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Enantioselective transition metal catalysis directed by chiral cations is the amalgamation of chiral cation
catalysis and organometallic catalysis. Thus far, three strategies have been revealed: ligand scaffolds
incorporated on chiral cations, chiral cations paired with transition metal ‘ate’-type complexes, and
ligand scaffolds incorporated on achiral anions. Chiral cation ion-pair catalysis has been successfully

applied to alkylation, cycloaddition, dihydroxylation, oxohydroxylation, sulfoxidation, epoxidation and
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between chiral cations and transition metals, increasing the versatility and capability of both these forms
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1. Introduction

In some chemical reactions, charged intermediates evolve and
transform to neutral state target molecules. In order to over-
come the energy barrier of such chemical reactions, using
a suitable catalyst is the most straightforward and effective
strategy. An ion-pair catalyst can be utilised to stabilise charged
intermediates through ionic interactions, thereby allowing
these reactions to proceed smoothly."* Chiral cations such as
quaternary ammonium, guanidinium and quaternary phos-
phonium have been developed to control anionic inter-
mediates®® while chiral anions such as borate and phosphate
are utilised to control various cationic intermediates.*

In chiral cation catalysis, the catalyst is paired with an
anionic intermediate, usually an enolate resulting from proton
abstraction of a reactant by an inorganic base. For example,
reactions such as alkylation, Michael addition, Aldol reaction
and Mannich reaction have enolate intermediates, and can be
efficiently promoted using chiral cationic phase transfer cata-
lysts.*” Other anions such as cyanide and fluoride can also be
activated for cyanation and fluorination respectively using this
approach. However, reactions involving reactants in a neutral
electronic state or which are inert to inorganic bases cannot be
catalysed using chiral cationic catalysts. Therefore, developing
strategies to circumvent this weakness is eagerly anticipated in
order to expand the scope of chiral cation catalysis. In order to
activate allylic acetates for addition with glycinate Schiff base,
Gong* and Takemoto®* added palladium complexes in the
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presence of chiral quaternary ammonium salts. Similar asym-
metric allylations were also undertaken by Takemoto®** and
Han¥ using iridium complexes. While none of these reports
have extensive mechanistic investigations, it was proposed that
transition metals function to activate the electrophile in an
independent catalytic cycle and work cooperatively with the
chiral cation catalyst during the reaction pathway. The
hypothesis since then is that if it is possible to allow organo-
metallic catalysis to work synergistically through ion-pair
interactions with chiral cations, new chemistry can be devel-
oped.>*? Although this new approach is still in its infancy, three
main categories have been identified; they are: (i) transition
metal associated with a ligand scaffold incorporated on a chiral
cation; (ii) chiral cation is paired with transition metal ‘ate’
complexes; and (iii) chiral cation paired with a transition metal,
which is associated with an achiral anion containing a ligand
scaffold (Fig. 1).

2. Strategy 1: ligand scaffold
incorporated on a chiral cation

In 2014, Ooi and co-workers placed a phosphine on a side chain
of a quaternary ammonium salt, allowing the cation to be an
excellent ligand to Pd® (Scheme 1).* This novel cationic palla-
dium complex achieved [3 + 2] cycloaddition between 5-vinyl-
oxazolidinones and activated alkenes.** A similar strategy was
utilized in the addition of 5-vinyloxazolidinone to an imine.*”
The authors hypothesised that the transition state consisted of
a zwitterionic m-allylpalladium intermediate paired with
quaternary ammonium (Scheme 1). Incorporation of a quater-
nary ammonium halide component allows both desirable
halide-palladium contact and recognition of the anionic site
through facile pairing with the chiral ammonium ion.
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Fig. 1 Main strategies for incorporating organometallic complexes in chiral cationic ion-pair catalysis (king chess piece represents the chiral
cation, queen chess piece represents the anion, and golden egg represents the metal complex).
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In 2015, the Peters group designed a multi-functional cata-
lyst for diastereodivergent asymmetric 1,4-addition between
oxindoles and nitroolefins (Scheme 2).° The polyfunctional
catalyst consisted of a Ni'-bis(polyoxyimine) motif with free
hydroxyl groups and an axially chiral bis-imidazolium moiety as
a chiral linker. Multiple non-covalent interactions were ach-
ieved through the bis-imidazolium cation, which provides
electrostatic interactions, C-H hydrogen-bond donors and -
interactions. A Ni'/Schiff-base complex functioned as a Lewis
acid/Brgnsted base and free hydroxyl groups allowed hydrogen-
bonding. Each of the above factors (including the counterions)
was evaluated by a series of control experiments. The authors
proposed that the two reactants were controlled separately; one
was activated by the chiral cation, and the other by the metallic
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complex. At this moment, it is still unclear as to which non-
covalent interaction is responsible for the stereochemical
outcomes.

