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Recent development in transition metal-catalysed
C-H olefinationt

Wajid Ali,+* Gaurav Prakashi® and Debabrata Maiti & *2°

Transition metal-catalysed functionalizations of inert C—H bonds to construct C-C bonds represent an
ideal route in the synthesis of valuable organic molecules. Fine tuning of directing groups, catalysts and

ligands has played a crucial role in selective C—H bond (sp? or sp®) activation. Recent developments in

these areas have assured a high level of regioselectivity in C—H olefination reactions. In this review, we
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have summarized the recent progress in the oxidative olefination of sp? and sp®> C—H bonds with special

emphasis on distal, atroposelective, non-directed sp2 and directed sp® C—H olefination. The scope,

DOI: 10.1039/d0sc05555g

rsc.li/chemical-science described briefly.

1. Introduction

Transition metal-catalysed C-H bond activations have emerged
as an important tool in synthetic organic chemistry for the
construction of C-C bonds in a more economical fashion. In
the last few decades, significant developments have been
observed towards sustainable organic transformations by
researchers all over the world.? In this regard, transition metal-
catalysed C-H olefination received special attention due to the
versatility of olefinated compounds in many valuable products
(Fig. 1). Vinyl arenes act as key intermediates in many organic
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limitation, and mechanism of various transition metal-catalysed olefination reactions have been

transformations and are also present in numerous bioactive
compounds.*” Pd-catalysed Mizoroki-Heck cross-coupling
(Nobel Prize in 2010) of arene electrophiles with alkenes has
emerged as an alternative route to the conventional olefination
reactions.® Direct oxidative C-H olefination with alkenes known
as the Fujiwara-Moritani reaction represents an advanced
version of Mizoroki-Heck couplings as it avoids prefunction-
alized starting compounds.” However, poor regioselectivity, low
catalyst efficiency and usage of excess arenes (solvent amount)
limits the Fujiwara-Moritani reaction and prompted the
development of more efficient approaches. The foremost chal-
lenge in C-H activation is to selectively functionalize a partic-
ular C-H bond in the presence of several electronically
equivalent C-H bonds. To overcome this issue, usage of
directing groups has come up as one of the most reliable
approaches. Directing groups concentrate metals in the close
proximity of the desired C-H bond to be functionalized and
thus improve the selectivity and reactivity. The field of directed
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Fig. 1 Direct C—H olefination reactions.

C-H bond activations has grown tremendously and many
chelating groups have been explored that can serve as the
auxiliaries. Furthermore, by understanding the distal and
geometrical relationships between the functional group and
targeted C-H bond, U- and D-shaped templates, transient
mediators and non-covalent interactions were discovered to
activate meta, para and other distal C-H bonds.®

Direct olefination of the relatively unreactive C(sp®)-H bond
represents one of the most fascinating and advance strategies in
synthetic organic chemistry. However, in contrast to the C(sp?)-
H bond, functionalization of the C(sp®)-H bond, particularly
olefination, is not well investigated and limited reports are
available in the literature. Selective functionalisation of the
C(sp®)-H bond is much more difficult due to the lack of the
assistance of the m-group, which could efficiently interact with
the transition-metal centre. However, the last few decades wit-
nessed an upsurge in distal C(sp*)-H olefination by installing
the directing group as well as through the radical translocation
strategy (Fig. 2).°

In this review, we have summarized the progress in oxidative
C-H olefination reactions until summer 2020 with special
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emphasis on the distal, atroposelective, non-directed C(sp®)-H
and directed C(sp®)-H olefinations. Also, advancements in
ortho-C(sp’)-H olefination from 2017 have been discussed
here.2@bef

2. Proximal C(sp?)—H olefination
2.1. Ortho-C(sp®)-H olefination

In 2017, Garcia and co-workers reported a Pd-catalysed ortho-C—-
H olefination of 2-phenylethylamines 1 with activated alkenes.
In the reaction, a primary amine acted as the directing group
which followed an intramolecular aza-Michael addition route
for the construction of 3,3-disubstituted tetrahydroisoquino-
lines 2 (Scheme 1).*° A bidentate silver salt such as a carbonate
or an acetate was found to be indispensable for the reaction.
The strategy was compatible with 1,1-disubstituted-2-
phenylethylamine substrates only.

Wang's group disclosed the Pd-catalysed N-Ac-Leu-OH
ligand-controlled enantioselective C-H olefination of racemic
sulfoxides 3 to construct chiral diaryl sulfoxides 4 in moderate
yield and excellent enantioselectivity (up to 99% ee) (Scheme

2)."  Symmetric and nonsymmetric sulfoxides were
[0l L C-H
activation
M= Transition Metal
PB-hydride
_/_Q elimination olefin
R / coordination
O w0
=

olefin =iy

Fig. 2 General mechanism for direct C—H olefination reactions.
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Scheme 1 Primary amine-directed ortho-C(sp?)—H olefination.
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Scheme 2 Pd-catalysed enantioselective C—H olefination of diaryl
sulfoxides.

functionalized through desymmetrization and parallel kinetic
resolution (PKR). Olefination of the (S)-isomer occurred at the
para-substituted benzene ring while for the (R)-isomer olefina-
tion took place at the other phenyl ring with high ee. It indi-
cated that regiodivergent parallel kinetic resolution (PKR) was
involved in the reaction. The enantioselectivity in the trans-
formation was induced during the Pd(u)/N-Ac-Leu-OH-catalysed
asymmetric C-H activation step.

The use of unbiased aliphatic alkenes for the ortho-olefina-
tion of phenyl acetic acids 5 in high regio- and stereoselectivity
was first reported by our group (Scheme 3a).”** In this Pd-
catalysed olefination reaction a bidentate directing group 8-
aminoquinoline was found to be the suitable auxiliary as it
provided rigid coordination to Pd and formed a stable six-
membered palladacycle during C-H activation. The reaction
provided better yield and selectivity in the presence of the
ligand rac-BINAM as it saturates the coordination site of the
palladium. A library of terminal aliphatic alkenes irrespective of
their chain length and functional group were well suited under
the reaction conditions and provided olefinated products 6 in
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Scheme 3 Pd-catalysed aryl C—H olefination with unbiased aliphatic
alkenes.
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good yield and selectivity for linear/branched products. Several
phenyl acetic acid derivatives including the commercial drug
ibuprofen were olefinated efficiently. Sequential diolefination of
phenyl acetic acid with two different alkenes indicated that the
catalytic system used is very reactive and efficient. Similarly,
Dai, Yu and co-workers also presented a Pd(u)-catalysed ortho-
C(sp’)-H olefination of phenylacetic acid derivatives with
unactivated aliphatic alkenes in 2018 (Scheme 3b).'?* They
found that a quinoline based ligand was crucial for the purpose
whereas the monodentate amide coordinating group was used
as a weak directing group. In the transformation, both simple
and functionalized aliphatic alkenes were compatible with
different acids and provided B-alkylated styrenes 8 in good
yield. To make the protocol more convenient molecular oxygen
was utilized as a terminal oxidant along with a catalytic copper
salt as the co-oxidant. Detailed experimental and computational
studies were carried out by our group to understand the origins
of the selectivity."* A series of experiments such as reaction rate
and order determination, control experiments, isotopic label-
ling and Hammett analysis were performed to understand the
reaction mechanism. NMR and kinetic studies using aryl-
palladium intermediates helped to understand the arene C-H
activation, olefin coordination and carbopalladation steps. KIE
experiments revealed that the C-H activation step was not
involved in the rate limiting step instead pB-hydride elimination
was controlling the overall catalytic process. The results of
various control experiments were supported by DFT studies and
revealed the origin of regio and stereoselectivity. The findings of
experimental and computational studies suggested that the
overall mechanism combines neutral and cationic pathways
(Scheme 4). A neutral aryl-palladium intermediate B was formed
by the fast and reversible C-H activation. Coordination of the
unactivated olefin to the neutral aryl-palladium species was
possible, however for efficient reactivity a positively charged
intermediate C was required. Intermediate C underwent

H
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Scheme 4 Plausible mechanism for C—H olefination of phenylacetic
amides.
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Scheme 5 Pd(i)-catalysed olefination of benzyl phosphonamide.

migratory insertion with an olefin to form intermediate D fol-
lowed by B-hydride elimination to form the kinetically and
thermodynamically favoured linear olefinated product 6. Our
group further expanded the application of unbiased aliphatic
alkenes for the ortho C-H olefination of benzyl phosphona-
mides 9 (Scheme 5)."? The strategy was well suited for various
benzyl phosphonamides and aliphatic alkenes to afford linear
olefinated products 10 in good yield and selectivity.

Loh and co-workers reported Pd-catalysed ortho-olefination
of O-acetyl cyanohydrins aided by the synergetic directing effect
of acetoxy and cyano functionalities." They used a mono-N-
protected amino acid (MPAA), N-Ac-Gly-OH ligand, and
Ag,CO; oxidant to perform the reaction which was well suited
with a variety of substrates and offered the anticipated products
in good yield with high regioselectivity.

Amit and co-workers succeeded in the olefination of aryla-
cetamides 11 using abundant and easily manipulatable primary
amides as the effective directing group (Scheme 6a)."** They
used benzoquinone along with oxygen as the oxidant. A series of
alkenes were installed at the ortho-position of arylacetamide
derivatives in moderate to good yields 12 with high regio and
diastereoselectivity. Ackermann and co-workers in 2018
demonstrated the Ru(u)-catalysed ortho-C(sp>)-H olefination of
weakly O-coordinating arylacetamides via a less favourable six-
membered ruthenacycle (Scheme 6b).** The strategy supports
various substituted tertiary, secondary and even challenging
primary amides and provided substituted olefins 12 in a chemo-
, regio- and stereoselective manner. DFT studies showed that
a six-membered ruthenacycle was formed via carboxylate
mediated base-assisted internal electrophilic-type substitution
(BIES) of the C-H bond and migratory insertion of an alkene
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Scheme 6 Amide-directed ortho-C(sp?)—H olefination.
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Scheme 7 Pentafluoro benzoyl-directed olefination of benzylamine.

involved in the rate-limiting step. Jeganmohan's group in 2019
utilized a Rh(im)-catalyst for the similar oxidative olefination of
arylacetamides 11 with activated alkenes in good to excellent
yields (Scheme 6c¢)."** Atmospheric oxygen served as the sole
oxidant to regenerate the catalyst. A range of substituted aryla-
cetamides underwent oxidative coupling with various acrylates
and maleimides to furnish olefinated products 12 in a highly
regio and diastereoselective manner. Weak coordination of
acetamide oxygen with Rh directed it towards ortho-metalation
via deprotonation to form a six-membered metalacyclic inter-
mediate similar to the Ru-catalyst.

Ir-catalysed ortho-C(sp’)-H olefination of benzylamines 13
with acrylates was reported by Fu and co-workers using penta-
fluoro benzoyl (PFB) as the new directing scaffold (Scheme 7).**
The reaction proceeded well with a series of substituted ben-
zylamines in the presence of AgOAc oxidant and provided
mono-olefinated products 14 in good yields. The reaction pro-
ceeded through the activation of the catalyst by AgOAc followed
by the ortho-C-H bond activation via a concerted metalation-
deprotonation (CMD) pathway resulting in a metallacycle.
Insertion of an alkene tracked by B-hydride elimination yielded
an olefinated product and Ir() species, which was re-oxidized to
Ir(m) by AgOAc.

Cui and co-workers reported an interesting Pd-catalysed
amino-chelation-assisted olefination of arenes 15 with an
unactivated vinylsilane (Scheme 8).'* They developed a ligand-
free approach to synthesize a library of arylated vinylsilanes
16 in good to excellent yield with (E)-selectivity. It was inter-
esting to note that the geometry of the product was controlled
by the directing group, since biaryl carboxylic acids under
similar conditions provided olefinated products but in poor E/Z
ratios.

Acid directed olefination of ferrocene carboxylic acid 17 has
been developed by Wu and co-workers to synthesize 1,2-disub-
stituted ferrocene carboxylic acids 18 with planar chirality using
the chiral MPAA ligand N-Ac-L-Phe-OH (Scheme 9)."” Diverse
alkenes such as acrylates, acrylamides, vinyl phosphates, vinyl
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Scheme 8 C(sp®)—H olefinations of 2-amino biaryls with vinylsilanes.
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Scheme 9 Enantioselective C(sp?)—H olefinations of ferrocene
carboxylic acid.

ketones and styrenes were tolerated under the given reaction
conditions. Ferrocenium ion was formed in the presence of
oxygen and served as the terminal oxidant to regenerate Pd(u)
from Pd(0).

