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A series of hybrid uranocenes consisting of uranium(iv) sandwiched between cyclobutadienyl (Cb) and
cyclo-octatetraenyl (COT) ligands has been synthesized, structurally characterized and studied
computationally. The dimetallic species [(n*-Cb”")(n®-COTU(u:n2nE-COTUTHR(M*-Cb”)] (1) forms
concomitantly with, and can be separated from, monometallic [(n*-Cb”)U(THF)n8-COT)] (2) (Cb™ =
1,2,3,4-tetrakis(trimethylsilyl)cyclobutadienyl, COT = cyclo-octatetraenyl). In toluene solution at room
temperature, 1 dissociates into 2 and the unsolvated uranocene [(n*-Cb”)Un8-COT)I (3). By applying
a high vacuum, both 1 and 2 can be converted directly into 3. Using bulky silyl substituents on the COT
ligand allowed isolation of base-free [(n*-Cb”")U{n8-1,4-(PrsSi),CsHe}l (4), with compounds 3 and 4
being new members of the bis(annulene) family of actinocenes and the first to contain a cyclobutadienyl
ligand. Computational studies show that the bonding in the hybrid uranocenes 3 and 4 has non-

negligible covalency. New insight into actinocene bonding is provided by the complementary
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cyclobutadienyl ligand and the 5f orbitals do so with the COT ligands. The redox-neutral activation of
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Introduction

Cyclobutadienyl complexes of transition metals have provided
a source of fascination since the early pioneering work
proposing the existence of such species and, subsequently, the
landmark synthesis of stable examples.'” Cyclobutadienyl
complexes of the late transition metals are numerous owing to
the ease with which the n*-bound ligands assemble through the
cycloaddition of two alkynes within the coordination sphere of
low-valent metals.*®* Complementary routes to transition metal
cyclobutadienyl complexes involving cyclization of dilithiobu-
tadienes are also known.” An understanding of the bonding
properties and reactivity of transition metal-cyclobutadienyl
compounds has led to their application in catalytic and stoi-
chiometric organic synthesis.*’

In contrast, cyclobutadienyl complexes of the f-elements are
rare, the principal reason for which is the lack of suitable ligand
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cooperative process, potentially forming the basis of further small-molecule activation chemistry.

sources. Relative to transition metals, the differing chemistry of
lanthanides and actinides means that current methodologies
are largely reliant on the use of s-block cyclobutadienyl reagents
in reactions with metal halide and pseudo-halide salts.'***
Since most routes to s-block cyclobutadienyl compounds
involve reduction of cyclobutadienes with elemental s-block
metals, the inherent instability of almost all anti-aromatic
cyclobutadienes presents a challenge. However, following the
seminal work of Sekiguchi et al., the stable cyclobutadiene
C,(SiMes), can be conveniently synthesized and converted into
the reagents [A;{C,(SiMe3)4}] (A,Cb™’, A = Li, Na, K) on a multi-
gram scale.’*'®” We have shown that these alkali metal
reagents can transfer the bulky [{C4(SiMe;),}]*” dianion to
lanthanides, either with the ligand remaining intact or under-
going activation processes, such as deprotonation of a silyl
substituent and/or protonation of the four-membered ring, to
give n’-allyl derivatives.'*" Similar reactivity of A,Cb"’ towards
uranium(v) has also been observed, including formation of the
half-sandwich complex [U(n*-Cb”")(BH,);]” in addition to
sandwich complexes containing the Cb””’ ligand in an activated
form.*>*

The bonding in uranium-cyclobutadienyl complexes features
non-negligible covalency, with the overlap consisting of similar
contributions from the uranium 5f and 6d orbitals.”*'**® This
picture is reminiscent of Streitweiser's iconic cyclo-octatetraenyl
(COT) sandwich compound uranocene, [U(n®-CgHg),].*-** Since

© 2021 The Author(s). Published by the Royal Society of Chemistry
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uranocene and other actinocenes have played a central role in
understanding covalency in actinide compounds,*™* expand-
ing the family to incorporate cyclobutadienyl ligands has the
potential to provide new insight into the role of uranium
valence orbitals in chemical bonding. We therefore sought to
synthesize a ‘hybrid’ uranocene of the type [(n*-Cb)U(n®-COT)],
with the aim of establishing whether or not the two ligand types
have a preference for overlap with uranium 5f or 6d orbitals.

Results and discussion

We initially attempted the synthesis of [(n*-Cb"")U(n3-CsHsg)] by
adding a slight excess (1.3 equivalents) of K,COT to a freshly
prepared solution of Na[U(n*-Cb"")(BH,);]** in a 2 : 1 mixture of
THF-Dg and toluene-Dg, which produced a brown solution. After
filtration and evaporation of the solvent, the residue was
extracted into n-heptane. Slow evaporation of the n-heptane
under a dynamic vacuum to the point of incipient crystalliza-
tion produced brown crystals, subsequently identified as the
COT-bridged  dimetallic ~ compound  [(n*-Cb"")(n3-COT)
U(u:n*m®-COT)U(THF)(n*-Cb”")] (1, Scheme 1, Fig. 1). The
nascent n-heptane solution obtained after crystallizing 1 was
then slowly concentrated, which yielded block-like crystals of
the monometallic THF-solvated species [(n*-Cb"”")U(THF)(n®-
COT)] (2). Attempts at removing the THF ligand from 2, to give
the de-solvated target compound [(n*-Cb"")U(n3-COT)] (3), by
heating heptane or toluene solutions to 60 °C under a dynamic
vacuum only produced intractable mixtures.”> However,
compound 3 could be obtained from 1 or from 2 by applying
a high vacuum (approximately 107 °-10"7 mbar) for five-six
hours at 45 °C. We also observed that a 1: 1 co-crystal of 2/3
is obtained when the initially formed crystals of 1 are washed
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Scheme 1 Synthesis of 1-4.
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with cold SiMe, and the resulting solution is stored at —35 °C
overnight.

