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Relating atomic energy, radius and electronegativity
through compression

The size and electronegativity of atoms are central chemical
concepts whose relationship has been long debated.
Martin Rahm, Paul Erhart (Chalmers) and Roberto Cammi
(University of Parma) have now used compression to
connect these properties. At certain pressures, atoms

can undergo changes to their ground state electron
configuration, and at such transitions an atom has two well
defined and connected sets of radii, electronegativities,
and energies. An online database summarizing computed
properties of 93 atoms as a function of pressure is also
presented.
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Introduction

Atomic radii and electronegativity are often quintessential for
how chemistry is rationalized."* The history of quantifying the
sizes of atoms under ambient conditions includes a large body
of work, extending over the last one and a half-centuries (for
a non-exhaustive summary of this history see ref. 3 and 4). One
early motivation for attaining atomic and ionic sizes was to help
understand X-ray diffraction patterns in terms of crystal struc-
tures,>® another to provide a rationalization for metallization.”
Today, a variety of definitions of atomic radii with well-known
uses exists, including, e.g., ionic,’*** covalent,*"**" and vdW
radii.>**?* Electronegativity is a similarly well-studied concept
that can be defined in many ways (see, e.g., ref. 22-29 and
references therein).

A relationship is intuitively expected between electronega-
tivity and radius: the size of an atom is determined by the
distribution of electrons around its nucleus. The closer the
electrons are to the nucleus, the more tightly they are bound,
thus increasing the electronegativity of the atom. Pitzer pointed
out the periodic behavior in the two atomic properties long
ago* and many others have relied on different definitions of
atomic radii (usually covalent radii) and electrostatic relation-
ships to define scales of electronegativity.>**'~**

Thus far, relationships between atomic radii and electro-
negativity have mostly been sought under ambient conditions
and have been rationalized by comparing different atoms. In
this work we take a different perspective and instead consider
how electronegativity changes as the sizes of individual atoms
are modified. The means by which we change the size of indi-
vidual atoms is through physical compression.
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Relating atomic energy, radius and
electronegativity through compression

Martin Rahm, & *2 Paul Erhart ®® and Roberto Cammi@® ¢

Trends in atomic properties are well-established tools for guiding the analysis and discovery of materials.
Here, we show how compression can reveal a long sought-after connection between two central
chemical concepts — van-der-Waals (vdW) radii and electronegativity — and how these relate to the
driving forces behind chemical and physical transformations.

There exist different frameworks through which electroneg-
ativity might be related to radii under compression. Garza
et al.*® and Chattaraj and co-workers*** have, for example,
relied on conceptual density functional theory to evaluate the
electronegativity for a selection of atoms compressed by
impenetrable spherical cavities. In a related work, Sen et al.
have calculated the critical diameter at which spherical
confinement causes ionization of some atoms.*® In this work,
we rely on two revised scales of atomic vdW radii* and electro-
negativity*® which have been extended to high pressure condi-
tions (0-300 GPa).**

The scale of electronegativity used here is inspired by the
work of Allen*® and is defined as the average electron binding
energy as T — 0 K.>** This definition of electronegativity
establishes a connection with the total energy of a system
through an energy decomposition analysis:**

AE = —nA)Z - AEec + AE‘NN! (1)

where AE is the change in total energy over a chemical or
physical transformation, n is the total number of electrons, Ax
is the change in electronegativity (here defined as the average
electron binding energy), while AE.. and AEyy are changes in
the electrostatic repulsion between electrons (under the influ-
ence of exchange and correlation effects) and nuclei,
respectively.

Eqn (1) can be recast to also partition relative enthalpies or
free energies. Specifically, for compression at T — 0 K, we can
write:

AH = —nAx — AE, + AEnN + AQY), (2)

where A(pV) describes changes in volume V and pressure p. The
relationship between enthalpy, electronegativity, nuclear
geometry, electron interactions, pressure, and volume provided
by eqn (2) is exact within the Born-Oppenheimer approxima-
tion. We refer to eqn (2) as an “Experimental Quantum Chem-
istry” partitioning® because it is, in principle, possible to
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estimate all of its terms directly or indirectly from a combina-
tion of thermal measurements, photoelectron spectroscopy, X-
ray diffraction structure determination, and, for the A(pV)-
term, equations of state. How does eqn (2) thus relate to atomic
radii?