Mahiuddin's group further explored the directing group and
used carboxylate as a weak directing group in Ru(u)-catalysed
ortho-C(sp*)-H olefination of aromatic carboxylic acids with
styrenes." The weak coordination of acid functionality serving
as directing group even in the presence of the strong coordi-
nating acetamide functional group under the reaction
conditions.

Satoh, Miura and co-workers in 2017 developed a Rh(m)-
catalysed N-Boc directed ortho-olefination of anilines 19 with
alkenes using a copper salt oxidant (Scheme 10).” A series of
alkenes such as acrylates, acrylamides, acrylonitrile and
styrenes reacted with different anilines to afford corresponding
ortho-olefinated products 20 in good yield. Styrene reacted
slightly at elevated temperature and high catalyst loading. The
ortho-olefinated anilines could be further derivatized into
valuable nitrogen-containing heterocycles such as indoles and
quinolines.

Shibata, Tanaka and co-workers in 2019 synthesized
a moderately electron-deficient cyclopentadienyl Rh(m)-
complex. The Rh(m)-complex bearing an ester and pendant
amide moieties on the Cp ring was used for the aerobic oxida-
tive olefination of benzamides 21 with styrene derivatives
(Scheme 11).>* Diverse alkenes reacted with a multitude of
benzamides to deliver corresponding products 22 in good yield.
The ester moiety accelerates cleavage of the C-H bond and
olefin insertion by reducing the electron density on the Rh-
centre while the secondary amide eased C-H bond cleavage by
intramolecular C-H extraction. Recently, Tanaka and co-
workers came up with another highly active unsubstituted
cyclopentadienyl rhodium(m)-complex for the oxidative ortho-
olefination of sterically demanding amides.?*

H H
) |
M Boc [CP*Rh(MeCN);][SbFe]; (4 mol%) M Boc
R + AR RO
e Cu(OAc), (2.0 equiv.) NP1
19 (2.0 equiv.) ‘BuOH, 60 °C, 6 h 20
o H *.' *.'
CO,"Bu
A Ph  MeO Zc0,"Bu Br Z2~c0,"Bu 2
N
60% 83% 69% 96% £y

Scheme 10 Rh-catalysed N-Boc-directed ortho-olefinations of
anilines.
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Scheme 11 Modified Rh(in)-catalysed ortho-olefination of amides.
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Scheme 12 Ru(i)-catalysed cyclisation of benzamides with activated
alkenes.

Jeganmohan and co-workers established a Ru(u)-catalysed
oxidative olefination followed by the intramolecular cyclisation
of benzamides 23 with vinyl sulfone for the synthesis of 3-
methyleneisoindolin-1-ones 24 in good yields and E/Z ratio
(Scheme 12).>* Furthermore, they applied the oxidative cyclisa-
tion of benzamide for the total synthesis of aristolactam
alkaloids.

Rhodium(m)-catalysed ortho-C(sp”)-H olefination of alde-
hydes 25 was developed by Wang and co-workers in 2017 with
the use of TsNH, as a transient directing group (Scheme 13).?>
The in situ generated imine formed via condensation of alde-
hyde and amine served as the directing group for the olefination
of a variety of aldehydes with olefins and provided products 26
in good yield. KIE experiments suggest that cleavage of the C-H
bond was involved in the rate determining step.

Ru(u)-catalysed enone carbonyl directed ortho-C(sp®)-H ole-
fination of chalcones 27 was developed by Bakthadoss and co-
workers in 2018 using hydrated Cu(OAc), as the oxidant
(Scheme 14).* A variety of activated olefins coupled with

[CP*RACl,], (5 mol%), AgSbFg (20 mol%)

TsNH, (40 mol%) x-CHO
AR - R
Cu(OAc),H,0 (2.0 equiv.) NARt

AN CHO
R _ +
H

25 (1.5 equiv.) DCE, 100 °C, 16 h 2
Me y CHO
CHO CHO |
R=H,71%
/@\ R = OMe, 79% P R=CO,Bu,76% S~ ~Zco,Me
R CO,Me R=F, 62% R R=Ph, 60% 43%

Scheme 13 Transient-directed ortho-C(sp®)—H olefinations of
aldehydes.
o [o]
[Ru(p-cymene)Cl,], (5 mol%) P
FZ %,
R1_/ | R N AgSbFg (20 mol%) R1—/ | D R
N H Cu(OAc),H,0 (30 mol%) NS R2
27 (2.0 equiv.) DCE, reflux, 24 h 28

9 R =Ph, 73% 2
in% g
) 9Oas
Z CO,Me A R R'

R = 4-OMe-Ph, 79%
R = 4-NO,-Ph, 69%

Scheme 14 Ru(i)-catalysed enone carbonyl-directed olefination of

chalcones.

R=CO,"Bu,R'=H, 79%
R = SO,Ph, R" = Me, 75%
R = furan, 81%
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29 (1.5 equiv.) TFE, 90°C, 24 h 30
Me R €0,"Bu
R=H, 59% R = Et, 56% an
7 So R = 4-Me, 53% o R=Ph, 51%
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CO;"Bu R =4-SMe, 47% CO,"Bu

s
60% Bu

Scheme 15 Cof(in)-catalysed ortho-olefination of aromatic ketones.

chalcone derivatives and afforded olefinated products 28 in
high yield and stereoselectivity. In 2018, Ir-catalysed ortho-
C(sp®)-H olefination of aromatic systems was demonstrated by
Elumalai and co-workers employing diverse directing groups
bearing the carbonyl functionality.** The oxidative olefination
reaction proceeded smoothly in the presence of an external
oxidant Cu(OAc), and additive AgPF to provide corresponding
products in good yield.

Co-catalysed olefination of aromatic ketones 29 with the
assistance of the weakly coordinating carbonyl group was dis-
cussed by Maji and co-workers (Scheme 15).>* A wide range of
aromatic and heteroaromatic ketones irrespective of the elec-
tronic properties coupled with activated olefins to produce
olefinated products 30 in good yield and E-selectivity.

The easily manipulative acylsilane as the directing group for
Ru(m)-catalysed oxidative olefination of aroylsilanes 31 with
alkenes was demonstrated by Zhang and co-workers (Scheme
16).>° They utilized a copper salt as an external oxidant and the
reaction was applicable to a broad range of aroylsilanes
including heterocycles. Aroylsilanes coupled with a variety of
alkenes and delivered ortho-olefinated products 32 in good yield
with excellent regio and stereoselectivity.

Zhong's group in 2017 demonstrated a Ru-catalysed olefi-
nation reaction at relatively difficult alkenyl C-H bonds of N-
methoxy o,B-unsaturated amides 33 (Scheme 17).>“ In the
reaction, CONH(OMe) played a dual role of a directing group as
well as an internal oxidant for the construction of synthetically
important 1,3-dienamides 34 in good yield and high E-stereo-
selectivity. The formation of a five-membered ruthenacycle

0 [Ru(p-cymene)Cly, (5 mol%) o
R SiMes P AgSbFg (10 mol%) RN siMe
v Cu(OAc), (1.2 equiv.) Oz -
31 (2.0 equiv.) DCE, 80 °C, 24 h 22
9 R = CO,Me, 74% o R = 4-Me, 76% o
SiMe; R =COE, 41% B SiMe; R = CF3, 64% SiMes
P R=Ph, 61% R R=2ae, 7% QM
R R=8S0,Ph, 75% CO,Bu R =3.Me, 75% CO,Bu
51%
Scheme 16 Acylsilane-directed ortho-C(sp?)—H olefination.
Q [¢]
2 2
) fu'om + AR [Ru(p-cymene)Clyl, (5 mol%) Rﬁ‘\"'z
R H KOPiv (38 mol%) RY N\t
33 (2.0 equiv.) DMF, 60 °C,16 h 34
o

R = CO,Ph, 70%, Z/E = 99/1
R =CgFs, 41%, Z/E >99/1
R = P(O)(OEt),, 60%, Z/E = 97/3

R = Me, 82%, Z/E = 99/
R = pentyl, 59%, Z/E = 99/1
R = Ph, 38%, Z/E = 98/2

o
M
Z~co,Bu A R

Scheme 17 Ru(i)-catalysed olefination of a,B-unsaturated amides.
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Scheme 18 Proposed mechanism for Ru-catalysed olefination of a,f3-
unsaturated amides.

B-H elimination,
reductive elimination
then oxidative addition

through reversible C-H activation took place followed by the
alkene insertion to form a seven-membered ruthenacycle
intermediate B (Scheme 18). B-Hydride elimination followed by
reductive elimination generated a Ru(0) species which under-
went N-O bond insertion to afford the Ru(u)-amide interme-
diate D. Finally, protonation with PivOH led to the formation of
the desired product and Ru(u)-catalyst to continue the catalytic
cycle. Later, the same group extended the olefination reaction of
N-methoxy a,B-unsaturated amides with other transition metals
such as Ir and Co. Ir-catalysed olefination reaction occurred in
the presence of an inexpensive hydrogen acceptor chloranil and
afforded the desired products in good yield and stereo-
selectivity.?”” Similarly, construction of conjugated dienes was
achieved by using [Cp*Co(CO)I,]-complex as the catalyst and
AgOAc oxidant.”™

Miura's group in 2018 disclosed a Rh-catalysed thioether
directed C-4 selective olefination of indoles 35 through a five-
membered metallacycle intermediate (Scheme 19a).*** The
transformation was applicable to a wide range of electron-
deficient alkenes as well as styrene derivatives and afforded C-
4 olefinated products 36 in good yield with E selectivity. The

R
H e N DG
N . L
R-L P AN " A R Reaction Conditions rl A\
N, ZN
R’ R?
35 36 R’
R R CO,"Bu
(a) [CP*RhCI,], (2.5 mol%)
X SR3 AgSbFg (10 mol%) ™) SMe R =CO,Me, 61% N SMe
N Q Cu(OAc)H,0 (1.0 equiv.) QA R=CN, 61% QA
R DCE, 95°C, 12 h R = P(O)(OEt),, 63% Ph
N alkene (4.0 equiv.) N R =Ph, 52% N
36 R? Me 92% Me
R2 _O R o} Me. o]
(b) [CP*RNCl], (2.5 mol%)
N A AgSDFs Q0mol%) Ny .0 £y 70% N A
Ag,CO; (2.0 equiv.) R = Ph, 64%
il N\ _,| 14-dioxane, 100°c, 6 n N\ R =Cy, 53% D
= N alkene (2.0 equiv.) N R =4F-Ph, 51% N
37 R Bn or% 1

Scheme 19 Rh-catalysed thioether & acetyl-directed C-4 olefination
of indoles.
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easy transformation of the thioether directing group was an
added synthetic advantage to the reaction.

Punniyamurthy and co-workers recently developed a Rh-
catalysed C-4 alkenylation of indoles 35 with allylic alcohols
employing weakly coordinating carbonyl as the directing group
(Scheme 19b).2*® Allyl alcohols served as either an alkenylating
or alkylating agent depending on the additive used. Usage of
Ag,COj; resulted in B-hydride elimination while the presence of
NaOPiv led to the alkylated products. A series of substituted
indoles reacted with different allyl alcohols to afford olefinated
products 37 in good yield and selectivity. Allyl alcohols in the
presence of a Rh-catalyst and under basic conditions were
converted into enones which served as the activated alkenes in
the Rh-catalysed olefination reaction.

Indole NH directed Rh-catalysed ortho-di-olefination of 2-
arylindoles was presented by Huang and co-workers in 2018.%° It
is worth mentioning that when the reaction was performed in
DMF instead of EtOAc, formation of 6H-isoindolo[2,1-a]indole
took place through intramolecular aza-Michael reaction.

Kapur and co-workers demonstrated a precise catalyst-
controlled selective C-H olefination of isoxazoles 38. When
a cationic rhodium catalyst is used, the transformation was
dictated by the cationic nature of the catalyst, and the strong
coordination of isoxazole nitrogen led to ortho-C(sp*)-H olefi-
nation of proximal aryl rings 39 (Scheme 20),** while a palla-
dium-catalyst prefers electrophilic C-H activation due to the
covalent nature of the catalyst and olefination took place at the
distal position of the directing group. The reaction followed an
interesting mechanism as KIE studies via both parallel and
competitive reactions indicated the absence of the primary
kinetic isotope effect highlighting that C-H activation was not
the rate limiting step. The C-H activation step in the trans-
formation most probably proceeds through a base-assisted
internal electrophilic substitution (BIES) reaction and site
selectivity was governed by the affinity of the Rh-catalyst for
isoxazole nitrogen. Du and co-workers reported Rh(u)/[BMIM]
NTf, as a reusable catalytic system for the ortho-olefination of
arenes at room temperature.*® The ionic liquid used in the
transformation is chemically stable and non-volatile accounting
for an environment friendly protocol.

