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cessibility score (RAscore) – rapid
machine learned synthesizability classification from
AI driven retrosynthetic planning†

Amol Thakkar, *ab Veronika Chadimová, a Esben Jannik Bjerrum, a

Ola Engkvist a and Jean-Louis Reymond *b

Computer aided synthesis planning (CASP) is part of a suite of artificial intelligence (AI) based tools that

are able to propose synthesis routes to a wide range of compounds. However, at present they are too

slow to be used to screen the synthetic feasibility of millions of generated or enumerated compounds

before identification of potential bioactivity by virtual screening (VS) workflows. Herein we report

a machine learning (ML) based method capable of classifying whether a synthetic route can be

identified for a particular compound or not by the CASP tool AiZynthFinder. The resulting ML models

return a retrosynthetic accessibility score (RAscore) of any molecule of interest, and computes at least

4500 times faster than retrosynthetic analysis performed by the underlying CASP tool. The RAscore

should be useful for pre-screening millions of virtual molecules from enumerated databases or

generative models for synthetic accessibility and produce higher quality databases for virtual screening

of biological activity.
Introduction

Articial intelligence (AI) in chemical discovery has been
driving improvements in the tools available to the chemical
community. This has occurred primarily in the areas of de novo
generation of new chemical entities (NCE),1,2 toxicology/bioac-
tivity,3 and computer aided synthesis planning (CASP).4,5 The
question as to which molecule to make and how to make it, is at
the center of chemical discovery programs across academia and
a range of industries, ranging from agrochemical to pharma-
ceutical.6 Typically virtual screening (VS) workows have been
used to decide which compounds to make, starting from
generated, enumerated, commercial, or public datasets which
are then ltered using a variety of statistical and physics based
modelling techniques until the search space is rened
(Fig. 1).7–10 The question and decision of which and how tomake
a given set of compounds is le to a team of chemists at the end
of the VS workow, prior to synthesis in the laboratory. To aid
this ltering process a variety of computational tools which take
synthesizability considerations into account have been
employed over the last two decades.11–13
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CASP has emerged as a method by which compounds can be
ltered in the VS workow, and during optimization cycles
throughout the generative modelling process. Several recent
CASP tools have been developed which may be used for these
purposes, including but not limited to: Synthia (formerly
Chematica),14 ICSYNTH,15 ASKCOS,5 AiZynthFinder,16 and IBM
RXN.17 These can be used at two potential stages of the gener-
ation process, either to bias the generation process or as a post
hoc lter aer the molecules have been generated.18 Given
a target compound, CASP can predict each step of the synthesis
pathway towards commercially available building blocks. This
makes it suitable for the in silico ltering of large compound
libraries, and has been demonstrated by Gao and Coley for the
case of generated compounds.18 However, despite the vast
amount of progress that has contributed to making the
prediction of full synthetic routes computationally trac-
table,6,12,19,20 to the extent that some predictions may be made
within a minute.5,6 The scale at which predictions must be
conducted for large compound libraries consisting of several
million or even billions of compounds can still be limiting.

To tackle the challenge of screening large compound
libraries with synthesizability considerations, existing scores
include the synthetic accessibility score (SAscore), synthetic
complexity score (SCscore), and synthetic Bayesian accessibility
(SYBA).16,21–23 The SAscore and SYBA are estimations of synthetic
feasibility based on the occurrence of molecular fragments in
public databases, whereas SCscore is learned from a reaction
corpus, with the underlying assumption that products are more
complex than their constituent reactants.
Chem. Sci., 2021, 12, 3339–3349 | 3339
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Fig. 1 Example of a virtual screening (VS) workflow. The synthesis of compounds is typically considered at the end of the workflow as a final
selection criteria, and it is at this point CASP is also used to filter compound libraries to synthesizable compounds. RAscore allows for pre-
screening of compounds that may be synthetically accessible by CASP enabling use earlier in the VS workflow (green).
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Herein, we propose the retrosynthetic accessibility score
(RAscore) that enables rapid estimation of synthetic feasibility as
determined from the predictions of CASP, in this case AiZynth-
Finder.16 We investigate a machine learning classier for retro-
synthetic accessibility (RA) assessment called RAscore, trained on
the outcomes generated fromAiZynthFinder, whichwehave shown
can increase the speed at which synthetic accessibility can be
estimated, and separate compounds for which retrosynthetic
routes can be found by AiZynthFinder. This is an improvement that
adds value to existing synthesis scores, and when used in combi-
nation with the previous scores, the RAscore should enable pre-
screening of compounds that can be later subjected to full retro-
synthetic analysis. Thus, this enables CASP to be used at earlier
stages of a VS workow or during the generativemodelling process.