The challenge of estimating atomic radii at high pressure

Pressure is a macroscopic observable, defined in terms of an
ensemble of atoms. We can, therefore, in principle, relate the
volume V of eqn (2) to an average atomic volume. Atomic
volumes can, and have been, measured as a function of pressure
using a variety of experimental techniques (see, e.g., ref. 52-54).
We note that Young has provided a schematic overview of
atomic volumes at selected higher pressures obtained by an
amalgamation of experiment and calculation on condensed
phases.®®* In spite of a wealth of equation-of-state data,
a challenge arises when one tries to extract atomic radii from
volumes of real materials. The challenge relates to structure and
bonding and may be exposed most clearly by example: if we
consider the atomic volume of hydrogen (at a given pressure)
and attempt to translate such an experimental number to
a radius, we obtain a value that is some average of a covalent
and a vdW radii. The H atoms are bonded together in H,
molecules, which in turn have longer (non-bonded) distances
between them. Similarly, if we look at atomic volumes of heavier
elements, the radii extracted will correspond to metallically
bonded radii, not vdW radii, and will moreover depend on
(crystalline or liquid) structure. Approximations of vdW radii
under pressure have been obtained in the context of the acti-
vation volume of some organic reactions, but not been
systematically reported (see, e.g., ref. 55). The only explicit and
systematic experimental estimates of atomic radii at higher
pressures that we are aware of are by Royce, who used the
Wigner-Seitz definition to evaluate a selection of (metallically)
bonded elements.>®

A straightforward method for obtaining non-bonded radii
from experimental atomic volumes is practically limited to
noble gas elements: assuming that such atoms pack perfectly as
hard spheres with a fraction of the total volume equaling
/312, pressure-resolved radii can be calculated as,

rp) = V() [4V2, (3)

where V(p) is the atomic volume. We have calculated such radii
for reference purposes.* But what about vdW radii of atoms that
readily engage in chemical bonding?

The challenge of non-bonded/vdW radii can be solved
computationally by considering single atoms compressed by
a homogeneous non-reacting environment.** The properties —
radii, electronegativity as well as ground state electron config-
urations - of such compressed atoms have been determined in
the pressure range from 0 to 300 GPa through full potential
relativistic density functional theory calculations combined
with the eXtreme Pressure Polarizable Continuum Model (XP-
PCM).**>°7%8 We stress that by using this method we purpose-
fully exclude the effects of both crystal structure and chemical
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bonding. The sizes of the atoms are in our model purely
a consequence of isotropic non-reactive compression. Such
computed non-bonded high-pressure radii are in excellent
agreement with experimental compression isotherms for noble
gas elements, when experimental radii are defined using eqn
(3).** Calculated non-bonded radii also correlate reasonably
well with Wigner-Seitz radii of bonded metallic elements
compiled from shock-wave experiments,* but are, as expected,
larger than such bonded radii.

Results and discussion

We will in what follows look at the evolution of electronegativity
and radius computed for a selected combination of atoms. Our
complete dataset of 93 atoms has been compiled into an
interactive web application, the Atoms-Under-Pressure (AUP)
database.”® Fig. 1 shows an excerpt of our data and compares
the change of the non-bonded radius and electronegativity of
Mg and Al with pressure.

The top part of Fig. 1 implies a strong dependence of elec-
tronegativity on atomic radius - when individual atoms are

compressed their size diminishes along with their
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Fig. 1 Example of the sometimes complex relationship between
atomic radius and electronegativity. Absolute changes in ¥ (top left)
and radius (top right) of Mg and Al during non-reactive compression.
The same data for Mg is shown relative to Al for ¥ and radius at bottom
left and right, respectively. The pressure evolution of radii and elec-
tronegativity for other atoms can be visualized with the AUP
database.®
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electronegativity. This dependence is now quantified for any
atom within our definition of these properties.*** We note that,
because we consider compression of non-interacting atoms,
conclusions drawn from our data can in instances appear at
odds with related work where electronegativity is instead
defined through the use of covalent radii or heats of reaction,
such as in the work of Batsanov.**° The discrepancies occur in
part because covalent radii may both increase and decrease in
certain pressure ranges.®* In contrast, atomic volumes of non-
bonded atoms (as well as bonded elements) monotonically
decrease with compression. The bottom part of Fig. 1 shows
how trends in the changes of radii and electronegativity can be
opposite in a relative comparison between atoms. There remain
4277 binary combinations of atoms to consider and the inter-
ested reader is encouraged to perform other comparisons using
the AUP database.>

