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methodology to overcome
solubility challenges for N-terminal cysteinyl
peptide segments used in native chemical ligation†

Skander A. Abboud, El hadji Cisse, Michel Doudeau, Hélène Bénédetti
and Vincent Aucagne *

One of the main limitations encountered during the chemical synthesis of proteins through native chemical

ligation (NCL) is the limited solubility of some of the peptide segments. The most commonly used solution

to overcome this problem is to derivatize the segment with a temporary solubilizing tag. Conveniently, the

tag can be introduced on the thioester segment in such a way that it is removed concomitantly with the NCL

reaction. We herein describe a generalization of this approach to N-terminal cysteinyl segment

counterparts, using a straightforward synthetic approach that can be easily automated from

commercially available building blocks, and applied it to a well-known problematic target, SUMO-2.
Introduction

The advent of the native chemical ligation1 (NCL) reaction has
revolutionized the eld of chemical protein synthesis by
offering a simple strategy to assemble unprotected peptide
segments bearing mutually-reactive C-terminal thioesters and
N-terminal cysteines with exquisite chemo- and regioselectivity.
Twenty-six years aer its discovery, NCL is still the gold stan-
dard reaction in the eld. The continuous development of many
related synthetic methodologies allowed to extend and simplify
its applicability,2 and led to impressive applications in the total
synthesis of functional proteins of more than 300 residues.3

One of the major current limitations of NCL-based protein
synthesis is the low solubility or tendency to aggregate of some
of the segments. If this is anticipated when synthesizing a very
hydrophobic target such as a transmembrane protein, segments
from soluble hydrophilic proteins frequently prove to be prob-
lematic, while being oen very hard to predict. NCL is usually
conducted under denaturing conditions, typically 6 M guani-
dinium chloride, and is tolerant to the addition of organic
solvents4 and detergents,5 thus substantially minimizing these
solubility/aggregation problems during the reaction itself.
Nevertheless, the purication and characterization of the
segments prior to NCL regularly remains a severe bottleneck.
Many synthetic strategies were developed to overcome this
critical problem. For example, modication of the segment
through N-methylation of backbone amides6 or fusion with
a hydrophilic peptide,7 can dramatically increase its solubility;
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tion (ESI) available. See DOI:

1

however, these modications will permanently remain in the
synthesized protein. Traceless approaches include the use of
acid-labile N-2-hydroxy-4-methoxybenzyl (Hmb) groups on
backbone amides,8 or Ser/Thr O-acyl isopeptide3d,e,9 known to
inhibit aggregation, but the most widely used strategy is the
incorporation of a temporary hydrophilic “solubilizing tag”.10

Such temporary tags are generally composed of lysines or
arginines that bear a cationic charge side chain, oen as homo-
oligomers, and can be introduced either on a backbone amide,11

the C-terminus12 of the segment or the side chain of an Asn,13

Asp,13 Cys,12c,14,15 Gln,13,16 Glu,13,17a Lys17 or Thr16 residues.
A large variety of linkers used to attach the tag to the peptide

segment and designed to be cleaved in an additional step aer
the NCL (Scheme 1A) have been reported. Cleavage conditions
include treatments with acids,11,14c,d bases,12b pH 4.5 buffer,17c

sodium nitrite,12c,13 nucleophiles,17b,d transition metal cata-
lysis,12c,14a,b,15,17a UV irradiation16 and autoproteolysis.12a

An advantageous alternative is the introduction of the solu-
bilizing tag on the C-terminal thioester moiety (Scheme
1B).12b,18–20 In this case, the tag is cleaved in the course of the NCL
reaction without needing an additional synthetic step, aer
playing its solubilizing role during the purication, character-
ization and handling of the problematic segment. This approach
was pioneered by Aimoto18 and Kent19 for Boc-SPPS-based thio-
ester synthesis, and later extended by Tietze20 to Fmoc-SPPS using
a b-mercaptoester precursor converted in situ into a thioester
during NCL through an O / S acyl shi21 (a so-called peptide
crypto-thioester22). If this one-pot NCL/tag cleavage approach is
clearly not suited to extreme situations where the ligation product
remains insoluble or prone to aggregation, it is expected to be
widely applicable in the many cases when the low-solubility/
aggregation behavior is associated with a single isolated
segment of the protein. Indeed, the additional segment ligated to
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Synthetic strategies for solubilization of peptide segments used in NCL-based protein synthesis using temporary solubility tags (blue
ovals) that are removed either after (A) or concomitantly (B and C) with the NCL reaction.
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the problematic one can further play the role of solubility tag,
strikingly demonstrated by the synthesis of fragments of trans-
membrane proteins using these techniques.18,20 However, the
strategy is inherently limited to thioester segments and not suited
for N-terminal cysteinyl counterparts.23