We further emphasize that the RAscore may be retrained on
data generated from any CASP tool. Therefore, the score will
serve to reect improvements in the continuously changing
synthesis planning technology landscape, thereby overcoming
current limitations, and can be customized to the specic needs
of a project or user. The models and training protocols have
therefore been made available for public use: https://
github.com/reymond-group/RAscore.

Methods
AiZynthFinder – a tool for computer aided synthesis planning

AiZynthFinder is a template-based retrosynthetic planning tool
based on the methodology of Segler and Waller.4,16 It consists of
a neural network policy, which determines which reaction to
use at a given retrosynthetic step, with Monte-Carlo tree search,
as reported in our previous studies.24 The code, data, and
models are open source and available to the public: https://
github.com/MolecularAI/AiZynthFinder. The reaction trans-
forms have been extracted from the US patent office extracts
(USPTO) and used to train the model by which retrosynthetic
expansion was conducted.25 Models on Reaxys and proprietary
3340 | Chem. Sci., 2021, 12, 3339–3349
datasets have been examined in our previous studies, but have
been omitted in this study due to their proprietary nature.24

These can equally be used in place of the USPTO policy for those
who have access to the data, and the extraction and training
protocols can be found in the repository linked above.

AiZynthFinder considers retrosynthetic routes to be solved if
the precursors or building blocks are commercially available.
Therefore, as stopping criteria we use the ACD catalogue,26

Enamine building block set,27 and AstraZeneca internal data-
base. These are available from the respective vendors with the
exception of the AstraZeneca internal catalogue. In place of the
vendors mentioned here, the AiZynthFinder GitHub repository
contains a set of compounds extracted from the ZINC data-
base,28 as highlighted in our previous work.16

The score is inherently limited by the underlying CASP tool,
however retraining of the RAscore is possible following the
procedures outlined herein. Thus, the score can be customized
for individual projects and users, as well as kept up to date with
developments in synthesis planning technology. We emphasize
that any synthesis planning tool should be able to be used for
these purposes.
Retrosynthesis prediction for training set generation

Training and test datasets were generated by randomly
sampling 200 000 compounds from ChEMBL,29 as a reference
set, and 100 000 compounds each from GDBChEMBL and
GDBMedChem, to resemble compounds that would usually be
out with the applicability domain of CASP.30,31 The compounds
were subsequently subjected to retrosynthetic analysis using
AiZynthFinder, and labelled as solved or unsolved. The time
limit to search for retrosynthetic routes was set as 3 minutes per
target compound, with a maximum of seven steps, a maximum
of two hundred iterations, and expansion of y actions at each
stage of the search as determined by the policy network up to
a cumulative cutoff threshold of 0.995.
© 2021 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0sc05401a


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
Ja

nu
ar

y 
20

21
. D

ow
nl

oa
de

d 
on

 2
/8

/2
02

6 
1:

31
:5

7 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Machine learning classiers for estimation of retrosynthetic
accessibility

Estimation of retrosynthetic accessibility (RA) was framed as
a binary classication problem, as the goal of the study was not
to score complexity but rather identify with rapid approximation
whether a compound could be synthesized or not by CASP, for
which we use AiZynthFinder in this study. We trained a series of
classiers on the retrosynthetic predictions of AiZynthFinder
using the label generation method stated previously. The trained
classier predicts whether or not a given compound is synthet-
ically accessible as found by AiZynthFinder.