2.2. Atroposelective C(sp®)-H olefination

Axially chiral biaryl scaffolds are omnipresent in a class of
natural products and biologically relevant compounds, and are
also used as chiral ligands or catalysts in a series of asymmetric

R R
9 [CP*RICl,]; (1 mol%), AgSbFg (20 mol%) "%
ri RS N . /\RZ Cu(OAc),'H,0 (2.0 equiv.) RIE N N
N AcOH (1.0 equiv.) ANAge
38 (2.0 equiv.) THF, 100 °C, 30 h 39
Ph Ph ™S
- = =
~.°  R=CO,Et, 69% < O R = OMe, 68% < 0
N R = SO,Ph, 68% N R=F, 69% N
- o R = CN, 45%
A R R=CN,50% R Aco,Et 0 P coEt

51%

Scheme 20 Rh-catalysed isoxazole-directed olefination of proximal
aryl rings.
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syntheses.*” In the literature many elegant strategies are present
for the synthesis of axillary chiral biaryls such as asymmetric
Suzuki-Miyaura couplings, desymmetrization of prochiral
biaryl compounds, atroposelective cleavage of the biaryl
lactones, asymmetric oxidative homocouplings etc. Recently,
asymmetric C-H activation has emerged as a potential alter-
native to access chiral biaryl compounds in a single step and
atom economic way.

Synthesis of axillary chiral biaryls through directing group
assisted C(sp”)-H olefination was first reported by Colobert and
co-workers in 2013 (Scheme 21).** The first outcome in the
synthesis of axillary chiral biaryls was reported by them. They
used enantiopure p-tolyl sulfoxide 40 as the directing group
which induced the atropodiastereoselectivity during the olefi-
nation process. In the protocol electron-deficient acrylates
served as efficient coupling partners with a variety of biaryl
systems and afforded corresponding products 41 in moderate to
good yield. The observed atroposelectivity during the trans-
formation probably arose from diastereomeric discrimination
during the cyclometallation step. This resulted in an atro-
poenriched Pd-C bond formation at the sterically less hindered
side, i.e. opposite to the bulky p-tolyl group. Yang and co-
workers reported a similar Pd-catalysed atroposelective C-H
olefination through dynamic kinetic resolution for the synthesis
of axially chiral phosphine oxide-based compounds.* (S)-
(—)-Menthyl phenylphosphinate served as the directing group
as well as induced atropodiastereoselectivity during the olefi-
nation process.

Asymmetric Rh(i)-catalysed introduction of axial chirality in
biaryl systems 42 was developed by You and co-workers in 2014
(Scheme 22).*** The major challenge in the construction of
axially chiral biaryls was the formation of cyclometallated
species during C-H activation and it requires co-planarity of the
two sterically hindered arenes which raised the energetic barrier
of the reaction. For the first time chiral Cp rhodium complexes
were used for the facile enantioselective synthesis of axially
chiral biaryl systems in excellent yield and good enantiose-
lectivity through the C-H activation process. Diversely
substituted biaryls reacted well with a series of olefins like 2-
vinylnaphthylene, styrenes and electron-deficient alkenes to
grant the desired products 43. The same group in 2016 came up
with another modified Rh(i)-catalyst with chiral Cp 1,1'-spi-
roindane ligands to synthesize axially chiral biaryls (Scheme
22).*** The modified Rh-complex (S)-K3a showed better activity
and the reaction occurred even at room temperature providing
products with improved enantioselectivity. The chiral biaryl

R! ‘
R? l H
40 (2.0 equiv.)

(D

Y s*0-p-Tol

R
Me0,C._~ l

Scheme 21 Chiral auxiliary-induced atroposelective C—H olefination.

$*0-p-Tol

$*0-p-Tol
+ 2 coMe

Pd(OAc), (10 mol%) R 0
—_— RZ

1
MeO,C = l
41

I $*0-p-Tol

R = Me, 87%, dr 4.6:1 *

R =Cl, 43%, dr 1:2.5 MeO,C. = l l

R = OMe, 87%, dr 1:1.8
86%, dr 3.1:1
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Scheme 22 Chiral Rh()-catalysed enantioselective C—H olefination.

products were used as suitable ligands in Rh-catalysed
reactions.

Pd-catalysed synthesis of axially chiral biaryls via C-H olefi-
nation reaction engaging tert-leucine as an inexpensive, cata-
lytic and transient chiral auxiliary was developed by Shi and co-
workers (Scheme 23).*** The reaction was compatible with
diverse substituted biaryls 44 and several olefins including
electron-deficient styrenes affording products 45 in good yield
and excellent enantioselectivity. The reaction was proposed to
progress via a reversible reaction of the chiral amino acid with
44 to form imine intermediates IM-A or IM-B. Due to the steric
interaction, the C-H bond of one of the diastereomers cleaved
preferentially to form an axially stereoenriched axial-biaryl
palladacycle intermediate. The palladacycle intermediate
underwent a typical Heck reaction followed by in situ hydrolysis
of imine to yield chiral biaryls 45 (Scheme 24). Furthermore, the
synthetic utility of the protocol was demonstrated by the
asymmetric total synthesis of TAN-1085 in good yield and
excellent enantioselectivity (>99% ee).*® The same group
further elaborated an atroposelective C-H olefination reaction
by the synthesis of highly enantiopure atropoisomers having
pentatomic heteroaromatics (Scheme 23).**° The protocol was
found to be well tolerated in terms of different five-membered
biaryls containing benzothiophenes and benzofurans and
provided axially chiral pentatomic biaryls in good
enantioselectivity.

Recently, Shi's group has developed a Pd-catalysed protocol
for the synthesis of challenging axially chiral styrenes 47 by
introducing a bulky amino amide as the transient chiral auxil-
iary A (Scheme 25).*” Induction of chirality was challenging in
cinnamaldehydes due to their relatively lower rotation barrier.

RN Pd(OAc), (5 mol%)
[ L-tert-leucine (20-30 mol%)
CHO  , A ge e e
H BQ (0.1 equiv.)
Z HFIP/ACOH (4:1)

S 60 °C, 48 h, O,
(3.0 equiv.)

g;cii
Me.
O CHO
CHO cHO F CHO
X C02"Bu OO A Me. X C0;"Bu X_Ph

90%, 99% ee 83%,

OMe

97% ee 98%, 98% ee 70%, 98% ee

Scheme 23 Synthesis of axially chiral biaryls using a transient chiral
auxiliary.
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Scheme 24 Proposed path involved in the transient chiral auxiliary
catalysis.

Pd(OAc), (10 mol%)

x-CHO Co(OAc),4H,0 (1.0 equiv.) R CHO
A (30 mol%), BQ (1.0 equiv. 3 Me O
b, e AL ). BA (1.0 equiv.) PN
R | (BnO),PO,H (50 mol%) R |
X DMSO/ACOH (1:10) A

Me
Me>\/u\N"Bu2
NH,
46 (4.0 equiv.) 40°C,48 h, 0, 47

R=CO,"Bu, 75%, 96% ee  pp \CHO R CHO
R R=S0:Ph, 46%, 97% ee

X C02"Bu X-C0,"Bu
R = P(O)(OEt),, 42%, 98% ee OO OO

R = 'Bu, 28%, 98% ee
R = Ph, 81%, 94% ee 89%, 95% ee R = p-NMe,-Ph, 63%, 92% ee

Scheme 25 Synthesis of axially chiral styrenes enabled by an amino
amide transient directing group.

In particular, sterically bulky substituents ortho to the chiral
axis were necessary to ensure the enantioselectivity. Cinna-
maldehydes 46 having a relatively large substituent at the ortho
position have a higher rotational barrier compared to the
smaller group. The successfully isolated palladacycle interme-
diate was found to have the same stereochemistry as the
product.

Pd-catalysed induction of atropoisomerism in biaryl systems
by means of chiral ligands was first adopted by Yang and co-
workers in 2017 to synthesize chiral atropoisomeric biaryl
phosphine-olefins 49 (Scheme 26).*®* They used MPAA Boc-L-Val-
OH to execute phosphene-directed C-H olefination through
dynamic kinetic resolution (DKR). Phosphene oxide 48 not only
served as a directing group for C-H activation, but also
controlled the outcome of the products. It was interesting to
note that the electronic properties of the substituent on the
biaryl system have a significant impact on the product yield and
enantioselectivity.

Pd(OAC), (5 mol%) O 9 o O -OH
Pgs Boc-LVal-OH (10 mol%) R‘2 PPh, s 'B"‘o)L Mel
AgOAc (3.0 equiv.) R O xR N

TFE:DME (1:1), 60 °C Boc-L-Val-OH Me

@g‘# M

(3.0 equiv.) 49
Qy :
ph, R=CO,Et, 90%, 87% ee PPh, PP,
R R=SO0,Ph, 72%, 92% ee E N CO,E N COE
R = P(O)OEt),, 95%, 84% ee
R =Ph, 91%, 93% ee O
R = naphthyl, 81%, 90% ee 58%, 89% ee 97%, 90% ee

Scheme 26 Boc-L-Val-OH ligand-assisted synthesis of chiral biaryl
phosphine-olefins.

© 2021 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0sc05555g

Open Access Article. Published on 29 January 2021. Downloaded on 11/1/2025 1:36:57 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Review

Pd(OAc), (10 mol%)
(R)-STRIP (20 mol%)
AgOAc (2.0 equiv.)
1,4-dioxane
70°C,24h

+ AR

Ar = 2,4,6-PryCeH,
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C
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N
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Scheme 27 (R)-STRIP as an efficient chiral ligand for the synthesis of
axially chiral quinoline biaryls.

Shi and co-workers demonstrated chiral spiro phosphoric
acid (R)-STRIP as an efficient chiral ligand for the Pd-catalysed
synthesis of axially chiral quinoline-derived biaryls 51 in good
yield and excellent enantioselectivities (99% ee) (Scheme 27).%°¢
The better outcome of the enantioselectivity was due to the
narrow and well-defined channel of SPAs which provided more
rigid pockets than the BINOL-derived counterparts. This led to
a healthier steric interaction with substrates 50. Density func-
tional theory (DFT) suggested that the chiral phosphate acted as
the counterion to stabilize Pd, while acetate ion served as the
base in the cyclometallation deprotonation type C-H activation.
Recently, a modified chiral spiro phosphoric acid (SPA) ligand
was developed by the same group to execute free amine-directed
C-H olefination leading to chiral biaryl-2-amines 53 in excellent
yield and enantioselectivity (Scheme 28).>*” The modified ligand
showed an enhanced reactivity and its loading could be reduced
up to 1 mol% without any alteration of enantiocontrol in gram
scale synthesis.

3. Distal C(sp?)—H olefination

Directing group assisted ortho-functionalization is rather facile
considering the kinetic and thermodynamic stability of five, six
and seven membered metallacycle transition states. However, to
activate the distal C-H bond, a relatively large and energetically
unfavorable 11, 12 or even higher atom containing metallacycle
intermediate needs to be formed. As a result, controlling the
selectivity is a major concern. Thus, it is vital to recognize the
distal and geometrical relationships between the functional
group and C-H bond of the substrate to overcome the entropy

Pd(OAc), (10 mol%)
SPA (10 mol%)

N
NH, . /\RJ
A~ AH Ag,CO; (1.0 equiv.)
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demand owing to the macrophane-like transition state and to
achieve selective C-H activation.