Relating atomic radius, electronegativity and energy

The key we will use to establish a more rigorous relationship
between radius and electronegativity is the phenomenon of
pressure-induced changes to the ground state configuration of
single atoms. Fig. 2 shows the change of the non-bonded radius
and electronegativity of Fe with pressure relative to Si. These
atoms are two of the most important constituents of the Earth's
crust, mantle (p < 140 GPa), and core (p < 360 GPa), and are
chosen here to illustrate just how radically different we can
expect chemistry to be at different thermodynamic conditions.
The sharp discontinuities predicted in both properties at 30 and
144 GPa coincide with transitions of the ground state electronic
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Fig. 2 Examples of the relationship between atomic radius and
electronegativity. Changes in x (left) and radius (right) of Fe during
non-reactive compression. The data is shown relative to Si. Green
circles and red squares indicate two pressures, both at which the Fe
atom can have either of two radii, two electronegativities and two
energies. The two vertical drops coincide with [Ar]4s23d® (S = 2) — [Ar]
4s'3d” (S = 2) and [Ar]4s'3d” — [Ar]3d® (S = 1) ground state configu-
rational transitions in the Fe atom. Slight jaggedness in the data for the
radii is a computational artefact arising from extrapolation from a finite
number of compression calculations. The pressure evolution of radii
and electronegativity for other atoms can be visualized with the AUP
database.®®
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configuration of the Fe atom. Such transitions, exemplified for
Fe in Fig. 2, are common to many alkali, alkaline earth, tran-
sition metal, and f-block atoms, and are well-known from both
theory (e.g., ref. 49, 62 and 63) and experiment (e.g., ref. 53 and
64). Ground state configurational transitions in non-bonded
atoms (and many materials) are isobaric processes, i.e., at the
transition pressure the atoms can have any of two well-defined
sizes, energies, and electronegativities.

One criterion for transitioning between competing electronic
states, such as those resulting in sharp discontinuities in Fig. 2,
is for the difference in enthalpy between states at the transition
pressure to vanish, i.e., AH = 0. The electronic energy difference
associated with such a pressure-induced electronic configura-
tional transition is, however, non-zero. Since, in the absence of
chemical reactions, the only source of energy is pressure-
volume work, the difference in electronic energy at the transi-
tion pressure is equal to the negative of the pAV-term,*

AE = —pAV. (4)

By combining eqn (3) and (4), we can express the electronic
energy associated with compression of a non-reacting atom
from a radius of r; to r, at pressure p as

AE = 4kV2p(ri® — 1)), (5)

where AE is given in eV, p is the pressure in GPa, r; and r, are
radii in A, and k is a unit conversion factor equaling 6.242 x
10>, By combining eqn (1) and (5) with the fact that for single-
atom compression AEyy = 0, the relationship between radius
and electronegativity becomes

Ay = % (4]{\617(;’23 —r’) - AEee>- (6)

Eqn (6) tells us to expect decreases in electronegativity when
the radius of an atom is decreased under constant pressure.
Electronegativity also decreases as electron—-electron repulsion,
quantified by the AE..-term, increases. We remind that eqn (6)
has been derived for compression of non-reactive atoms.
Arguments based on this equation are therefore not necessarily
always applicable to other situations, such as volume changes
quantified through, e.g., experimental equations of state. Eqn
(6) nevertheless helps us to understand how reduction of the
oxidation state of an atom under ambient conditions (where the
temperature is low and p = 0) leads to a decrease in electro-
negativity (this happens as AE.. > 0 for electron attachment).
And vice versa, how oxidation of an atom (i.e., where AE,. < 0)
leads to an increase in electronegativity. Care should be taken,
however, not to use eqn (6) for explaining relative differences
between atoms in the absence of a transition. In a static sense,
highly electronegative atoms, such as F, will at any pressure be
smaller than most other atoms, and consequently be subject to
more electron—-electron interactions.

Interpreting changes in radii in terms of energy

We can use eqn (5) to attribute energies to volume contractions
that are caused by electron configurational transitions in single

Chem. Sci., 2021, 12, 2397-2403 | 2399
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atoms. Eqn (1) additionally reminds us that the decrease in
electronegativity, or the average orbital destabilization, in such
atoms upon compression does not equal the concomitant
change in the total energy. The relationship between changes in
energy and electronegativity includes a multiplication by the
number of electrons n, and the subtraction of the non-trivially
calculable electron-electron interactions described by the
AE..-term.

What electronic energy can be ascribed to the radial
contractions shown in Fig. 2 (and the many others reported in
ref. 4)? Eqn (5) shows that this depends on both the transition
pressure and the radius of the atom. The larger the atom and
the pressure, the larger is the energy attributed to a given radial
contraction.