We examined the following classication algorithms: (a)
a feed forward neural network classier, (b) XGBoost classier,
and (c) random forest classier. For each algorithm 2048
dimensional counted extended connectivity ngerprints were
used with a radius set to 3 (ECFP6), and ECFP6 counts with
features as generated by RDKit.32,33 In total six different models
were trained for each dataset, ChEMBL, GDBChEMBL, and
GDBMedChem. SAscore, SCscore, and SYBA are continuous
scores for complexity, thus we trained a classier for each score
for comparative purposes, where the score was used as the sole
descriptor. For the score-based classiers we used a feed forward
neural network and logistic regression. The scores used as
descriptors were calculated using RDKit and the models pub-
lished by the authors of the corresponding publications.21–23,33

Scikit-Learn was used to train the random forest model,34

XGBoost for the XGB classier, and Keras with Tensorow for
the feed forward neural networks.35,36 In each case the models
where wrapped within an objective function using the Optuna
framework for hyperparameter optimisation.37 All models with
the exception of the feed neural network were optimized using
a ve-fold cross validation. The framework used to train the
classiers and models are available at https://github.com/
reymond-group/RAscore, and can be used for any binary clas-
sication problem.

Each model was optimized with the Optuna hyperparameter
optimization framework to nd the optimal parameter set.37 In
the case of the feed forward neural network, we treated the
number of layers, the size of the layers, the activation function,
the dropout rate, and the learning rate as hyperparameters, to
nd the optimal architecture within the bounds of the starting
criterion as given in the ESI.†

There was no overlap of compounds between training, vali-
dation, and test sets. This was determined by computing the
InChI-keys of the compounds in the two sets and using the
Python built-in set methods to nd the intersection.38 We did
not check whether a compound was present in the training data
used to train AiZynthFinder, however this is likely not to inu-
ence the performance of multi-step retrosynthesis, as the reac-
tion datasets only consider single steps and is supported by our
previous studies.24
Fig. 2 Illustrates the computation of the average linkage. The average
linkage is a method by which the distance between two clusters are
treated as the average distance between all pairs of items, where one
member of the pair belongs to each cluster.
Average linkage as a method for evaluating machine learning
based classiers

We assessed model performance by computing how well solved
and unsolved routes are separated using the concept of average
© 2021 The Author(s). Published by the Royal Society of Chemistry
linkage. Average linkage is a statistical method by which the
distance between two clusters are treated as the average
distance between all pairs of items, where each member of the
pair belongs to one of the two clusters. In this instance, the two
clusters are solved and unsolved compounds as determined by
AiZynthFinder (other CASP tools may be used in place). The
average linkage or separation between solved and unsolved
compounds was determined by min–max scaling the values of
each score such that they were normalized between 1 and
0 using the Scikit-Learn MinMaxScaler. The absolute pairwise
distances where computed, and the average of the distances
taken to yield a value that corresponds to the separation of the
clusters as shown in (Fig. 2).
Results and discussion
Route statistics from the generation of labels for machine
learning classiers

Initially training and test datasets were generated by randomly
sampling 200 000 compounds from ChEMBL,29 as a reference
set, and 100 000 compounds each from GDBChEMBL and
GDBMedChem.30,31 The two are subsets of the GDB17 data-
base.39 ChEMBL was chosen to represent a selection of bioactive
molecules and the GDB subsets chosen to be more challenging
owing to their differing structural and physiochemical property
distribution.30 The compounds were subsequently subjected to
retrosynthetic analysis using AiZynthFinder, and labelled as
solved or unsolved.

Fig. 3 shows statistics gathered for the predicted retrosynthetic
routes during the label generation process. The percentage of
solved routes increases monotonically, and the rate at which
routes are solved decreases with the number of steps for each
dataset. This ismost noticeable for compounds requiring synthetic
routes between 5 and 7 steps, where we observe a signicant
increase in the dataset coverage (Fig. 3b), but no corresponding
increase in the percentage of solved compounds (Fig. 3a). ChEMBL
has the highest percentage of solved compounds, whereas
GDBMedChem and GDBChEMBL are consistently lower.