In 2019, Peters and co-workers reported another polyfunc-
tional catalyst with two cobalt centres chelated in a tridentate
manner to a Schiff base moiety that is connected to two tri-
azolium cations and in turn linked via a chiral BINOL-based
scaffold (Scheme 3).° A 1,4-addition reaction between 2-oxin-
doles and maleimides, catalysed by a Co'/triazolium poly-
functional catalyst can be conducted at room temperature. They
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Scheme 2 Ni"/Schiff-base polyfunctional catalyst for an asymmetric
1,4-addition reaction.
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Scheme 3 Co'"'/Schiff-base polyfunctional catalyst for an asymmetric
1,4-addition reaction.

discovered that additives have a dramatic impact on reaction
outcomes. For instance, AcOH provided the best results while
NaOAc decreased the diastereo- and enantioselectivity drasti-
cally. Although they were unable to elucidate the mechanism via
single-crystal analysis of the catalytically active species, they
observed the existence of one or two AcOH ligands on Co™
using ESI-MS. Probing further using DFT calculations suggests
that equilibrium exists between monoacid coordinated Co™
and diacid coordinated Co™. Evidence showed that a triplet
spin state complex monoacid coordinated complex is more
stable than a singlet diacid coordinated complex. Furthermore,
the free coordination site on the paramagnetic monoacid
coordinated Co™ allows binding of the pronucleophile sug-
gesting that it is the catalytically active species. Recently, this
group has also developed a new strategy for multi-functional
cooperative Lewis acid/betaine (zwitterion) catalysis.”*”

3. Strategy 2: chiral cations paired
with transition metal ‘ate’ complexes

The rudiment of strategy 2 can be tracked back to the first report
of alkaloid-catalysed oxidations,*® in which stoichiometric
permanganate worked as an oxidant but directed by a chiral
cation to achieve enantioselectivity. In 2001, Brown and co-
workers used cinchonidine-derived salts to promote oxidative
cyclisation of 1,5-dienes using potassium permanganate, buff-
ered with acetic acid (Scheme 4).* The reaction was proposed to
proceed in a step-wise fashion consisting of dihydroxylation of
dienes, oxidation by permanganate and condensation of diols.
Through their study, they found that slightly acidic conditions
led to an oxidative cyclisation reaction of 1,5-dienes and the
formation of a-ketols while slightly basic conditions promoted
dihydroxylation.®

Basic conditions result in the decomposition of
cinchonidine-derived chiral cations; hence, enantioselective
dihydroxylation of enones was carried out with a stoichiometric
amount of cinchonidine-derived chiral cations and

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Scheme 4 Cinchonidine-derived chiral cation paired with perman-
ganate in asymmetric oxidative cyclisation and dihydroxylation.

permanganate furnishing diols with good enantioselectivity (up
to 80% ee).

In 2015, the Tan group demonstrated the use of permanga-
nate for asymmetric oxidation in the presence of bisguanidi-
nium (BG). Asymmetric dihydroxylation of a-aryl acrylates and
oxohydroxylation of trisubstituted enoates were achieved
(Scheme 5).* The key intermediate was proposed to be a met-
allo-enolate formed as a result of permanganate insertion into
an a,B-unsaturated alkene. This mechanistic insight was
deduced through observation of reaction by-products.

If a readily available external oxidant, such as hydrogen
peroxide is present, it is then possible to use a catalytic amount
of metal oxides. On this basis, Tan and co-workers took
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Scheme 5 Bisguanidinium permanganate in asymmetric dihydrox-
ylation and oxohydroxylation.
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advantage of this possibility and used tungstate to catalyse
asymmetric sulfoxidation of heterocyclic substituted thioethers
and asymmetric epoxidation of allylic and homoallylic amides
(Scheme 6).**** In a mechanistic study of the asymmetric sul-
foxidation, the active counter ion was characterized using
Raman spectroscopy and DFT calculations. A dihydrogen
phosphate additive acts as a ligand coordinated to tungsten and
DFT calculations indicate that a hydrogen bond exists between
the two phosphate ligands. This strategy was successfully
employed to synthesise (S)-lansoprazole."* Homoallylic amides
have been a difficult target for epoxidation. Tan and colleagues
achieved a highly enantioselective asymmetric epoxidation on
homoallylic amides using bisguanidinium tungstate. The active
catalyst was isolated, characterised using single crystal X-ray
diffraction and identified to be bisguanidinium tetraperox-
yditungstate, [BG]*" [W,0,(u-0)(0,)s]>". This strategy was
successfully employed to synthesise (—)-venlafaxine.'*?