In a closely related context, Valiyaveetil24 proposed the idea to
introduce a solubility tag linked through a disulde to the N-
terminal Cys of a cysteinyl segment synthesized by Boc-SPPS,
the disulde bond being cleaved in a rst additional reduction
step prior to NCL. In this case, the tag (Arg–Arg–Arg–Cys–NH2) was
introduced in solution through air oxidation-mediated formation
of a mixed disulde with the crude segment. This resulted in
a very low yield in the tagged segment due to both insolubility of
the non-tagged segment and the non-directed formation of the
disulde leading to complex mixtures. Nevertheless, the authors
succeeded in the highly demanding semi-synthesis of ion chan-
nels through expressed protein ligation25 (EPL) with a recombi-
nant thioester, demonstrating the feasibility of the approach.

We thought that devising a straightforward methodology for
the introduction of such a disulde-linked solubilizing tag on
N-terminal cysteinyl segments, and extending the concept of
concomitant NCL/tag cleavage could be extremely valuable and
generally applicable in chemical protein synthesis (Scheme 1C).
Indeed, disuldes are readily cleaved under standard NCL
conditions generally including reducing agents (e.g. TCEP) and
a large excess of aromatic thiols like 4-mercaptophenylacetic
acid (MPAA).26

We herein describe a straightforward methodology for the
introduction of such a tag through Fmoc-SPPS, which can be
easily automated on a standard peptide synthesizer, and
exemplied the utility of this method through the synthesis of
SUMO-2, a previously reported difficult target.12c

Results and discussion

The disulde-based linker bridging the N-terminal cysteinyl
segment and the solubilizing tag is the cornerstone of the
© 2021 The Author(s). Published by the Royal Society of Chemistry
strategy. Ideally, this linker should be (1) introduced through an
automation-friendly solid phase step using commercially
available materials, (2) bear a primary aliphatic amine or
a suitable precursor for further Fmoc-SPPS elongation of
a hydrophilic peptide sequence and (3) be stable to the Fmoc-
SPPS conditions, including elongation and TFA-based cleavage.

Considering these requirements, we reasoned that incorpo-
ration of the N-terminal cysteinyl residue through the coupling
of Boc-Cys(Npys)-OH would be ideal. The Npys group27 (S-3-
nitro-2-pyridinesulfenyl) is classically used for the directed
formation of a mixed disulde on an N-terminal cysteine either
on solid support28 or in solution, through reaction with a thiol.
The simplest solution for automated synthesis would be
a reaction on solid support with an amino-thiol. We selected
two commercially available candidates: cysteamine (2-amino-
ethane-1-thiol, 1), and 2-amino-1,1-dimethyl-ethane-1-thiol (2).
Preliminary experiments with a model tripeptide (see ESI p. S5–
S11†) showed that disulde formation was quantitative through
simple incubation in NMP for 1 h with an excess (10 equiv.) of 2
as its hydrochloride salt. We also demonstrated that the disul-
de was stable to a long piperidine treatment mimicking the
repeated Fmoc deprotection conditions needed for the SPPS
elongation of a hydrophilic peptide tag. Contrastingly, reaction
with 1 was much less clean, and the resulting disulde was not
stable to the piperidine treatment. These results are in accor-
dance with the known higher stability of tertiary thiol disuldes
derivatives of cysteine like S-StBu towards Fmoc-SPPS condi-
tions as compared to simple non-hindered primary thiol
disuldes.29

Having in hand a robust method for the solid phase intro-
duction of the linker (referred hereaer as Ades, 2-amino-1,1-
dimethylethyl-1-sulfanyl), we applied it to two different long
peptides, followed by the automated introduction of a (Lys)6
hydrophilic tag through repeated couplings of Fmoc-Lys(Boc)-
OH under standard conditions (Scheme 2). We started with
a 41 amino acids (aa) model sequence devoid of any solubility
problem, derived from the human mucin MUC130 variable
Chem. Sci., 2021, 12, 3194–3201 | 3195
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Scheme 3 Native chemical ligation reaction showing the putative
(Hnb)Cys self-catalyzed N / S acyl shift mechanism.
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number tandem repeat (VNTR) region made of a duplicated 20
aa sequence (7, Scheme 3). Gratifyingly, 7 was obtained in
excellent yield and purity without needing of any further opti-
mization of the synthetic protocol.