We observed a correlation between the percentage of solved
compounds and the SAscore,23 SCscore,21 and SYBA,22 as well as
SMILES length (Fig. 3g–j), which are in agreement with the
results obtained by Coley and Gao.18 In the case of SAscore and
SCscore, the lower the score the more likely it is that a synthetic
Chem. Sci., 2021, 12, 3339–3349 | 3341
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Fig. 3 Statistics gathered for the retrosynthesis predicted during the label generation process for each dataset ChEMBL, GDBChEMBL, and
GDBMedChem. The statistics are shown for all compounds sampled: 200 000 fromChEMBL, and 100 000 from each of the GDB subsets. (a) The
percentage of solved compounds as a function of the number of steps, (b) the dataset coverage as a function of the number of steps. (c–f)
Histograms depicting the distribution of the compounds in each dataset for each of the currently used scores. For SAscore and SCscore the
lower the score the less complex and easier to synthesise a given compounds, whereas for SYBA positive values indicate easy to synthesise
compounds and negative values hard to synthesise. (g–j) The percentage of solved compounds as a function of each of the currently used scores
as computed for each bin in the histogram.
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route can be obtained for a compound, as found for all datasets.
The ChEMBL sample exhibits a lower range of SAscore than the
GDBMedChem and GDBChEMBL samples (Fig. 3c), which may
explain the higher percentage of solved compounds in ChEMBL
as compared to GDBMedChem and GDBChEMBL (Fig. 3a).

However, for SCscore (Fig. 3d) the GDB subsets exhibit
a lower range of scores in comparison to the ChEMBL sample.
Thus, the inverse of the distribution we obtain for SAscore and
can be rationalized by considering the assumptions made in the
SCscore model. The SCscore is based on reactions rather than
molecular fragments and assumes that the products of a reac-
tion are more complex than the reactants. In most cases the
products are also larger than the reactants, thus the assumption
for SCscore falters for the GDB subsets because of their
restricted size as shown by the difference in SMILES length
between the ChEMBL and GDB subsets (Fig. 3f and j). This is
further supported by the lower percentage of solved routes for
the GDB subsets (Fig. 3f and j).

In the case of SYBA, the higher the score the more likely it is
that a route can be found, negative values indicate hard to
synthesize compounds. The distribution shown for SMILES
length reects the fact that the GDB subsets are skewed towards
smaller molecules, and with lower heavy atom counts than
those found in ChEMBL by virtue of the rules used in their
enumeration.30,31 The Fig. 3j reveals that the rate at which
compounds can be solved falls off much more rapidly with
SMILES length for the GDB subsets than for ChEMBL.
Attempts at using SAscore, SCscore, and SYBA

We assessed the existing scores SAscore, SCscore, and SYBA for
their ability to distinguish between compounds that could be
3342 | Chem. Sci., 2021, 12, 3339–3349
solved by AiZynthFinder and those that could not (Fig. 4). These
scores have oen been used to lter or estimate the synthetic
accessibility of large datasets of virtual compounds.39–41

However, we have found that there is no threshold value at which
the SA, SC, and SYBA scores can be set that clearly separates
compounds that can and cannot be solved by AiZynthFinder, as
shown by the overlapping histograms. This was observed for all
datasets examined in this study (refer to ESI†). Thus, there is
potential for them to be misused when ltering large virtual
libraries. To resolve this issue, we propose that the existing
scores be used alongside the classiers trained in this study to
determine whether a synthetic route can be found, and how
difficult it may be to realize the route in the wet lab.
Machine learning classiers for estimation of retrosynthetic
accessibility