3.1. meta-C(sp>)-H olefination

As an elementary step towards distal functionalization, Yu and
co-workers in 2012 designed a U-shaped nitrile-based template.
The template delivered the palladium metal to the vicinity of the
meta-C-H bond of the tethered arene to execute C-H olefination
with excellent selectivity overriding the electronic and steric
bias (Scheme 29a).*** meta-Selective olefination (95%) of tolu-
enes 54 was achieved in the presence of Pd(OPiv),-catalyst and
AgOPiv oxidant in DCE. The strategy was also successfully
applied to the meta-olefination of hydrocinnamic acid deriva-
tives 56 under modified reaction conditions. The reaction
medium had a significant influence on the stability of the
transition state as showcased by the change in the meta-selec-
tivity on changing the solvent. DFT studies for meta-olefination
of toluenes revealed that the C-H activation proceeds through
a concerted metalation-deprotonation pathway and it is also
the most energy demanding path. Also, C-H activation in
a nitrile-based template occurred via the formation of a hetero-
dimeric Pd-Ag transition state A having lower energy than any
other form of palladium species (Scheme 29b).** Yu and co-
workers developed rhodium-catalysed meta-C-H olefination of
hydrocinnamic acid derivatives 57 by a slight modification of
the template used in Pd-catalysis (Scheme 29¢).**° The approach
was much ecofriendly as oxygen served as an external oxidant in
the presence of a catalytic copper salt.

The directing group strategy for meta-C-H olefination was
extended to phenol derivatives 58 by the same research group
using a nitrile-based end-on template (Scheme 30).** Selective
meta-functionalization of phenol was more challenging
considering that the meta position of the phenol is least active
towards electrophilic attack. After rigorous optimization meta-
olefinated products 59 were obtained in good yield and selec-
tivity in the presence of Pd(OAc),-catalyst, ligand N-Ac-Gly-OH
and AgOAc oxidant in HFIP. Different phenol scaffolds
including ortho-brominated substrates were well-suited under
the reaction conditions and coupled with activated alkenes

DG DG

CN \;‘O
(a) Pd(OPiv), (10 mol%) Bu 4
7 + Rz,,‘/\R3 —_— 7 P Bu
R AgOPiv (3.0 equiv.) R u
H DCE, 90 °C, 30-48 h ZR3 .
2
54 (2.0 equiv.) 55 R Bu

DG DG DG
é\/\ F\é\/\
7 CO,Et Z 'CO,Et  Me 7 “CO,Et

CO,Et

;o
. /
Me’ko‘.. Pl

= S\ J
R2— o 55% 70% 98% (E:Z = 1:75) SR
S ! toluene, 40°C, 24 h m:others 88:12 m:others 98:2 m:others 100:0 07/ C A A
52 (2.0 equiv.) 53 Ar = 3,5-BuCgH; Mé yd

NH,  R=CO;Bu, 96%, 95% ee
N_R R=CO;Bn, 69%,91% ee
R = P(O)(OEt),, 41% 91% ee
R = m-CI-Ph, 55%, 95% ee
R = p-CF3-Ph, 62%, 93% ee

&
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55%, 93% ee 87%, 95% ee

0

Scheme 28 Pd(i)-catalysed free-amine-directed atroposelective
C-H olefination.
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Scheme 29 meta-C—-H olefination of toluenes and hydrocinnamic
acids.
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Scheme 30 Pd-catalysed meta-selective C—H olefination of phenols.

including electron-deficient styrenes. The mechanistic inves-
tigation*'” indicated that the MPAA ligand N-Ac-Gly-OH not only
acted as a dianionic bidentate ligand rather also as the internal
base to abstract protons through the amidate group (Scheme
31).

Tan's group further developed the template-based strategy
for meta-selective C-H olefination of benzyl alcohols 60 using
a silicon-tethered nitrile-based directing group (Scheme 32a).**
Easy incorporation of the template and its removal made the
methodology more facile. meta-Selectivity up to 98 : 2 was ach-
ieved irrespective of the electronic nature of the substrate in the
presence of a Pd(u)-catalyst, N-Ac-Gly-OH ligand and HFIP
solvent. Extending the silyl-tethered directing group-assisted
meta-olefination reactions, our group successfully olefinated
benzylsilanes with very high selectivity (m : others > 20 : 1) to
obtain 62 in good yields (Scheme 32b).**’ Regioselective bis-
olefination of benzylsilanes was conducted employing remov-
able 2-hydroxy-5-methoxybenzonitrile. The silyl linker could be
easily removed leading to the synthesis of olefinated toluenes,
benzaldehydes and benzyl alcohols. Xu, Zhou and co-workers
demonstrated meta-selective C-H olefination of phenols 63
using Pd and Rh catalysts simultaneously via incorporating
a traceless organosilicon template bearing nitrile as the
directing group (Scheme 33). The Pd-catalysed reaction pro-
ceeded well with AgOAc oxidant (Scheme 33a),*** while the
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Scheme 31 Catalytic cycle of meta-C—H olefination.
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Scheme 32 Si-tethered nitrile-based directing group assisted meta-
selective olefination of benzyl alcohol and toluene derivatives.

(b) Pd(OAc), (7.5 mol%)
N-Ac-Gly-OH (15 mol%)

Me._DG
DCE:TFE (3:1), 65 °C, 24 h F/é\ﬂcozm A co,Me

Ag,CO; (2.5 equiv.)
alkene (1.5 equiv.) 2% me 74%

pG DG pr_/Pr
o” (a) Pd(OAc), (10 mol%) o~ 55
2 + REng _NACGIy-OH (20 mol%) » .
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7% 1% 63%
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alkene (4.0 equiv.)

m:others = 90:10 m:others = 95:5

Scheme 33 meta-Olefination of phenols using an organosilicon
template.

MPAA ligand N-Ac-Gly-OH, hydrated copper salt oxidant and
V,0s5 co-oxidant are vital for the Rh-catalysed meta-olefination of
phenols (Scheme 33Db).*>? The protocols were viable for a large
range of olefins along with diversely substituted phenols and
afforded the desired meta products 64 in good yield and excel-
lent selectivity. meta-Olefinated phenols could be further
utilized for coumarin synthesis after removal of the directing
group.

meta-C-H olefination of benzyl phosphonates 65 at room
temperature was first reported by our group facilitated by
a novel phosphonate-based template tethered with a 2-hydrox-
ybenzonitrile directing group (Scheme 34).** The reaction was
performed in the presence of Pd-catalyst, N-Ac-Ph-OH ligand
and silver oxidant in HFIP at room temperature to give products
66 in excellent yield and selectivity. Notably, di-olefination
occurred at an elevated temperature (80 °C).

\P/ \‘Pt
“pe Pd(OAc); (10 mol%) ~pe o
2 + R, _N-Ac-Ph-OH (20 mol%) - pid
rRL | Rl ——————————— > R | DG
N Ag,CO; (2.0 equiv.) X A R NC
H HFIP, 1t, 36 h
65 (2.0 equiv.) 66 R?
o\\P,OEt ()\\PIOE( o, JOEt o, OEt
~peG ~pG ~be ~pe
A o
Zc0,Bn Z 2 A~come  Br A >co,Et
68% 61% 80% E
temp. 80 °C 75%

Scheme 34 meta-Olefination of benzylic phosphonate esters.
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Scheme 35 meta-Selective C—H olefination of phenylacetic acids.

Considering the importance of arylacetic acids 67 in the
pharmaceutical industry, our group developed the first meta-
selective olefination of such molecules with the assistance of
the 2-hydroxy-5-methoxybenzonitrile auxiliary. The reaction
proceeded well in a combination of Pd-catalyst, MPAA ligand N-
Ac-Gly-OH and a suitable silver oxidant, and afforded products
68 in good yield and selectivity (Scheme 35a).*** However, HFIP
solvent used in the reaction led to trans-esterification thereby
removal of the directing group, hence affecting the overall yield.
Later on, Yu and co-workers reported meta-olefination of phe-
nylacetic acids in the presence of modified MPAA ligand formyl-
Gly-OH (Scheme 35b).** Yu group reported a strongly coordi-
nating pyrimidine-based template** to execute meta-C-H
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Scheme 36 Directed meta-olefination of alkylbenzene derivatives.
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olefination of arylacetic acids in order to broaden the substrate
scope (Scheme 35c).

Our group developed Pd(u)-catalysed meta-C-H olefination of
benzylsulfonyl ester derivatives 69 in the presence of N-Ac-Gly-
OH ligand and Ag,CO; oxidant to yield the desired products
70 in good yield and selectivity (Scheme 36a).*** Homo-
diolefination and sequential hetero-diolefination in one pot
with exclusive meta-selectivity and high yield were observed.
Capitalizing on the same template our group extended the
scope of meta-olefination for arylethane acid derivatives using
sulfonyl 69 and carbonyl 71 linker (Scheme 36b).**”

Being a weak coordinating group nitrile can be easily dis-
placed in the presence of a strong coordinating group leading to
deactivation of the catalyst. To overcome such a limitation, our
group reported a strongly coordinating 8-nitroquinoline-based
template tethered by a sulfonyl group for the selective meta-
olefination (Scheme 36¢).** The strongly coordinating 8-nitro-
quinoline not only directs the metal towards the meta-position
but also stabilizes the palladacycle through its high coordi-
nating ability. Later, the scope of the meta-olefination of ben-
zylsulfonyl esters 69 and phenylacetic acid derivatives 71 was
extended by our group through Rh-catalysis in the presence of
XPhos ligand (Scheme 36d).**? Unlike Pd(u), the use of Rh(i)
limits the transesterification while DCE was found to be a more
suitable solvent than HFIP. UV studies suggest that Rh(i) species
in situ transformed into its active form Rh(m) intermediate and
catalysed the reaction.

Our group in 2016 explored the distal C-H olefination of
biphenyl carboxylic acids and phenols 72 with the help of
a carbonyl linker and nitrile as the weak coordination group.
The reaction proceeded well in the presence of a Pd-catalyst
along with the MPAA ligand N-Ac-Ph-OH and AgOAc oxidant
to deliver highly selective meta-olefinated products 73 (Scheme
37).%“ Both substrates showed almost similar reactivity under
the optimized conditions, which validated the principle of the
selectivity-reactivity paradigm. Recently, Yu group developed
a 2-pyridone ligand-promoted meta-selective C-H olefination of
biphenyl nitrile derivatives under Pd-catalysis.**” meta-Selective
olefination in the reaction was completely controlled by the
ligand without the direct involvement of the directing group.
The computational study suggested that a Pd-Ag bimetallic
bridge forms with the involvement of 2-pyridone and acetate
molecule to lower the energy barrier, and C-H activation pro-
ceeded through a cyclometallation-deprotonation pathway.

Pd(OAc), (10 mol%)
N-Ac-Ph-OH (20 mol%) X
AgOAc (2.0 equiv.) X =)
~N, be DG
DCE:HFIP (7:1) rL ] NG
X 65 °C, 42 h, air S
72 (2.0 equiv.) X=CO0,0 73 R2

o

e
A

(O~

- COEt Z50,Me # “P(0)(OEY),

64% 47%, m:others = 12:1 57%

Scheme 37 meta-C—-H-olefination of biphenyl carboxylic acids and
phenols.
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Scheme 38 meta-Selective C-H olefination of amines and

heteroaromatics.

The use of a carbonyl-based template with an o-fluoro
substituted nitrile auxiliary for the meta-olefination of anilines
and N-heteroaromatic compounds 74 was expanded by Yu and
co-workers (Scheme 38a).*” The presence of a fluorine atom o to
the carbonyl group led to a conformational change and the
carbonyl group drifted away from the ortho-C-H bond. The
same o-fluoro substituted nitrile auxiliary was also applicable to
aniline derivatives for meta-C-H olefination 75 with diverse
activated alkenes. Li and co-workers in 2015 demonstrated
meta-selective olefination of phenylethylamines 76 by using 2-
cyanobenzoyl as the directing auxiliary (Scheme 38b).*”” The
same group later developed a carbamate-linked directing group
by incorporating CO, into a nitrile-based template for the Pd-
catalyzed meta-olefination of anilines.*”

Electrophilic attack on indoline moieties is more favourable
at the ortho and para positions, therefore meta-functionaliza-
tions of these substrates are extremely challenging. Yu and co-
workers reported meta-selective olefination of indolines 77 by
incorporating an electron-withdrawing sulfonyl bridge with an
appropriate nitrile auxiliary (Scheme 39).*? The MPAA N-Ac-Gly-
OH ligand-assisted meta-olefination yielding 78 proceeded
through a metalation deprotonation path and provided a selec-
tivity of >20 : 1 with good yields. Also, a series of N-heterocycles
were olefinated at the distal position using the sulfonyl bridged
template with a modified auxiliary.*”

meta-Olefination of long chain arenes and tethered alcohols
with very high regioselectivity was discovered by Xu, Jin and co-
workers using a 2-cyanophenol based template (Scheme 40a).*
The olefination reaction proceeded well in the presence of a Pd-
catalyst, MPAA ligand N-Ac-Gly-OH and a silver salt as the
oxidant. A series of substrates such as 3-phenylpropanols, 2-

phenoxyethanols, and 2-(phenylamino)ethanols including
0P 0,0
N"“DG Pd(OAc), (10 mol%) N pe DG ‘Bu
2 N-Ac-Gly-OH (20 mol% NC Bu
“%l e e WY
N AgOAc (3.0 equiv.) S R! MeO §
B HFIP, 55°C,24 h
77 (2.5 equiv.)
0.0 Me, 0,20 o H Os0
b 4 ~8C -
N “pg N” pe N" o
mMe
A~coBu P coqet
74% 75% 88%
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Scheme 39 meta-Selective olefination of indoline derivatives.
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Scheme 40 meta-C—H olefination of arenes across different linker
lengths.