To test the concomitant NCL/tag cleavage, we synthesized
the 41 aa crypto-thioester segment counterpart 3a, also derived
from MUC1. This segment is equipped with an N-(2-hydroxy-4-
nitrobenzyl)cysteine-based device (N-Hnb-Cys) capable of
forming thioester in situ under NCL conditions (Scheme 3).31 N-
Hnb-Cys crypto-thioesters are straightforward to synthesize
through automated Fmoc-SPPS and show fast ligation kinetics
owing to internal catalysis by a judiciously placed phenol group
(Scheme 3).31a

To our delight, the ligation of 3a with 7 proceeded very
cleanly, the (Lys)6-Ades tag being cleaved within seconds under
the NCL conditions, giving the target 82 aa polypeptide 9 in
a 62% isolated yield (ESI p. S18–S19).

Additionally, we took the opportunity of this work to
demonstrate the applicability of the C-terminal thioester solu-
bilization strategy to N-Hnb-Cys crypto-thioesters. Quite
expectedly, introduction of a (Lys)6 tag was straightforward, and
gave segment 3b in good yields without needing any optimiza-
tion. As for 3a, NCL with 7 proceeded cleanly, and with
comparable kinetics (ESI, Fig. S15†), giving 9 in an excellent
76% isolated yield (Scheme 3).

The cysteine residue in 9 was further desulfurized under
classical conditions32 to give an alanine (ESI, p S20–S21) such as
in the native MUC1 sequence.

Encouraged by these results, we then implemented this
approach for the synthesis of the 93 aa SUMO-2. Small
ubiquitin-related modiers33 (SUMO) were rst discovered in
mammals in 1996.34 To dated, ve SUMO isoforms have been
identied in humans, SUMO-1, 2, 3, 4 and 5. SUMOylation is
a post-translational modication (PTM) consisting in the
covalent attachment of the C-terminus of SUMO proteins via an
isopeptide bond to specic lysine residues in target proteins. An
enzymatic cascade controls the attachment, involving activator
(E1), conjugating (E2), and sometimes ligase (E3) enzymes. This
PTM is reversible, through deSUMOylation by sentrin/SUMO-
specic proteases (SENPs).35 In contrast with ubiquitin,36,37
Scheme 2 General synthetic strategies for the introduction of (Lys)6-Ad
Fmoc-SPPS.

3196 | Chem. Sci., 2021, 12, 3194–3201
only few examples of the chemical synthesis of SUMO proteins,
their dimers and conjugates, have been reported.5d,12c,38,39 One
illustration is the synthesis by Brik12c of SUMO-2-diubiquitin
hybrid chains. In this work, the authors reported the low solu-
bility, tendency to aggregation and unusual HPLC behavior of
an N-terminal cysteinyl SUMO-2[46–93]40 segment. To circum-
vent this issue, they developed an elegant C-terminal solubi-
lizing tag in which a 3,4-diaminobenzoic acid (Dbz) linker41 was
employed to attach a poly-Arg tag to the C-terminus of this
segment. We thought that it could be interesting to challenge
our (Lys)6-Ades methodology with this benchmark target.

We applied our synthetic protocol to (Lys)6-Ades-SUMO-2
[48–93] (12),42 which gave a clean and soluble crude product that
was puried by standard HPLC. As anticipated from Brik's
report, in sharp contrast with 12, the non-tagged version
exhibited anomalous HPLC behavior (ESI, S11, Fig. S11†) and
es solubility tags on N-terminal cysteinyl segments using automated

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Scheme 4 NCL-based SUMO-2 synthesis using the (Lys)6Ades
methodology.