Another successful application of a transition metal ‘ate’-
type counterion is heteropolymolybdate. The active catalyst,
bisguanidinium dinuclear oxodiperoxomolybdosulfate [(u-SO,)
Mo0,0,(1-0,),(0,),]>~, was isolated and determined using single
X-ray crystallography (Scheme 7). It proved effective in asym-
metric sulfoxidation of electron-rich thioethers and successfully
realised the synthesis of (R)-armodafinil on a gram-scale."

In 2019, the Maruoka group reported an alkynylation of
isatin derivatives catalysed using a chiral quaternary ammo-
nium salt in the presence of silver acetate (Scheme 8).** A
plausible mechanism of the reaction is described as follows: (1)
the chiral quaternary ammonium salt interacts with silver
acetate to generate Q'[Ag(OAc)Br]”; (2) the terminal alkyne
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Scheme 7 Bisguanidinium heteropolymolybdate
sulfoxidation.

in asymmetric

deprotonated by K,COj; then associates with Ag, producing an
alkynyl Ag-complex; (3) a substitution reaction between the
alkynyl Ag-complex and isatin generates the key intermediate
with high stereoselectivity; (4) finally, protonation by another
alkyne molecule forms the final product and concomitantly
regenerates the alkynyl Ag-ammonium ion pair.
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Scheme 8 C,-symmetric quaternary ammonium argentinate in
asymmetric alkynylation.
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4. Strategy 3: ligand scaffold
incorporated on an achiral anion

In 2016, Phipps and co-workers developed a strategy for C-H
functionalisation through the use of an anionic Ir-complex to
control both cationic and neutral substrates (Scheme 9).** They
demonstrated two modes of non-covalent interactions between
substrates and the anionic Ir-complex. The first is quaternary
ammonium containing benzylamine that is paired with a ligand
possessing anionic sulfonate (model I)."**¢ In the second
approach, an amide protected benzylamine underwent
hydrogen bonding with the sulfonate group on the ligand
(model II).*** It should be noted that only model II falls under
the scope of Strategy 3.

The essential characteristic of ion-pair catalysis is its cata-
lytic efficiency due to effective interactions between its charged
intermediates. Recently, Phipps and colleagues reported an
enantioselective desymmetrisation through the use of an
anionic Ir-complex, in conjunction with a chiral cationic cata-
lyst (Scheme 10).** A quinine-derived chiral cation and sulfonyl
modified bipyridine counterion were prepared as an ion pair
catalyst. In the presence of iridium, borylation of an arene on
benzhydrylamides and diaryl phosphinamides was achieved
successfully. It was deduced that the counterion is an Ir-
complex with a sulfonyl bipyridine ligand. The sulfonyl bipyr-
idine ligand is both an ion pair to the chiral cation and site for
hydrogen bonding with the acylamino group on the substrate.
Consequently, remote C-H bond activation is achieved via the
charge-inverted Ir-complex and enantioselectivity is induced by
the quaternized alkaloid derivatives.

This methodology demonstrated excellent regioselectivity on
aromatic rings. Meta-substitution is dominant even when R2 is
on the ortho-position, despite a slight decrease in enantiose-
lectivity. In comparison, when an uncharged bipyridine (dtbpy)
was used, the regioselectivity was poor. This powerful method-
ology is also tolerant of a wide range of substituents on aromatic
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Scheme 9 Substrate interaction with a ligand scaffold incorporated
on an achiral anion.
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Scheme 10 Remote C-H activation catalysed by a quinine-derived
chiral cation paired with an anionic Ir-complex.

rings, in particular, iodo-substituted arenes, which otherwise
are incompatible with palladium catalysis.®

5. Perspective

In accordance with the aforementioned strategies, several
anionic transition metal complexes can be further developed for
ion-pair catalysis. For instance, Lavigne and colleagues
prepared an N-heterocyclic carbene decorated with a malonate
backbone (maloNHC) (Scheme 11).'7¢ It functions as an anionic
ligand scaffold and can coordinate to metals such as rho-
dium,*”* iron,”*? and copper. Metal-maloNHC was
paired with Li(THF)," or quaternary ammonium and success-
fully used in skeletal rearrangement of enynes, hydrosilylation,
hydroboration, and cyclopropanation. These reactions can
potentially be carried out in an enantioselective manner with
chiral quaternary ammonium salts.