72%, m:others = 15:1

dipeptide-derived substrates 79 were effectively olefinated
affording 80 in high yields and selectivity. In 2018, our group
developed a strongly coordinating pyrimidine-based directing
template for meta-functionalization of the substrate 81 which
differed widely in the linker chain length (up to 20 atoms)
(Scheme 40b).*** Different alkenes and arenes were tolerated
under the optimized reaction conditions.

meta-Olefination of relatively electron-poor benzoic acid
derivatives 82 was challenging and first reported by Li and co-
workers in 2016 using an N-nosyl-substituted amide bridged
template (Scheme 41a).* A range of benzoic acid derivatives
underwent meta-olefination to produce 83 in good yields and
selectivity. Use of molecular oxygen as a terminal oxidant in the
presence of a catalytic copper salt made the protocol more
convincing. Later, Yu group designed a conformationally more
flexible 2-(2-(methylamino)ethoxy)benzonitrile-based template
for the meta-olefination of benzoic acids (Scheme 41b).*” They
used an N-methylated amide having an additional ether linkage
for the elongation of the directing group and performed the
reaction with N-Ac-Val-OH as a ligand and AgOAc oxidant along
with an NaOTs additive. Mechanistic investigation revealed that
the reaction proceeded through a bimetallic Ag-Pd heterodimer
intermediate. KIE studies suggested that the C-H activation
step was the rate-limiting step.

In 2019, Yu and co-workers synthesized a bifunctional
template to accomplish Pd-catalysed meta-olefination of
phenols 84 in the presence of N-Ac-Gly-OH ligand (Scheme 42).>°
The synthesized olefinated product 85 underwent Ni-catalysed
ipso coupling of the C-O bond of the phenols with aryl

DG

(a) Pd(OAc), (10 mol%) Ns DG
2 N-Ac-Gly-OH (60-100 mol%) N
/ | * R R —_— R—/ I >
\ Cu(OAc), (0.2-1.0 equiv.) X A R1
(2.0 equiv.)  HFIP, 05,80 °C,24-48 h 83 R2 Ne

Me (b)Pd(OAC); (10 mol%)
o, N\/\O N-Ac-Val-OH (20 mol%)
F. N AgOAc (3.0 equiv.)
7 NaOTs (1.0 equiv.)
CO,Et Me CoFs
A co,et HFIP, 70 °C, 24 h

o 62% 50%, m:others =g5:15 ___21vene (2.5 equiv.)

Scheme 41 Directing group-assisted meta-C—H olefination of ben-
zoic acids.
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Scheme 42 Triazine linked template-assisted meta-olefination of
phenols.

boronic acid to yield 1,3-disubstituted arenes. Both steps of the
reaction could be performed in one pot.

Use of an acetal or a ketal linker for the meta-olefination of
1,2-diols 86 and aldehydes or ketones 88 was developed inde-
pendently by Kong and Ji group in 2019. Kong and co-workers
disclosed the Pd-catalysed meta-olefination of  3-
phenylpropane-1,2-diol 86 using the strongly coordinating
pyrimidine directing group to yield 87 (Scheme 43a).”** The
directing template cleaved up to some extent during the reac-
tion resulting in the mixture of products. Later, Xu, Jin and co-
workers used a combination of a Pd-catalyst and N-Ac-Gly-OH
ligand for the meta-olefination of electron-poor aromatic alde-
hydes and ketones 88 using an acetal and ketal linker (Scheme
43b).*** The reaction was performed in one pot with sequential
protection of carbonyl by a 1,2-diol-based nitrile template and
Pd-catalysed C-H olefination reaction to yield 89 followed by
removal of the template by a simple hydrolysis to access meta-
olefinated aldehydes or ketones.

In 2019, Li and co-workers first discovered the carboxylic
acid group as the directing auxiliary for meta-olefination
(Scheme 44).7> The reaction proceeded through the assistance of
the carboxylic acid group, which binds with Pd possibly through
k*-coordination mode instead of k' thus overriding ortho-C-H
activation. The reaction proceeded well with a series
a substituted arenes 90 and different olefins including styrenes
and delivered meta-olefinated products 91 in good yield and
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D6 (a) Pd(OAC), (10 mol%) DG
o _ N-AcGly-OH 20mol%)
+ R{\/\w %
Z AgF (3.0 equiv.)
R_\ l H Na,CO; (2.0 equiv.) / " Z )
86 (3.0 equiv.) HFIP, 100 °C, 24 h NN

0,
D
0

)—DG

O,
o
Me
=
Me 'CO,Et CFy P(O)(OEt), CFy Z ~CO,Me MeO

OMe
85%, m:others >99:1

CO,Et

78%, m:others >98:2 55%, m:others >94:6 55%, m: others >94:6

(b) 1. DG (1.1 equiv.), TSOH (10 mol% HO.
Me/H ]\
AgOAc (2.0 equiv.)

HFIP, 80 °C, 24 h

o} reflux, 12 h
2. Pd(OAc); (10 mol%)
Z 2 o. oM
;e L
88 (3.0 equiv.) oM
3. H,0 (1 mL), 80 °C
H_O H
/5\/\ CI\&/\ /5\/\ iy
MeO P~co,kt COEt  Me’ CO,Et M CO,Et

N-Ac-Gly-OH (20 mol%)
60%, m:others = 65:35 71%, m:others > 99:1 86%, m:others > 99:1 63%, m:others = 98:2

Scheme 43 Acetal or ketal linker-assisted meta-C—H olefination of
arene-tethered diols and aldehydes or ketones.
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Scheme 44 Carboxy group directed meta-C—H olefination of
alkylbenzenes.

selectivity. To verify that the Pd coordinates in k' mode in the
ortho-C-H activation, a directing group without the fluorine
substituent at the ortho-position was employed which afforded
good remote selectivity hence supporting the hypothesis. The
remote selectivity in this reaction could be rationalized as that
perhaps both proximal and meta-cyclopalladation isomers were
formed but the meta one was more susceptible towards func-
tionalization due to its weaker coordination.

Recently, Spivey, Cordier and co-workers presented a novel
N-methyl iminodiacetic acid (MIDA) boronate derivative as the
protecting cum directing group for the Pd-catalysed meta-
selective olefination of boronic acids 92 (Scheme 45).>* MIDA-
DG boronate could be easily accessed through condensation
with boronic acid and also can be removed under mild basic
conditions. The reaction tolerated a series of substituted phe-
nylboronic acids and activated olefins to give meta-olefinated
products 93 in moderate yield and selectivity. The catalytic
efficiency, selectivity and reaction range of this protocol needed
to be further improved as it provided path for several inacces-
sible boronic acid derivatives.

In recent times use of transient directing groups has
emerged as a powerful and attractive strategy in chemical
transformations as an alternative to covalently linked directing
auxiliaries. The first study on transient directing meta-C-H
olefination has been recently reported by our group, where an
imine served as the linker (Scheme 46).** We developed
a modified pyrimidine-based template linked through an imine
which served as the directing template for meta-olefination of
synthetically important biphenyl aldehydes 94 and amines 96.
In the case of biphenyl aldehyde, copper salt served as the
oxidant in the presence of a catalytic silver salt while in biphenyl
amine the silver salt was the sole oxidant. The MPAA ligand N-

R
5\ Pd(OAc), (20 mol%) B(DG)
N7 "0 R N-Ac-Phe-OH (40 mol%) 7
NC. + WP Rt > BE |
e AgOAc (1.75 equiv.) S A R
R HFIP, rt, 18 h A
" R’
92 (2.5 equiv.) 93
B(DG) B(DG) B(DG) B(DG)
7 ‘CO,Et Z SO,Ph Z CHO Z 'CONPh,
73%, m:p = 4:1 35%, m:p = 6:1 65%, m:p = 12:1 77%, m:p = 6:1

Scheme 45 meta-Olefination of aryl boronic acids directed by MIDA-
derived boronate ester.
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Scheme 46
olefination.

Imine as a transient-directing group for meta-C-H

formyl-Gly-OH was essential for the reaction and the imine
linkage hydrolysed in situ during acidic workup.

3.2. para-C(sp’)-H olefination

Electrophilic substitution reactions in benzene at ortho and
para positions are governed by the electronic nature of the
substituents present. However, regioselective functionaliza-
tions at the para-position are scarce and only a few reports are
available in the literature which are governed by the steric and
electronic nature of the substituent. Till 2015, no reports were
available which could address the issue on a striking scale for
highly selective para functionalization of arenes.

For the first time a concrete solution to address the para-
selectivity was reported by our group by extending the

. R
R pe (a) Pd(OAc);, (10 mol%)
N-Ac-Phe-OH (20 mol%)

R—/ | + R%‘/\R‘ ——— > Ry
X AgOAc (3.0 equiv.)
HFIP, 90 °C, 36 h
H RN
98 (2.0 equiv.) 99 R!
DG DG DG
F F
Y XN N
CO,Et CONMe, CO,Et
71%, p 8:1 0%, p. 9:1 48%, p:others= 16:1
° ° o pothers 17-membered metallacycle
Pr o O‘D
ipred (b) Pd(OAc), (10 mol%)
O,SI

G
CO,Et CHO
62%, p:others= 9:1 71%, p:others= >20:1

DG DG
(c) [Rh(COC)CI]; (5 mol%) O
CuCl, (2.0 equiv.) O O
TFA (2.0 equiv.)
V,05 (2.0 equiv.) X A
DCE, 120 °C,24 h

SO,Me CO,Et
48%, p:others= 15:1 64%, p:others= 5:1

o,DG
N-Ac-Gly-OH (20 mol%)
AgOAc (2.0 equiv.) O
DCE:TFE (3:1) O a
60°C,32h N S N
alkene (2.0 equiv.)

alkene (2.0 equiv.)

Scheme 47 para-Olefination of toluenes and phenols
a biphenyl director.

using
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application of template-based directing groups (Scheme 47a).5>*
The major apprehension in para-C-H functionalization is to
deliver the metal-catalyst towards the targeted C-H bond due its
distal location in the arene molecules. Also, a weakly coordi-
nating directing group is required for the site selective inter-
action of metal catalysts. Additionally, the entire catalytic cycle
has to proceed through a large macrocyclic cyclophane-like (16-
17 membered) transition state. To overcome these obstacles,
ajudicially engineered directing group, linker and its length are
required to reach the target C-H bond. As an initial approach to
satisfy all these requirements, a biphenyl template containing
the weakly coordinating cyano group was chosen. The hetero-
atom of the cyano group easily coordinates with the metal-
catalyst, while the biphenyl system regulates the chain length
of the macrocyclic assembly. After a series of optimizations, we
came up with a weakly coordinating nitrile-based biphenyl
template attached to the toluene ring through a silyl linker. The
substituent present on the silicon atom plays a prominent role
as it exerts the Thorpe-Ingold effect and pushes the directing
group towards the target position. With this directing template,
a series of toluene derivatives 98 were successfully olefinated
regioselectively at the para position in the presence of a Pd-
catalyst, N-Ac-Phe-OH ligand and silver oxidant in HFIP
solvent (Scheme 47). A diverse array of toluene derivatives
coupled with several activated olefins affording para-olefinated
products 99 in decent yield and good selectivity by overriding all
sorts of electronic and steric bias present in the substrate. A
series of a,B-unsaturated esters, sulfones, amides and acrylates
of vitamin E and cholesterol were used as olefin coupling
partners with appreciable para-selectivity. The directing auxil-
iary could be easily removed by simply treating with TBAF to
yield the para-olefinated toluene derivatives.