The overlaps shown in Fig. 4, demonstrate the need to be able to
differentiate between compounds that can and cannot be
synthesized by AiZynthFinder. Therefore, we trained a series of
ML based classiers to determine whether a given compound
could be solved by AiZynthFinder. A selection of the results
obtained for the trained classiers are shown in Table 1 (refer to
the ESI† for all trained models). In each case the classiers
outperform the existing scores which were used as a baseline
(SAscore, SCscore, and SYBA) both in terms of the AUC (area
under the curve) and average linkage with respect to their ability
to classify compounds as solved or unsolved. When using the
existing scores as descriptors to train the classiers, we
observed a marginal improvement in comparison to the score
itself. This is because the existing scores are complexity based
scores, thus have not been developed with the separation of
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Histograms computed for the test set of ca. 20 000 ChEMBL compounds showing whether a retrosynthetic route could be found by
AiZynthFinder for a given compound (green) or not (red), and their distributions across each of the scores in current use. There is no threshold
value at which the current scores are able to separate compounds that can be solved by AiZynthFinder (green) from those that cannot (red). This
highlights how the scores have potential for misuse in generative modelling and filtering sets of compounds.

Table 1 Outlines the top 3 classifiers trained for each dataset alongside their corresponding metricsa

Dataset Model Descriptor AUC Accuracy Precision Recall Average linkage

ChEMBL NN (RAscore) ECFP6 counts with features 0.93 0.90 0.92 0.95 0.69
NN ECFP6 counts 0.94 0.90 0.92 0.95 0.68
XGB ECFP6 counts 0.95 0.91 0.92 0.96 0.65
NN SAscore 0.85 0.81 0.84 0.92 0.37
NN SCscore 0.61 0.75 0.61 1.00 0.27
NN SYBA score 0.74 0.78 0.78 0.97 0.21
Baseline SAscore 0.15 — — — 0.17
Baseline SCscore 0.39 — — — 0.22
Baseline SYBA 0.74 — — — 0.17

GDBChEMBL NN (GDBscore) ECFP6 counts 0.93 0.87 0.76 0.73 0.64
NN ECFP6 counts with features 0.94 0.88 0.78 0.74 0.63
XGB ECFP6 counts 0.94 0.89 0.81 0.73 0.61
Baseline SAscore 0.11 — — — 0.26
Baseline SCscore 0.38 — — — 0.14
Baseline SYBA 0.72 — — — 0.17

GDBMedChem NN ECFP6 counts 0.93 0.88 0.75 0.64 0.64
NN ECFP6 counts with features 0.94 0.89 0.77 0.66 0.63
XGB ECFP6 counts 0.94 0.89 0.78 0.64 0.61
Baseline SAscore 0.13 — — — 0.22
Baseline SCscore 0.39 — — — 0.14
Baseline SYBA 0.70 — — — 0.17

a For comparative purposes a baseline has been included which are the SAscore, SCscore, and SYBA. The metrics for these have been computed
using Scikit-Learn and the average linkage computed as described in the methods. Classiers were trained using each of the respective scores
as descriptors to enable a direct comparison of classier performance. These marginally outperform the baseline models in terms of AUC and
average linkage. The top 3 classiers for each dataset using ECFP6 variants consistently outperform the baseline models and their classiers.
For RAscore the top performing classier on the ChEMBL dataset was chosen, and a separate GDB specic model chosen termed GDBscore
which was the top performing classier on the GDBChEMBL dataset.

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
Ja

nu
ar

y 
20

21
. D

ow
nl

oa
de

d 
on

 2
/8

/2
02

6 
1:

31
:5

7 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
compounds found synthetically accessible by CASP in mind. A
more signicant improvement in classier performance was
obtained when using ECFP6 counted vectors as molecular
descriptors, both with and without features. The feed forward
neural network (NN) based models consistently outperformed
random forest and showed comparable performance to
gradient boosting methods (XGB).