Ion-pair transition metal complexes can be useful in elec-
trochemistry and photochemistry. Lugan and co-workers
prepared a p-vinylbis(carbene)-dimanganese complex (Scheme
12A), which is reduced to generate a radical anion and dianion

silver,*

+
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Scheme 11 Anionic NHC-complexed metal catalysis.
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NEt,[Ru(tpy)(CN)3]

Scheme 12 Electron transfer processes of anionic metal complexes.

via cyclic voltammetry (CV)."® The radical anion was character-
ized using EPR, showing a mixed-valence pattern of Mn’/Mn',
implying that the unpaired electron delocalized over two metal
centres. The ability of the above-mentioned complexes to emit
and absorb electrons may lead to potential application in elec-
tron transfer reactions.

The Yam group prepared a novel ruthenium anion complex
NEt,[Ru(tpyA18C6)(CN);] and used it as a mobile-phase additive
to separate metal-ions in high-performance liquid chromatog-
raphy (Scheme 12, B)." The solvatochromic behavior and pho-
toluminescence of [Ru(tpyA18C6)(CN);]” indicate its UV
absorption properties. The solvent dependence of metal-to-
ligand charge transfer (MLCT) absorption bands shows that
active wavelengths are in the visible region. Through binding
with a photosensitizer, the ion-pair ruthenium complex may
serve as a catalyst in single electron transfer processes.

In 1979, Griffith and colleagues systematically studied
ruthenate entities and their varied oxidative capacities (Scheme
13).2°* In their initial report, a catalytic amount of ruthenate
together with stoichiometric alkaline persulfate led to over-
oxidation of an alcohol and amine to their corresponding acid
and nitrile. The second oxidation step is inhibited by tuning the
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Scheme 13 Tunable ruthenates in oxidation of alcohols and amines.
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Scheme 14 Ferrate and iron ‘ate’-type complexes in oxidations.

ruthenate and external oxidant. When per-ruthenate and N-
methyl morpholine N-oxide (NMO) were used, primary and
secondary alcohols were oxidized to aldehydes and ketones
respectively.”®” Subsequently, a new species [LPh,][RuO,Cl;] (L
= P, As) was found to be able to oxidise alcohols in the presence
of alkenes.”™ The tunable nature of Ru-complexes makes it
possible to perform chemoselective oxidation.

Potassium ferrate is a common water purifying agent,* and
can be used as an oxidant in organic synthesis. In 2017, Ray and
co-workers used acid-activated potassium ferrate to oxidize
caffeine (Scheme 14A).*> Soon after, in 2018, Jiang and co-
workers reported a photooxygenation of benzylic sp® C-H
using iron chloride and lithium bromide under visible light
irradiation (Scheme 14B).* In order to study the active species
in the reaction, they prepared TBA[FeCl;Br| and characterized it
via single crystal X-ray diffraction (Scheme 14, mechanistic
study).

6. Conclusion

The epitome of a chiral catalyst is one that it can be used for all
enantioselective chemical reactions. This seems to be an

© 2021 The Author(s). Published by the Royal Society of Chemistry
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impossible dream as each reaction will have a different mode of
activation. There lies a possibility of a universal chiral cation
that can be paired with different anionic co-catalysts. The anion
co-catalyst is responsible for promoting the reaction while the
chiral cation provides the ‘chiral space’. Inherently, optimisa-
tion of reactions will mainly involve the design of the non-chiral
anionic co-catalyst instead of preparing a large number of chiral
ligands as per current state-of-the-art approaches.

We have provided a synopsis of all major studies in chiral
cation catalysis incorporating organometallic catalysis. We
found that these new chemistries assimilated the advantages of
both phase transfer and organometallic catalysis, leading to
reduction of catalyst loading and expansion of scope of
synthetic chemistry. We are confident that more developments
in this area are forthcoming.
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