After the successful olefination of toluene derivatives, our
group extended the application of this directing template for
the para-olefination of phenol derivatives 100 by simply swap-
ping the oxygen and methylene group on both sides of the silyl
linker (Scheme 47b).>*” The reaction proceeded under almost
similar conditions, however the ligand N-Ac-Gly-OH was found
to be optimum in the solvent combination of DCE and TFE
(3 :1). The methodology was applicable for a wide range of
phenol derivatives and activated olefins and afforded olefinated
products in 81% yield with high regioselectivity (para/others,
10:1). A wide range of functional groups like amide, ester,
ketone, aldehyde and sulfonyl were well tolerated under the
optimized reaction conditions. Post-synthetic application of the
synthesized products was illustrated by constructing valuable
natural product derivatives such as ferulic acid, the anti-
inflammatory artepillin C, antimicrobial plicatin B and drupa-
nin in good yield.

In 2019, our group modified the existing biphenyl template
by introducing two OMe groups in the ring having a weakly
coordinating nitrile group. This modified template has a higher
electron density on the directing phenyl ring and is called the
second-generation template. The second-generation template
with higher electron density provided a new avenue in Rh-
catalysed distal C-H functionalization. Our group utilized this
second-generation template for the Rh-catalysed para-C-H-

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Scheme 48 Possible catalytic cycle for para C—H olefination.

olefination of toluenes 101 under ligand and metal oxidant free
conditions (Scheme 47¢).>** A variety of olefins were well toler-
ated with different toluene derivatives along with the o-
substituted one. Intermolecular isotope labelling experiments
were performed and a Py/Pp, value of 2.9 and ky/kp, value of 2.6
indicate that C-H bond activation is likely to be the rate-limiting
step. Kinetics experiments performed showed that the reaction
was first order with respect to the toluene substrate and zero
order with respect to the olefin. Furthermore, DFT calculations
suggested that C-H activation follows an electrophilic aromatic
substitution path rather than a concerted metalation-deproto-
nation pathway (Scheme 48) and coordination of the nitrile with
Rh stabilizes the C-H activation transition state. Computational
studies suggested that the incorporation of two methoxy groups
on the directing template activates the substrate towards C-H
bond cleavage by lowering the energy barrier.

3.3. Bifunctional-directed distal C(sp>)-H olefination

The directing group plays an important role in the site selective
activation of single C-H bonds. However, the use of these
directing groups is limited due to the C-H bond distance and
also due to the shape of the substrates. Also, incorporation of
covalently attached directing templates in molecules lacking
appropriate functional groups is not feasible. Therefore, to
come up with an approach not relying on covalent interaction to
reach the distal position is the need of the hour since many
medicinally important heterocycles lack functional groups to
tether templates covalently.

In this regard, Yu and co-workers in 2017 formulated
a bifunctional template capable of coordinating with two metal
centres to play two distinct roles simultaneously. For that
purpose they synthesized a bis-amide based backbone-template
where the sidearm holds the directing group. The bis-amide

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Scheme 49 Bifunctional site-selective C-H

olefination.

template assisted

chelate with a metal centre is responsible for substrate
binding and the sidearm directing group directs the Pd-catalyst
towards the specific remote C-H bond. After extensive screening
they found that a sulfonamide-based template (T) derived from
the sterically hindered 2,3-dimethyl-2,3-butanediamine was the
most effective and afforded the olefinated heterocycles 3-phenyl
pyridine 103 in decent yield and selectivity (Scheme 49).°® The
result obtained from the screening portrays the importance of
conformational constraints of the backbone for remote C-H
activation. In order to diversify the bimetallic catalysis, other
heterocycles like quinolines 104 were chosen for the site-
selective olefination reaction. However, the sulfonamide-based
template was found to be unproductive, which demanded
further optimization of templates. After screening of several
covalent templates, they found a nitrile-based template (T)
anchoring the first metal through tridentate coordination for
the effective olefination of quinolines to give the product 105 in
good yield and selectivity (Scheme 49).>* However, a quantitative
amount of template is required in the presence of palladium
acetate-catalyst and MPAA ligand N-Ac-Gly-OH.

Shortly after, a similar remote C-H olefination of small
heterocycles using a modified bifunctional template (T) was
reported by our group (Scheme 50).”” We synthesized
a symmetrical covalently attached nitrile-based tridentate

T (1.0 equiv.)

R
H Pd(OAc), (10 mol%) N O N—T—N O
108 N (o0 oquivy P 80°C, 36 h 105 N O CN ':e NC O

T (20 mol%) R!
Pd(acac), (30 mol%) %% H
N-Ac-Gly-OH (20 mol%) PN I P NH HN
AgBF, (1.0 equiv.) RZ—:K R T
(3.0 equiv.) Cu(OAc); (2.0 equiv.) i 103 ne c
HFIP, 110 °C, 30 h

102 + 2R

Scheme 50 C-H olefination of heterocycles with bi- and tridentate

templates.
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Scheme 51 C-5 selective olefination of thiazoles with a bifunctional
template.

template for the site-selective remote C-H olefination of
heterocycles 104 in improved yield and selectivity. A variety of
substituted quinolines and other heterocycles such as benzox-
azole and benzothiazole were employed under the reaction
conditions to afford products 105 in good yield and selectivity.
We further designed a nitrile-based bifunctional amide derived
from oxalic acid for the effective meta-olefination of 3-phenyl-
pyridine derivatives 102 in synthetically useful yield and selec-
tivity. Later, in 2019 our group utilized the same bifunctional
tridentate template (T), suitable for quinoline, for the C5
selective olefination of thiazole derivatives 106 in excellent yield
and selectivity (Scheme 51).* Admirable selectivity was
observed for mono-substituted or even unsubstituted thiazoles.
Diverse acrylates and electron-deficient styrenes were well
tolerated and provided the desired products 107 in good yield
and selectivity.

4. Non-directed C(sp?)—H olefination

Oxidative olefination of arenes was discovered by Fujiwara—
Moritani n 1967 using a stoichiometric amount of Pd(OAc), and
excess arenes. The major concerns in the non-directed
approach are controlling the regioselectivity, use of excess are-
nes and harsh reaction conditions. Recently, ligand-enabled
non-directed arene C-H olefination has become one of the
focused areas via oxidative C-H activation to overcome the
limitation of Fujiwara-Moritani reaction. The reaction mecha-
nism involved in general in the non-directed C-H activation is
the formation of a carbon-metal bond via concerted metal-
ation-deprotonation (CMD) where a basic ligand is involved in
the proton abstraction.

Yu and co-workers in 2009 reported the catalytic olefination
of electron-deficient arenes 108 in good yield using the sterically
demanding ligand 2,6-bis(2-ethylhexyl)pyridine which coordi-
nates with palladium in a 1 : 1 ratio (Scheme 52).%** Oxygen was

" Pd(OAc), (10 mol%) .
N L (20 mol%) N R N
R{j . PR RE P
Z Ac,0 (1.0 - 1.5 equiv.) Z N
solvent (1.0 equiv.) 0,,90°C, 24 h Bu” “Et Et u
108 109
| >IN\ CO,Et | SENCO,Et | <X P(O)(OEY), XCO,Et

= = Z

CFy CO,Et CF,
72%, mip (78/22) 52%, mip (81/19) 70%, mip (78/22) 7%

Scheme 52 Pd-catalysed olefination of arenes using 2,6-dialkylpyr-
idine ligand.
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used as an oxidant to re-oxidize Pd(0) to Pd(u) with the help of
the ligand. However, use of excess arenes (usually 20-30 equiv.)
exerts a serious drawback especially for substituted arenes. A
series of arenes with an electron-deficient group were olefinated
with activated alkenes preferably at the meta position to yield
109 in good selectivity even when the substrate had an ortho
directing functional group. A detailed theoretical study by
Zhang on the Pd-catalysed olefination of electron-poor arenes
concluded that the reaction follows a concerted metalation/
deprotonation (CMD) step.*®” The reaction proceeded through
a six-membered metallacycle transition state and the selective
meta-functionalization in the ortho-directing substrates can be
rationalized by the steric repulsion caused by the ancillary
pyridine type ligand as the major as well as the electronic effect.

A Rh-catalysed olefination of bromoarenes 110 with
substituted styrenes was demonstrated by Glorius and co-
workers to synthesize meta and para products 111 (Scheme
53).°¢ It was demonstrated that bromoarenes were an integral
part of the reaction serving as the terminal oxidant as well as
a catalyst modifier. In 2012, Sanford's group established a facile
oxidative olefination of arenes with a combination of a pyridine-
based ligand 3,5-dichloropyridine and Pd(OAc), in a 1:1
ratio.® This reaction was more efficient in terms of yield and
broader substrate scope and applicable to both electron rich
and deficient arenes.

In order to address the shortcomings of previous reports Yu
and co-workers demonstrated an arene limited (reagent quan-
tity) Fujiwara-Moritani oxidative olefination. They used
a bimetallic Rh(m)-complex as the catalyst and phosphene as
the ligand.®** The bimetallic Rh(m)-complex in combination
with a copper salt and V,05 was used for the mono-olefination
of electron-rich and neutral arenes in good yield. A1 : 1 ratio of
meta/para products were obtained for monosubstituted arenes
and B-selective olefination for 1,2-disubstituted arenes albeit
under harsh reaction conditions (140 °C). Duan and co-workers
in 2014 demonstrated a Pd-catalysed oxidative olefination of
arenes using the bidentate monoanionic nitrogen ligand 2-OH-
1,10-phenanthroline and catalytic Cu(OAc), along with oxygen
as the external oxidant.®"” The coordination of Pd-catalyst with
the bidentate monoanionic ligand enabled the C-H activation
reaction.

Fernandez-Ibanez and co-workers in 2017 synthesized a new
class of amino acid based bidentate S,0-ligands for Pd-catalysed
olefination of arenes 108 with better activity and selectivity than
the Pd/pyridine combinations (Scheme 54).** The late stage

N H PN [RNCP'Clal; (2.5 mol%) N
RE + Aar AgSbF (10 mol%) RT
_—
Cu(OA« 2.2 iv.
T u(OAc); (2.2 equiv.) T

solvent (1.0 equiv.) PivOH 9.1 equiv.)
110 140°C,21h 1M1
Br
L

B ‘Bu
S2N\_Ph P Ph
| N | /B\/ | S\ Ve
I ¢ O
Br Br Br
Br
39%

66%, mip (67/33) 52%, pI ' (63/37) 69%, mip (71/29)

Scheme 53 Rh-catalysed olefination of bromoarenes with styrene
derivatives.
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Scheme 54 S,0O-Ligand-promoted Pd-catalysed olefination of
arenes.

functionalization of complex molecules such as O-methyl-
estrone and naproxen derivative was also successfully applied.
An S,0-ligand was successfully utilized for the para-selective
olefination of anilines under mild conditions and with high
efficiency by the same group.®®” The observed selectivity was
solely due to the §,0-ligand.

Yu and co-workers in 2017 demonstrated arenes as the
limiting reagent in Pd-catalysed olefination of a diverse array of
electron-rich and electron-poor arenes 108 including hetero-
arenes and biomolecules (Scheme 55).%* The electron deficient
2-pyridone ligand was used which acted as the X-type of ligand
for palladium and also served as an internal base assisting the
cleavage of C-H bonds via the CMD mechanism. The regiose-
lectivity was dictated by both electronic and steric properties of
the arene. Predominantly, meta and para derivatives are
observed in most of the monosubstituted arenes.

In 2018, van Gemmeren and co-workers reported Pd-
catalysed arene limiting C-H olefination using two comple-
mentary ligands.®* They used N-Ac-Gly-OH in combination with
a 6-methylpyridine derivative both of which combine ina 1:1
fashion with each equivalent of the Pd-catalyst and performed
the olefination of a wide range of arenes with different olefins.
In the dual ligand assisted olefination N-acetyl amino acid
served as the internal base and also assisted in the CMD step. In
2020, Zhu and co-workers reported dual ligand enabled non-
directed Pd-catalysed olefination of aryl ethers with activated
alkenes as well as styrenes in good yields and moderate selec-
tivity.®® They used a combination of N-acetyl leucine and an §,0-
ligand 3-methyl-2-‘propyl-2-(phenylthio)acetic acid for better
efficiency.

5. Directed C(sp®)-H olefination

The C(sp®)-H bond shows the lowest reactivity and highest
thermodynamic stability, which makes its functionalization

Pd(OAc), (10 mol%)
L (30 mol%)

1

H
X
R—:(; + AR R—'\O/\/R | ~-CFs
q
=z L 2

AgOAc (3.0 equiv.)