We identied that the following classiers were consistently
the top three models across each of the datasets: feed forward
neural networks using ECFP6 counts, feed forward neural
networks using ECFP6 counts with features, and XGBoost using
© 2021 The Author(s). Published by the Royal Society of Chemistry
ECFP6 counts. For the RAscore we chose the top performing
classier for separating the compounds as determined by the
average linkage. We also identied a GDB specic classier
which we term GDBscore in the same manner. The GDBscore
classier was trained on the GDBChEMBL dataset, the classier
trained on GDBMedChem was found to have equivalent
performance.
Prediction time

The importance of training ML based classiers rather than
simply predicting the full retrosynthetic pathway becomes clear
Chem. Sci., 2021, 12, 3339–3349 | 3343
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Table 2 Percentage of solved compounds for each dataset and the run timea required using AiZynthFinder

ChEMBL GDBChEMBL GDBMedChem

Percentage solved 75.21 25.54 20.79
Size 200 000 100 000 100 000
AiZynthFinder run time (days) 239 149 151
Score run time (min) 79b 30c 30c

a Expressed in days taken on a single machine with 8 CPUs and 64 GB of RAM, rounded to the nearest day. The time taken in minutes for the neural
network classier with ECFP6 counted ngerprints is also given for comparative purposes. The neural network classier, RAscore, is able to
reproduce the results obtained from AiZynthFinder in a fraction of the time taken to predict full retrosynthetic routes. b RAscore. c GDBscore.

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
Ja

nu
ar

y 
20

21
. D

ow
nl

oa
de

d 
on

 2
/8

/2
02

6 
1:

31
:5

7 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
when examining Table 2. Full retrosynthetic route prediction of
the ChEMBL sample of 200 000 compounds to a set of
commercially available building blocks took approximately 239
CPU days on a single machine with 8 CPUs and 64 GB of RAM,
using AiZynthFinder. Parallelization of full synthetic route
prediction is not possible on a single machine under the current
implementation of AiZynthFinder, however, it is possible to
split the compounds over several cores and distribute the
workload over several machines as has been done in this study.
In comparison 77 minutes were required for classifying retro-
synthetic accessibility using RAscore. The increase in prediction
speed by ca. 4500 times opens up the possibility of estimating
the retrosynthetic accessibility of virtual compounds, for
instance in drug discovery projects, and for the scoring of
compounds resulting from generative models earlier in the
virtual screening workow. Similar increases in prediction time
are also observed for the GDB subsets (Table 1).
Applicability domain

Gao and Coley previously published the results of running ret-
rosynthetic analysis with ASKCOS for a series of datasets con-
sisting of both published and generated compounds.18 We
tested our trained classier on the dataset used by Gao and
Coley to determine the applicability domain of the classier and
gauge how well the ASKCOS predictions could be reproduced.
We also used AiZynthFinder to predict retrosynthetic routes to
the same set of compounds to establish whether the classier
could reproduce the underlying CASP tool.
Fig. 5 Applicability domain as determined by application to a set of
compounds published by Gao and Coley in a previous study, full details
of each dataset can be found in the referenced manuscript.18

3344 | Chem. Sci., 2021, 12, 3339–3349
For each dataset AiZynthFinder marginally outperforms
ASKCOS, and is most striking for the GDB17 sample (Fig. 5).39

This is because AiZynthFinder only considers retrosynthetic
analysis, whereas ASKCOS additionally factors in reaction
prediction which enables pruning of unfeasible or low proba-
bility retrosynthetic pathways. Furthermore, as the reaction
prediction models are trained on published chemistry, and the
majority of GDB17 compounds are unpublished or dissimilar to
published compounds,39 the pathways suggested are likely to be
pruned resulting in the lower percentage of solved compounds
for ASKCOS. Another difference that should be considered
when comparing the twomodels is the building blocks available
to each respective model. This can affect the ability of the CASP
tool to nd retrosynthetic routes and inuences whether or not
a compound is labelled as solved.