In our example of Fe, the atom is predicted to contract its
radius from 1.68 A to 1.63 A at a pressure of 30 GPa. In this case,
the corresponding energy change, AE, viz. eqn (5), equals
0.43 eV (Fig. 3). In the second transition, the Fe atom shrinks by
a similar magnitude from 1.38 A to 1.31 A. Because of a higher
pressure at the second transition, the corresponding energy
change is, however, considerably larger, 1.95 eV (Fig. 3).

It is important to note that the energies calculated for radial
contractions should not be interpreted as the difference in
energy between competing frontier orbitals, such as 4s vs. 3d in
Fe.**** Small changes in radii also do not necessarily correspond
to small concomitant changes in electronegativity or vice versa.
In the case of Fe, the decrease in electronegativity, or average
electron destabilization Ay in eqn (6), amounts to 4.7 and 5.5 eV
e !, for the two 4s — 3d transitions (Fig. 2).

Fig. 4 allows for a quicker translation between isobaric radial
contractions and energies at two high pressures, 100 and
300 GPa. Each curve in Fig. 4 describes compression of an atom

AE =0.4 eV 0-30GPa

Ar=0.05 A

N\

30-144 GPa

aE=2.0 eVo
Ar=0.07 A

[Ar]4s13d7

[Ar]4s23ds

Fig. 3 Example of the relationship between atomic radius and total
energy. The size of the Fe atom at different pressures is to scale. White
regions correspond to [Ar]4s23d® (S = 2) — [Ar]l4s'3d” (S = 2) and [Ar]
4s'3d” — [Arl3d® (S = 1) ground state configurational transitions
predicted at 30 and 144 GPa, respectively.
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Fig. 4 Energies associated with isobaric radial contractions in
average-sized non-reacting atoms at two pressures. The dashed line
shows radial contractions of the average atom at 100 GPa, for which
the radius is 1.48 A. The solid line shows radial contractions of the
average atom at 300 GPa, for which the radius is 1.31 A.

of average size, which in our data set of 93 atoms corresponds to
a radius of 1.48 A and 1.31 A at p = 100 and 300 GPa, respec-
tively. Fig. 4 tells us that radial contractions calculated for
atoms in the investigated pressure range* correspond to ener-
gies that are large enough to be chemically relevant, but that are
smaller than 3.5 eV.

Above we have focused our discussion on the electronic
transitions in Fe, but we will give a few other examples for
comparison: in our model, K is predicted to undergo a 4s — 3d
transition at 56 GPa and, as a consequence, contract its radius
from 1.62 A to 1.47 A.* The corresponding energy change, AE,
equals 2.06 eV, while Ay equals 3.8 eV e .

The largest effect of an s — d transition in the d-block is
predicted for Cr, where a contraction by 0.08 A at 208 GPa
translates into an electronic energy increase of 3.0 eV with Ay =
5.8 eV e '. Another example is Ce, which is predicted to undergo
a small radial contraction by 0.02 A at 270 GPa. The Ce
contraction translates to a 1.0 eV change in total energy.
However, the predicted corresponding decrease in electroneg-
ativity of Ce at this transition pressure is much larger at 5.5 eV
e~ '. The disconnect between atomic size and electronegativity is
noticeably larger for the f-block atoms, a fact we attribute to
more substantial changes in their electron-electron interac-
tions (the AE-term in eqn (6)) during isobaric transitions,
compared to the lighter elements. In other words, chemical
intuition, which is often aided by atomic properties such as
radius and electronegativity, is even harder to come by for the
heaviest atoms.

Conclusions

The picture that emerges from our analysis is arguably one in
which atomic radius and electronegativity walk hand-in-hand;

© 2021 The Author(s). Published by the Royal Society of Chemistry
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both properties decrease with pressure relative to ambient
conditions. However, relative differences in these atomic
properties may both increase or decrease with a perturbation
such as compression.***

Following the calculation of radius and electronegativity as
a function of pressure in past work,*** we here derive eqn (6)
that connects the two quantities in isobaric transformations of
non-bonded atoms. The framework we have outlined can pave
the way for a more general understanding of these central
chemical concept with wider implications in chemistry and
materials science. In the end, these atomic properties, no
matter how defined or quantified, are merely approximations
and guides to the behavior of real bonded materials. Detailed
analyses and consideration of electronic structure will always be
necessary for quantitative evaluations of, e.g., bond strength
and polarity.®**
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