(1.0 equiv.) (2.0 equiv.) HFIP, 100 °C, 24 h N OH
108
/\/COZEQ /\/COZ"BU -RR=CONH,, 72% [CF3  O--H._ *
R = COOH, 52% / \ /
R =CHO, 89% _ N"'/Pd\
R=CN, 55% BN

69% mp 77:23 68%, f:a=13.5:1 R = CgFs, 83%

CF3 IJ\
CF. X CF.

§ E

Scheme 55 2-Pyridone ligand-enabled Pd-catalysed olefination of
arenes.
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Scheme 56 Amide-directed Pd-catalysed olefination of B-C(sp®)-H
bonds.

more difficult yet attractive. In the past few decades, we wit-
nessed an incredible development in C(sp®)-H bond function-
alization using a directing group strategy as a powerful tool to
tackle stereo-, regio- and chemoselectivity. In this section, we
shall be discussing directing group assisted transition-metal
catalysed distal C(sp®)-H bond olefination reactions.

5.1. B-C(sp®)-H olefination

Yu and co-workers in 2010 successfully achieved B-C(sp’)-H
olefination of amides 112 using a Pd-catalyst and subsequent
aza-Michael addition to give the corresponding y-lactams 113
(Scheme 56).°° Along with Pd(OAc),, use of LiCl as an additive
and combination of Cu(OAc), and AgOAc in 1: 1 ratio as the
oxidant in DMF afforded high yields. The reaction was also
applied to effect olefination of cyclopropyl methylene C-H bond
as well as substrates containing an o-hydrogen atom. Only
cyclopropyl C-H bond was selectively olefinated in the presence
of an a-methyl group. A related mechanism has been suggested
where the initial amide directed C(sp®)-H insertion by Pd(i)
leads to a five membered alkyl-palladium intermediate which
underwent carbopalladation with olefin. Similarly, Yu and co-
workers in 2014 carried out a B-C(sp*)-H olefination of pro-
tected amino acid alanine 114 with the help of a Pd-catalyst and
quinoline derived ligand. The olefinated intermediate under-
went intramolecular cyclisation to afford 115 (Scheme 57).%” The
reaction delivered an excellent level of diastereoselectivity with
respect to the a-centre. The reaction proceeded with an excel-
lent level of diastereoselectivity with respect to the starting
configuration at the a-centre. With the utilization of literature
reports the lactam formed could be transformed into a B-olefi-
nated o-amino acid with excellent enantiomeric excess (95%).
In 2011, Sanford and co-workers described a Pd-catalysed
pyridine directed olefination of unactivated C(sp®)-H bonds
(116) which shaped a convenient route to a 6,5-N-fused bicyclic
core 117 (Scheme 58).°® After screening of several reaction
conditions they found that the use of 10 mol% NaOAc, 10 mol%
Pd(MeCN),(BF,), and 3 mol% H,[PMo0;,VO,] in AcOH in air

NPhth
H A conmar

Pd(OAc), (10 mol%) NPhth [

+ P coper L (20 mol%), TFA o §
- iv.) Eto,C N
= 4-| i =
Arg = 4-(CF3)CF, (1.5 equiv.) toluene, 48 h, 50 °C Are N7 07 “Me

Ag,CO; (2.0 equiv.)
114 93% 115

Scheme 57 Pd-catalysed C(sp®)-H olefination of the amino acid
alanine.
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Scheme 58 Pd-catalysed olefination of B-C(sp®)—H bonds.

was optimal. The substrate with two types of C-H bonds, i.e. 1°
and 2°, underwent C-C coupling with >20 : 1 selectivity for 1°
over 2° C(sp®)-H bonds. Nevertheless, a 2° C(sp®)-H bond of the
cyclopropane ring could also be functionalized to afford tricy-
clic products. A pyrazole directed C(sp’)-H olefination of the
inherent alkyl group was reported by Yu and co-workers in
2016.* For the first time, they reported the use of an MPAA
ligand in a palladium-catalysed C(sp*)-H olefination reaction.
The olefination reaction was compatible only with the tertiary
alkyl group, however, diverse functional groups attached to the
tertiary alkyl group as well as pyrazole ring were well tolerated
under the given reaction conditions.

Yu group in 2018 established an inherent acid functionality
as the directing group for B-C(sp®)-H olefination without an
auxiliary. They synthesized an MPAA ligand, N-Ac-protected
aminoethyl phenyl thioether to carry out Pd(u)-catalysed B-
C(sp®)-H olefination of free carboxylic acids 118 (Scheme 59).7
Subsequent lactonization of the olefinated product with acid
yielded synthetically important y-lactones 119. It also limited
the process towards being exclusively mono-selective in the
presence of multiple B-C(sp*)-H bonds. Substitution of other o-
donors in place of the sulfur atom led to a drop in the yield
significantly, highlighting the importance of PhS. All the
substrates provided the desired y-lactones in good to excellent
yield when coupled with activated alkenes. N-Arylated or N-
alkylated maleimides were also found to be suitable coupling
partners and afforded spirocyclic pyrrolidines.

To improve the generality of the olefination reaction with
a variety of substrates Yu and co-workers developed a Pd(u)-
catalysed B-C(sp®)-H olefination of weakly coordinating
intrinsic amides 120 (Scheme 60).”* They utilized the weakly
coordinating oxygen of amides as the directing group using
pyridine-3-sulfonic acid based ligands. The observed olefination
of the C(sp’)-H bond was possible only in the presence of

o Pd(TFA), (10 mol%) )

. L (20 mol%) .
R OH + Z R - R o
RZ NaH,P0,.7H,0 (1.0 equiv.) R?
H Ag,CO; (2.0 equiv.) R3

)

NHAc
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N R+ ZCOR—— 7 5 o4 N
R? R AgOAc (2.0-3.0 equiv.) N 0---Pd—o0,
M
R' = alkyl HFIP, 70-80 °C b R R RLN | '\H (})7/ e
R2 = Hialkyl/aryl (4.0 equiv.) 2436 h " R
120 RZ R A
CO,Et CO,Et cozst COzEt
Z L
i o 7 E'°2° 9 CF, SOzH
Me\ Me\ N 3
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70%, mono:di 20:1 56% 57%, dr 1:1 69%, mono:di 8:1

Scheme 60 Carbonyl coordination of native amides in B-C(sp®)—H
olefination.

pyridine sulfonic acid ligands which indicated that the non-
coordinating sulfonate group generates a highly electrophilic
catalyst. For the viability of such transformations, there would
be a charge separation between Pd and the ligand, which was
supported by the complete inefficiency of pyridine-2-sulfonic
acid. Apart from the diverse activated olefins, for the first time
ethenesulfonyl fluoride, which is used in sulfur(vi) fluoride
exchange (SuFEXx) click reactions, was also utilized for the ole-
fination reaction of the C(sp®)-H bond.

Complementary to C(sp’)-H olefination with terminal
olefins under oxidative conditions, C(sp®)-H olefination could
also be accomplished with vinyl halides without the require-
ments of any external oxidant. Such a Heck type reaction with
C(sp*)-H bonds proceeds through oxidative addition followed
by reductive elimination involving PdII/PdIV akin to the PdII/
PdO intermediate for terminal olefins. In 2014, Chen and co-
workers developed a stereo-retentive installation of multi-
substituted olefins via N-quinolyl carboxamide-directed olefi-
nation of the B-C(sp®)-H of alanine amino acid 122 with alkenyl
iodide (Scheme 61).” This strategy provided a path for the

o
o R Pd(OAc), (10mol%)  ppon
PhthN, .Q AgOAC/AgTFA (3.0 equiv.) ¢ “NHQ |Q=
’ N Y —m—}4—M R? 2
H R 5 TFA (2.0 equiv.) % ‘
H RA dioxane/TCE:H,0 123 | " Ny
122 (2.0 equiv.) rt165°C, 24 h R? R
o
phtnN, L a PhenN, K Q PhthN, K| Q PhthN, N2
H H H H
| | Ph CO,Me
85% ~CO,Bn 7% ~082 90% “Co,Me 68%

Scheme 61 Stereo-retentive olefination of the B-C(sp®)—H bond of
alanine with vinyl iodides.
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Scheme 59 Ligand-enabled B-C(sp®)-
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H olefination of free carboxylic
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Scheme 62 Pd-catalysed enantioselective C—H alkenylation of iso-
butyric acid.
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Scheme 63 Pd-catalysed B-Ci(sp’)-

bromides.

H alkenylation with alkenyl

synthesis of a wide range of exciting B-olefinated a-amino acids
123.

Yu and co-workers in 2017 demonstrated a Pd-catalysed
enantioselective B-C(sp®)-H olefination reaction of iso-butyric
acid derived substrates 124 (Scheme 62).” The transformation
provided a genuine route for the synthesis of some useful
building blocks 125 with an enantioenriched a-chiral centre.
Formation of a Pd-C-H intermediate was proposed, where the
N-acetyl group of the coordinating nitrogen is directed towards
the top face of the Pd square plane due to steric repulsion from
the chiral centre on the side chain. There was a mutual rela-
tionship between the two stereocentres of the ligand as
complete loss of enantioselectivity was observed when the
absolute stereochemistry of one of the chiral centres was
reversed. Furthermore, the 4-benzyl group of the oxazoline ring
covers the top face of the intermediate. These combined steric
interactions reinforced the orientation of the a-methyl group,
thereby resulting in stereoselective cleavage of the C(sp’)-H
bond.

Later, Shi and co-workers developed 2-picolinamide as a new
directing group for the Pd-catalysed B-C(sp*)-H alkenylation of
cyclic carboxylic acids 126 with alkenyl bromides (Scheme 63).7
Interestingly, olefination reaction took place only at the
secondary C(sp®)-H bond instead of primary, which was in
contrast to the arylation reaction on the same substrate. A wide
range of alkenyl bromides were tolerated under the reaction
conditions and provided the desired 127 in good yield and
excellent distereoselectivity (>20 : 1).

Enantioselective olefination of the C(sp®)-H bond of cyclo-
butyl carboxylic amides 128 was reported by Yu's group in 2018.
The chiral mono-N-protected aminomethyl oxazoline (MPAO)

I Pd(MeCN),Cl, (10 mol%) o Me_ o Me
R L (15 mol%) GRS
_ > NHA,
NHAG 4 ! Thgsc0, 20 squiv) bl <5< 1 m
\ CHCI,, 60 °C, 48 h — AcHN™' N Me
(3.0 equiv.)  Arr=4-CF3CeHy 129R
i ¥
R = H, 48%, 96:4 er AgO, e \'
R = 4-Me, 45%, 97:3 er >—N N °

R =4-F, 51%,97:3 er

R = 3-OMe, 43%, 96.5:3.5 er
R = 3-Br, 58%, 96:4 er

R = 2-Me, 45%, 96:4 er

R = 2-CF3, 65%, 97:3 er

Transition state
O Pipercyclobutanamide A

Scheme 64
ring.

Enantioselective C(sp®)—H olefination of the cyclobutyl
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ligand was used to obtain the desired products 129 in
a moderate yield with good enantioselectivity (Scheme 64).7>*
The methodology was applied to synthesize diverse chiral
cyclobutanes from simple monosubstituted cyclobutanes via
sequential arylation and olefination. The precoordinated
palladium acted as the active Pd(n) species which coordinated
with amide and thus an enantio-determining C(sp*)-H metal-
ation took place creating a chiral Pd(u) intermediate. The fore-
most utilization of C(sp®)-H olefination in the synthesis of the
natural product pipercyclobutanamide A was reported by Baran
and co-workers in 2015 (Scheme 64).”*” They carried out an
aminoquinoline directed Pd-catalysed alkenylation of an unac-
tivated cyclobutane ring with alkenyl iodide. The trans-
formation showed a glimmer of hope for the application of
C(sp®)-H olefination in natural products and synthesis of their
derivatives.

The first Ni-catalysed olefination of the B-C(sp*)-H bond with
alkenyl iodide was reported by Shi and co-workers in 2015 by
using aminoquinoline as the bidentate directing group (Scheme
65).”® The catalytic system employed in the transformation was
an air stable Ni(acac),-catalyst and highly efficient BINOL
ligand. A wide range of alkenyl iodides and carboxamides 130
bearing an o-quaternary centre were compatible and provided
products 131 in good yield and selectivity. In the case of car-
boxamides having a cyclic system, olefination took place only at
the primary C(sp®)-H bond which was in contrast to the Pd-
catalysed olefination reaction.