We found that the feed forward neural network classier
trained on ChEMBL that we term RAscore, overestimates the
synthetic accessibility of GDB17 in comparison to ASKCOS and
AiZynthFinder. This is also observed for the other datasets
examined, however the extent to which RAscore overpredicts is
less striking. To replicate the GDB17 dataset, we use GDBscore,
which is a classier trained on GDBChEMBL and nd we can
better reproduce the underlying AiZynthFinder synthesis plan-
ning tool. The MOSES dataset is based on the ZINC Clean Leads
collection and GaucaMol is based on the ChEMBL database,
both are used for evaluating distribution learning algorithms
for drug discovery.42,43 The overprediction on both ZINC and the
prediction in line with the MOSES dataset is surprising
considering the compounds originate from the same database.
However, this may be rationalized considering the samples
differ in their distribution, and have been obtained from
different collections within the ZINC database.40,43,44

The overprediction on the Sheridan et al. dataset can be seen
as positive as all compounds in the dataset were previously
synthesized at Merck.45 In addition, the prediction in line with
the GuacaMol set, implies that the classier performs well on
ChEMBL like compounds by virtue of the underlying training
data.

Examples – limitations of RAscore arising from CASP

We examined the test set from our ChEMBL sample for
compounds within a Tanimoto similarity of 0.8 or greater.
Some examples of pairs of compounds are shown in Fig. 6. In
the pairs shown one compound was unsolved by our retro-
synthetic tool and the other labelled as solved. For each
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Examples of pairs of compounds from the test set that are similar to each other (Tanimoto > 0.8), where a retrosynthetic route could be
found for one example in the pair but not the other. In each case only a slight modification of the compound leads to a change in the outcome
from the CASP tool, consider (a) addition of two ortho-methyl groups on the terminal phenyl ring, (b) substitution of a cyclohexane moiety for
a cyclopropane, and (c) a change in substitution pattern and ring morphology, leads to a change in outcome from solved to unsolved.
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example we show that the topology is largely unchanged and
only small edits have been made to the functionality of the
molecule. The change in outcome with minor changes in
functionality highlight a limitation of AiZynthFinder and
likely other template based CASP tools. This can originate
from: the representation of the input molecules, the way the
templates are specied, and the distribution of similar
samples in the dataset from which the reactions originate.
The templates suggested for disconnections are unable to
account for subtle changes in the reaction center, thus the
appropriate precursors were not able to be enumerated. This
arises because the molecular graph underlying the template
does not match that of the substrate, thus there is no
substructure match. These examples are not ‘true’ negatives
in the sense that they cannot be experimentally realised in the
wet-lab and are only negative in relation to the ability of the
AiZynthFinder to conduct a retrosynthetic analysis. Some
examples of such compounds which have led to poor sepa-
ration of solved/unsolved compounds are shown in Fig. 6.

To understand why the solved/unsolved test cases were not
easily separable, consider the examples in Fig. 6. In the case of
similar compounds, both solved and unsolved compounds are
scored as synthetically feasible with values tending towards 1.0,
despite AiZynthFinder not having found a synthetic route. The
example in Fig. 6a, is a case for which RAscore predicts the
compounds as synthetically accessible by AiZynthFinder despite
a synthetic route having been found for only the compound
with two ortho-methyl groups on the terminal phenyl ring. The
RAscore learns that such minor changes to functionality are
feasible by virtue of the machine learning approach, which does
not take into consideration the inner workings of AiZynth-
Finder, but rather learns a mapping between inputs
(compounds) and outputs (synthesisable by AiZynthFinder/
© 2021 The Author(s). Published by the Royal Society of Chemistry
unsynthesisable by AiZynthFinder). This behavior is an arte-
fact of the subset of compounds from ChEMBL the model was
trained on, and examples in which the model misclassies
compounds as synthesizable can also be found. Similar
substitutions are shown in Fig. 6b and c, whereby AiZynth-
Finder failed to suggest retrosynthetic disconnections leading
to commercially building blocks.