Fig. 1 In vitro SUMOylation of Ube2K with 14 and a recombinant
SUMO-2 used as a control. (A) Schematic representation of the
reaction (cartoons based on NMR and X-ray structures of SUMO-2 and
Ube2K, PDB ID: 2BEP and 2N1W, respectively); (B) Western blot
analysis using an anti-Ube2K antibody; (C) Western blot analysis using
an anti-SUMO-2/3 antibody.
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the crude peptide was barely soluble in HPLC solvents: 0.05 mg
mL�1 in 8 : 2 : 0.01 H2O/MeCN/TFA, thus further validating the
choice of this target for this work. Gratifyingly, NCL of 12 with
SUMO-2[1–47] N-Hnb-Cys crypto thioester 10 proceeded very
cleanly as shown in the analytical HPLC monitoring43 of the
reaction (Scheme 4), giving the expected SUMO-2[1–93] 14 in
a good 40% isolated yield. As observed with the MUC1-derived
model segments, the HPLC chromatograms show nearly
© 2021 The Author(s). Published by the Royal Society of Chemistry
instantaneous conversion of 12 into non-tagged 13, concomi-
tantly with the slightly slower conversion of S-StBu-protected
dormant N-Hnb-Cys crypto-thioester 10 into an active form 11.44

Note that in accordance with Melnyk's ndings,45 15% of
a side product showing a molecular mass of [M � 18] m/z
relative to the desired product 14 was observed when perform-
ing the reaction at 37 �C for a prolonged time and was attributed
to aspartimide formation at one of the Asp–Gly sites. Lowering
the temperature to 25 �C nearly abolished this side reaction (ESI
p. S22–S25).

Finally, in order to further characterize the synthesized
SUMO-2 14 from a biochemical point of view, it was folded by
simple solubilization into a neutral buffer as described.39b,f,46 Its
three-dimensional structure was evaluated by circular
dichroism, showing a spectrum essentially identical with the
previously reported ones46 for recombinant and synthetic
SUMO-2 (ESI Fig. S21†).

We then compared 14 to a commercially available recombi-
nant version of SUMO-2 for its ability to act as a substrate of the
SUMO E2 conjugating enzyme Ubc9 (ref. 47) and a SUMO E1
activating enzyme (namely a heterodimeric complex of SAE1
and SAE2 proteins)48 for conjugation to the ubiquitin-
conjugating enzyme Ube2K (also known as E2-25K and Hun-
tington Interacting Protein 2). This target is reported to be
among the best in vitro substrates for Ubc9-dependent
SUMOylation known thus far, although its SUMOylated lysine
residue (Lys14) is not surrounded by a consensus SUMOylation
motif.49 Using anti-SUMO-2/3 and anti-Ube2K antibodies,
Western-blot analyses rst showed that synthetic SUMO-2 is
recognized as efficiently as the recombinant one. The appear-
ance of an intense band recognized by both antibodies and
migrating at the expected molecular mass of a SUMO-modied
Ube2K demonstrated the successful SUMOylation of the
acceptor protein in both cases. Weaker bands likely corre-
sponding to di-SUMOylated Ube2K and di-SUMO-2 were also
observed, consistent with the presence of a SUMOylable lysine
in SUMO-2 (Lys11). As expected, no reactions occurred in the
absence of ATP and Mg2+, required cofactors for the E1 enzyme.
Altogether, these experiments demonstrate the fully functional
nature of synthesized 14 (Fig. 1 and ESI p. S27–S29).

Conclusions

Poor solubility and aggregation of peptide segments are main
bottlenecks for the chemical synthesis of proteins using native
chemical ligation. Numerous strategies for the solubilization of
problematic segments through temporary modication have
been developed such as the introduction of solubilizing tags,
but oen require complex synthetic strategies, in-house
synthesis of building blocks or extra steps to generate the
native protein sequence aer the NCL-based assembly. In this
work, we have introduced a straightforward methodology for
the temporary solubilization of N-terminal cysteinyl segments,
based on the introduction of an oligolysine tag through
a disulde linkage with the N-terminal cysteine residue. This
(Lys)6-Ades tag is easily incorporated in the target segment
through automated solid-phase synthesis using commercially
Chem. Sci., 2021, 12, 3194–3201 | 3197
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available building blocks, is stable during handling, purica-
tion and storage of the segment, while being cleaved within
seconds under NCL conditions50 to generate in situ the reactive
free cysteine. We exemplied the broad potential of this method
through the NCL-based synthesis of a model polypeptide
derived from the human mucin MUC1, in addition to a well-
known difficult small protein target, SUMO-2. Due to its over-
all simplicity and efficiency, we believe that this strategy will
advantageously complement existing methodologies in the
synthesis of other challenging proteins.
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