acti-
vations are ReLU except for the last layer, which uses a sigmoid
activation to map values into the range (0, 1). The nal “opti-
mized” model architecture is shown in Fig. S2.†

4.4.2 Training details. Models were implemented in
PyTorch.43 We used the Adam optimizer44 with the default
momentum schedule. For each epoch, we randomly sampled
batches from the TRAIN set and computed predicted nger-
prints aer applying random grid rotations. The loss was
computed as the average cosine distance between the predicted
fragment ngerprints and the ngerprints of the corresponding
correct (known) fragments for each batch (eqn (1)).

cosða; bÞ ¼ 1� a$b

kakkbk (1)

Eqn (1) Cosine distance between ngerprint vectors a and b.
A distance of 0 represents parallel vectors. A distance of 1
represents orthogonal vectors.
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To monitor training, we randomly sampled a subset of the
VAL set aer each epoch and computed an average validation
loss using the same loss function. We only saved new model
checkpoints when the validation loss reached a new global
minimum. Training continued until we observed convergence.
To accelerate training, we trained models using either NVIDIA
Titan X or NVIDIA GTX1080 GPUs.
4.5 Label sets, fragment selection, and TOP-k accuracy

Themodel itself predicts a ngerprint in RDKFingerprint space,
not a human-interpretable fragment representation. To map an
output ngerprint to specic fragments, we compute the cosine
distance (eqn (1)) between the predicted ngerprint and each
ngerprint in a large library of RDKFingerprints corresponding
to known fragments (Fig. 1E), which we call a “label set”. Using
these distances we can rank fragments by similarity to the
predicted ngerprint and identify the “closest match”. The label
set is not necessarily the same set of ngerprints used to train,
validate, or test the model. Rather, it is the set of all fragments
from which the model can ultimately choose.

If the label set contains fragments known to be correct (i.e., if
it includes the fragments of the VAL and/or TEST sets), it is
possible to quantitatively evaluate a model's accuracy. We
consider TOP-k accuracy, for k ˛ {1, 8, 64}. For example, TOP-8
accuracy represents the probability of nding the correct frag-
ment in the set of the top eight predicted fragments.
4.6 Final model: training to convergence

Once we settled on a set of effective hyperparameters (see ESI†),
we trained an “optimal” model, which we call DeepFrag. We
trained the nal model to convergence (5 days on a GPU) and
evaluated its TOP-k accuracy on the withheld TEST set, using as
a label set the fragment ngerprints of the TRAIN, VAL, and
TEST sets. Training to convergence required substantial
computer resources. But using DeepFrag to prospectively eval-
uate a single receptor/parent complex (i.e., at inference time)
requires only a few grid-generation steps that can easily run on
a CPU.

Using the fully converged model, we also explored the effect
of test-time augmentation on model accuracy. We evaluated the
effect of sampling multiple random rotations per example and
averaging the predicted ngerprints to generate a multi-
rotation, ensemble prediction. See the ESI† for full details.
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