5.2. y-C(sp®)-H olefination

After the successful B-C(sp®)-H olefination reaction, y-C(sp)-H
bond olefination was reported by Yu and co-workers in 2014 in
order to generate a B-quaternary centre (Scheme 66).”” They
achieved y-C(sp®)-H olefination by employing a quinoline

[o] Ni(acac);, (10 mol%) o

1 1
R N2 I BINOL (40 mol%) R N,Q Q
R? H + AT R? H .
" Li,COj3 (2.0 equiv.) py i B
KTFA (2.0 equiv.) | N~
(2.0 equiv.) DMSO, N, 140 °C, 8 h

Scheme 65 Ni-catalysed B-C(sp*)—H alkenylation with alkenyl iodide.
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NArg NAre oo NAre
CO,Et

R? ~H
R')C + AR
CONHAr;

ArF = 4- cracsr,,
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0,, CgH5CF3, 120 °C

K,HPO, (1.1 equiv.)
R3
Me,
NAre NArg
CO,Et 'CO,Et

) NaHCO; (2.0 equiv.),
87% 51%, dr = 55/45 51%, dr = 52/48 68"/ 70% Ph

Scheme 66 Ligand-enabled construction of B-quaternary carbon
centres.
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based tricyclic ligand and a weakly coordinating amide direct-
ing group 132 with a Pd-catalyst. The motive behind the use of
quinoline based ligands containing a 2-alkoxy motif was that
the lone pairs of oxygen constrained themselves to a plane
parallel to the m-system of the quinoline ring. This resulted in
higher electron density on the ligand which influenced the
reactivity of the Pd(u)-catalyst. After extensive optimization, use
of 10 mol% TEMPO as a co-oxidant in oxygen enhanced the
yield of the product 133 significantly.

In 2016, Yu and co-workers developed another excellent
approach for Pd(u)-catalysed y-C(sp®)-H olefination of Tf- and
Ns-protected amines. The olefinated intermediate underwent
subsequent aza-Wacker oxidative cyclisation or conjugate
addition to harvest a variety of C2-alkylated pyrrolidines.” They
figured out three different classes of pyridine and quinoline
based ligands to match the requirements for C(sp®)-H olefina-
tion of different classes of amines depicting a sporadic example
of ligand enabled C(sp’)-H olefination. Interestingly, amino
acids 134 containing both y-methyl and y-methylene C(sp*)-H
bond, preferentially y-methyl C(sp®)-H bond, were olefinated to
135 (Scheme 67). For a-amino acids the electron-deficient
ligand 3,4-bis(trifluoromethyl)pyridine was effective to achieve
the transformation. 3-Phenylquinoline was found suitable for
the Tf-protected alkyl amines 136 including B-amino alcohols
and afforded the desired products 137 in good yield (Scheme
67). The applicability of the strategy was further enhanced by
the use of a common protecting group 2-nitrobenzenesulfonyl
(Ns) in 138 instead of Tf with a different ligand phenanthridine
(Scheme 67).

In 2017, our group developed a protocol for the Pd-catalysed
y-C(sp®)-H olefination of aliphatic acids 140 with activated
olefins using 8-aminoquinoline as the directing group (Scheme
68).” The y-C(sp*)-H olefination with acrylates occurred in the
presence of a quinoline based ligand 4,4’-di-tert-butyl-2,2’-
bipyridine (DTBD) along with Ag salt oxidant and Na,COj; base.
A variety of acrylates and acid derivatives provided the desired
products 141 in good yield. Vinyl iodides were also equally
compatible under the reaction conditions for the y-C(sp®)-H
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Scheme 67 y-C(sp®)-h olefination of Tf and Ns-protected a-amino
acids and alkyl amine.

2754 | Chem. Sci., 2021, 12, 2735-2759

View Article Online

Review
o [¢]
a Pd(OAc); (10 mol%) Q ‘Bu
. COR —mM—————— \
R Ag,CO; (5.0 equiv.) R! |
S 2 2 ‘Bu
R Na,CO; (2.0 equiv.) Fls NS
N o

(4.0 equiv) dioxane, 24 h, 140 °C 141 cozk N A

Scheme 68 Pd-catalysed y—C(sp3)—H olefination with activated
alkenes.

62% 61 %

o
MEaAD
Pd'--N_~
R? :
H

Catalytic cycle

uo,llEAg;av
H-2

Ra
o
Z_—Z
.
\_/

fin
o\:\“ 2600
Pd“»—N Z
P2 ’\Ra

Scheme 69 Proposed mechanism for Pd-catalysed y-C(sp*)—H
olefination.

olefination of protected amino acids, however no ligands and
external oxidants were required. This transformation occurred
through the aminoquinoline-directed formation of a six-
membered palladacycle intermediate. The olefin coordination
followed by the migratory insertion of activated olefin and B-
hydride elimination resulted in the final product and Pd(0),
which was re-oxidized to Pd(u) with Ag(i) salt (Scheme 69).

In 2015, Gaunt and co-workers reported a Pd-catalysed -
C(sp*)-H olefination of amino alcohols 142 followed by intra-
molecular aza-Michael addition to afford pyrrolidine moieties
143 in good yields (Scheme 70).*° This transformation was
achieved by the temporary conversion of the catalytically

H-bond locks
amine orientation

Pd(OAc); (10 mol%)
AgOAc (3.0 equiv.)

Q

’ Me

M + 2R L|3P0. (3.0 equiv.) \ °=<
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o 7&_ 03\

L il R
N Me OTBS
RO,C. RO,C.

C-H bond

ideally positioned

R =TFE, 65% R= SOzPh 7% R =TFE, 73%

Scheme 70 Pd-catalysed y-C(sp®)—H olefination of primary amino
alcohols.
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Scheme 71 Ligand induced y-C(sp®)—H olefination of aliphatic
amines.

incompetent primary amino alcohol to a hindered secondary
amine. The sterically hindered secondary amine was capable of
promoting Pd-catalysed C-H activation reaction. The y-C(sp®)-
H olefination reaction became feasible due to H-bonding
between the catalyst and amine. This led to the intensive
interaction of substrates around Pd and orientation of the
aliphatic amine substituent in a perfect geometry needed for
C-H activation. Later, Gaunt's group achieved a ligand assisted
Pd-catalysed y-C(sp®)-H olefination of aliphatic amines 144
guided by the free (NH)-amine (Scheme 71).** A cyclopalladated
five-membered ring formed, which allowed olefin insertion and
aza-Michael cyclisation leading to pyrrolidine moieties 145 in
good yields and excellent regio-and diastereoselectivity. They
observed that the amino acid derived ligand strongly influences
the C-H activation step for aliphatic amines containing the
competitive sites of reactivity. By making the cyclopalladation
step reversible, the ligand enables a productive five-membered
cyclopalladation pathway.

Gemmeren's group reported ligand assisted Pd-catalysed -
C(sp®)-H olefination of free carboxylic acids 146 without
incorporating any exogenous directing group. The alkene
intermediate followed an in situ intramolecular Michael addi-
tion to provide d-lactones 147 in good yields (Scheme 72).>*
Simultaneously, our group also demonstrated y-C(sp*)-H ole-
fination of free aliphatic acids 146 under similar reaction
conditions except the use of N-Ac-L-val-OH ligand instead of N-
Ac-B-alanine (Scheme 72).%2> Both 3-lactones and e-lactones 147
were formed depending upon the olefin coupling partners. Six
membered d-lactones were formed when coupled with acrylates,
ketones, nitriles and sulfones while e-lactones resulted when
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on + PR T S o e
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R' O Na,HPO, (1.0 equiv. R
R’>|\/|j\ + g5 o [ N-R* 2HPO, (1.0 equiv.) ) R
Me OH Ag,CO; (2.0 equiv.) R
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Scheme 72 Ligand-enabled y-C(sp*)—H olefination of free carboxylic
acids.
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Scheme 73 LX-type directing group-assisted C—H olefination of
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Scheme 74 Pd-catalysed radical relay Heck reaction.

coupled with N-substituted maleimides. It was worth noting
that acids containing only a quaternary centre at the B-position
were compatible which signify the Thorpe-Ingold effect.
Mechanistic investigations suggested that the y-C(sp*)-H bond
cleavage was the rate-determining step in the transformation.

Recently, Pd-catalysed y-C(sp®)-H olefination of weakly
coordinating ketone derivatives 148 was reported by Yu and co-
workers. They used a combination of mono-N-protected amino
acid, electron-deficient 2-pyridone ligand and modified imino-
amide L, X-type directing group (DG) for the purpose (Scheme
73).** The protocol has a wide scope of applicability and
substituents on both ketones and olefins were well tolerated
providing products 149 in moderate to good yield.

6. Miscellaneous

In 2019, Gevorgyan reported the unusual Pd-catalysed site-
selective B-, y- and 8-C(sp®)-H olefination of alcohols 150 via
radical relay Heck reaction under visible light at room temper-
ature (Scheme 74).** The transformation took place at the
sterically demanding site resulting in the formation of
a quaternary carbon centre in the presence of Xantphos ligand.
The strategy was compatible with a variety of alcohols and olefin
substrates including styrenes and afforded the corresponding
alkenylated products 151 in moderate to good yield. In
substrates containing the competitive C(sp®)-H site (i.e. B- vs. v-
and v- vs. 3-), y-C(sp’)-H olefination took place preferentially
due to the higher preference of 1,6-HAT (hydrogen atom
transfer) for the Si auxiliary.

7. Conclusion and outlook

The Fujiwara-Moritani reaction opened a new avenue in the
synthesis of olefinated compounds with excellent efficiency,
economy and environmental benignity by the direct coupling of

Chem. Sci., 2021, 12, 2735-2759 | 2755


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0sc05555g

Open Access Article. Published on 29 January 2021. Downloaded on 11/1/2025 1:36:57 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

C-H bonds. As discussed in the review, the last few decades of
research demonstrated that irrespective of the nature of the
C-H bond, transition-metal catalysts such as Pd, Rh, Ru, Ni, Co,
and Ir made olefination reaction efficient and regioselective.
Regioselectivity in the olefination reaction (sp> & sp®) can be
achieved by designing strongly as well as weakly coordinating
directing groups along with the judiciary usage of a suitable
ligand. Also, selective access of meta- and para-C-H bond was
achieved by anchoring the covalently linked directing group
which could form a cyclophane-like macrocyclic transition
state. Very recently, researchers devised catalytic systems that
enable nondirected C-H olefination reaction under arene
limited conditions with broad substrate scope and improved
selectivity. Site specific olefination in many medicinally
important small heterocycles devoid of functional group to
tether a template covalently can be achieved by designing
bifunctional templates coordinated with two metal centres.
Recent advancement in the asymmetric C-H activation resulted
in an enantioselective C-H olefination reaction to access axially
chiral biaryl compounds in a single step and atom economic
way.

Despite these advances, oxidative C-H olefination reactions
still face a number of challenges. For example, low regiose-
lectivity is one of the major concerns. In some cases, this issue
was addressed by the installation of the directing group. The
poor selectivity in non-directed and distal C-H olefination
limits its use in the bulk. Considering the practical importance
of atom and step economical C-H bond olefination there are
still many research areas left to be explored for the effective C-H
olefination. Development of new traceless directing groups for
the utilization of base metals such as Co, Ni, Cu and Fe under
milder reaction conditions is one of the areas to be explored in
the near future. New directions, such as use of frustrated Lewis
ion pairs or acid-base pairs, are still unknown for remote sp> &
sp® C-H bond olefination reaction. Often C-H olefination
reaction requires high temperature which resulted in poor
regio-selection leading to multiple site functionalization.
Therefore, merger of metal/photoredox catalysis generally
enabled the reaction to take place at room temperature
ensuring higher regioselectivity. Another aspect of photoredox
catalysis is that it avoids use of super-stoichiometric metal salts
making the process more economical and environmentally
benign. There is plenty of scope in photoredox C-H olefination
reactions which remains to be explored especially for distal sp*
& sp® C-H bonds. Recent development in the artificial metal-
loenzyme catalyzed asymmetric C-H functionalization opens
a new avenue to be investigated for asymmetric C-H olefination
reactions. Success in artificial metalloenzyme catalyzed asym-
metric C-H olefination reactions will help to mimic the natural
metalloenzyme and in vivo C-H olefination could be utilized for
targeted drug delivery. Also, C-H olefination reaction of DNA
encoding can lead to the formation of a DNA encoded library.
Therefore, to find more applications in natural product
synthesis, drug discovery and agrochemicals, further improve-
ment in the C-H bond olefination is expected. To address these
inadequacies, development of effective templates, catalysts,
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ligands and new approaches are required with the detailed
understanding of the olefination mechanism.
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