In most cases the most similar molecule in the training set
was below a Tanimoto value of 0.8 (ESI†), and potentially
requires a different synthetic strategy as compared to the
compounds shown for the test set (Fig. 6). This raises another
limitation of AiZynthFinder and potentially other CASP tools,
which can be overcome by RAscore. The performance of a CASP
tool is limited by the number and type of building blocks
available. In some cases it may be that the building blocks
necessary are not included in the database underlying the CASP
tool, but are in fact available from other vendors. Furthermore,
it can also be the case that similar building blocks are available
that a medicinal chemist may consider for functionalization. In
these cases the RAscore is able to learn that it is likely that two
analogues are synthetically accessible despite a retrosynthetic
route having not been found. This is because RAscore is not
based on a library of building blocks, and has been trained with
the compound as input and label (synthesisable by
AiZynthFinder/unsynthesisable by AiZynthFinder) as output,
thus has no knowledge of building blocks explicitly. The
RAscore model learns similarity between compounds internally,
and by doing so learns where to place a decision boundary
between datapoints belonging to each cluster. This is the basis
on which most machine learning techniques enable the models
to extrapolate to similar compounds.

To exemplify the aforementioned arguments consider the
routes predicted by AiZynthFinder shown in Fig. 7. If we
Chem. Sci., 2021, 12, 3339–3349 | 3345
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Fig. 7 (a and b) Synthetic routes predicted by AiZynthFinder. We show that small variations in the queried compound lead to considerably
different synthetic routes, thus require different building blocks. This is a limitation of CASP tools that models such as RAscore may be able to
overcome as they do not explicitly take into account the inner workings of the CASP tool but are rather based on learned similarity and how this
maps to a given output. The fragments that are modified at each step are highlighted in blue in the synthetic scheme.
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again take the case of the phenyl moiety both with and
without the ortho-methyl groups of the compound shown in
Fig. 6a, and examine the routes predicted for each, Fig. 7a
and b respectively, we observe differences in the predicted
route in terms of the synthetic strategy used, thus step count.
Therefore, similar compounds with largely unchanged
topology can have considerably different synthetic routes
predicted for them. One of the reasons this occurs is because
each step in the route prediction is treated independently
from the others. Thus, the neural network used in AiZynth-
Finder does not learn that similar compounds have the
potential to be synthesized via similar routes as it has not
been fed information about the route. Whilst a chemist may
consider rst synthesizing the scaffold, and subsequently
functionalising it to yield the desired analogues,
3346 | Chem. Sci., 2021, 12, 3339–3349
AiZynthFinder is currently unable to take into account such
considerations. This is further exemplied in Fig. 7a and b,
whereby different synthetic routes necessitate different
starting materials. The synthetic route proposed in Fig. 7a
can be used to synthesize the compound in Fig. 7b with only
a slight variation in how the building blocks are initially
synthesized.

The RAscore has potential to overcome some of these limi-
tations as it does not take into account route information
explicitly. Rather the RAscore is based on the predictions of
AiZynthFinder, and equally the predictions of any CASP tool
should be able to be used in their place. This has the advantage
that the RAscore is then able to approximate whether a synthetic
route can be found using CASP for any given molecule, without
having to compute the synthetic route each time.
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Conclusions

Herein we have built on the improvements in AI driven CASP in
recent years by combining the predictions made with our CASP
tool, AiZynthFinder, with ML, to train a classier returning
a retrosynthetic accessibility score (RAscore). RAscore addresses
the challenge of classifying compounds as synthetically feasible
and is orders of magnitude faster than full retrosynthetic
analysis by CASP, and with comparable performance. The
RAscore demonstrates potential for rapid pre-screening of
compounds for synthetic accessibility, enabling enrichment of
synthetically feasible chemical space. Whereas previous
synthetic accessibility and complexity based scores have
potential for misuse when ltering large virtual libraries, as
a result of being unable to determine a threshold value (Fig. 4),
we resolve this issue by proposing that the existing scores be
used alongside the RAscore to determine whether a synthetic
route can be found, and how difficult it may be to realize the
route in the wet lab.

In addition, we highlight inherent limitations to be aware of
in the RAscore arising from the performance and applicability
of the underlying CASP tool, namely: (1) availability of building
blocks, (2) different synthetic strategies toward the same scaf-
fold, and (3) route predictions are treated independently to each
other. The concept presented herein can be extended to any
CASP tool and the predictions it generates, and the score
retrained. The score will be made available under an MIT
license at: https://github.com/reymond-group/RAscore.
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