The synthesis of the bulkier hybrid uranocene [(n*-Cb"")
U(m®-coT™s)] (4, coT™" 1,4-bis(triisopropylsilyl)cyclo-
octatetraene) proved to be more straightforward. Using the
procedure described above for 1, addition of K,[COT™*] to Na
[U(M*-Cb"")(BH,);] in THF-Dg/toluene-Dg produced 4, which
was isolated as crystalline material in a yield of only 12%, owing
to the very high solubility of the compound even in cold SiMe,
(Scheme 1, Fig. 3).

The molecular structures of 1, 2 and 3 are shown in Fig. 1
and key crystallographic parameters are listed in Table S1.}
Both uranium(iv) centres in 1 are bound to an n®-COT ligand
and an n*-Cb"" ligand, with U1 also bound to a THF ligand and
a wn®n>-COT ligand bridging between Ul and U2. The
uranium centres in 2 and 3 display similar coordination
geometries to their counterparts in 1, each with an n®COT
ligand and an n*-Cb"” ligand, with 2 also featuring coordination
by THF. The U-Cb,., distances (‘cent’ denotes the centroid of
the ring) in 1 are 2.332(4) A (U1) and 2.340(4) A (U2), and in 2
and 3 the distances are 2.337(2) A and 2.323(13) A, respectively.
The U-COTep distances in 1 are 1.980(3) A (U1) and 1.946(4) A
(U2), and 1.960(5) A and 1.918(18) A in 2 and 3, respectively,
hence they are markedly shorter than the corresponding
distances to the Cb"” ligands. The U1-COT_e, distance in 1 is
particularly long, presumably because of the additional
bridging mode adopted by the ligand. For comparative
purposes, the U-COT,. distance in [U(m®-CgHg),] is 1.923(6)
A.?® Consistent with the uranium centres in 1 and 2 interacting
with three ligands, the Cb-U-COT angles in these complexes are
139.50(14)° (U1), 139.88(16)° (U2) and 142.23(4)°, respectively,
whereas the same angle in 3 is wider at 156.24(8)°, as expected
based on the presence of only two ligands.

Complexes 1-3 show marked deviations of the trimethylsilyl
substituents out the plane of the Cb”” ring. For both uranium
centres in 1, one such substituent bends away from uranium, by
156.4(4)° (U1) and 155.8(5)° (U2), respectively, whereas the other
three substituents only deviate by an average of 115.4°. In 2 and
3, the maximum out-of-plane distortions of trimethylsilyl
substituents are 142.4(4)° and 128.10(19)°, with the other three
substituents also bending on average by approximately 124.6°
for 2 and 117.3° for 3. These observations reveal appreciable
flexibility in the local structure of the Cb”’ ligand, which is
presumably necessary to accommodate the structural changes
that occur when additional ligands to bind to uranium, notably
in 1.

The "H NMR spectrum of 1 in toluene-Dg at 30 °C consists of
resonances at d = —37.51 ppm (16 'H) and —14.85 ppm (72 'H),
corresponding to the COT ligands and the trimethylsilyl
protons of the Cb”’ ligands, respectively (Fig. S1 and S2%).
Resonances for the THF ligand were observed at 6 = —30.09 and
—7.26 ppm. The **Si{"H} NMR spectrum of 1 contains a singlet
at 6 = —204.3 ppm (Fig. S3}). In the case of THF-solvated 2,
resonances in the "H NMR spectrum were observed at § =
—37.45 ppm and —14.01 ppm for the COT and Cb"”’ ligands,
respectively, with resonances for the THF ligand occurring at
—17.26 and —4.03 ppm (Fig. S10 and S11}). A single resonance
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Fig.1 Thermal ellipsoid representations (50% probability) of the structures of 1 (left) 2 (centre) and 3 (right). For clarity, the hydrogen atoms are

not shown.

at 6 = —200.21 ppm was found in the *°Si{"H} NMR spectrum
(Fig. S12}). Also in toluene-Dg at 30 °C, the "H NMR spectrum of
3 consists of resonances corresponding to the COT ligand at
—37.90 ppm and the Cb” ligand at —18.45 ppm (Fig. S22 and
$23%), with the *°Si{'"H} NMR spectrum featuring a single
resonance at 6 = —221.46 ppm (Fig. S24}). The "H and *°Si{"H}
NMR spectra of the co-crystal consist of resonances similar to
those observed for isolated 3, however signals for the THF
ligand were not observed, presumably due to rapid exchange
between uranium centres (Fig. S32 and S337).

Whereas the '"H NMR spectra of 2 and 3 in toluene at 30 °C
indicate that the solid-state molecular structures of the
complexes are retained in solution, the 'H NMR spectrum of 1
suggests the occurrence of dynamic behaviour under these
conditions. A variable-temperature 'H NMR spectroscopic study
of 1 revealed that the sharp singlet corresponding to the SiMe;
environment broadens on cooling and decoalesces below
—30 °C, resolving into two additional singlets at 6 = —9.65 and
—27.20 ppm at —50 °C, each corresponding to 36 'H (Fig. 2 and
$4-561). The *°Si{'H} NMR spectrum of 1 also resolves into two
broad singlets at —50 °C, with 6 = —209.94 ppm (FWHM = 709
Hz) and —286.54 ppm (FWHM = 669 Hz), respectively (Fig. S71).
The most probable explanation for this behaviour is that 1 exists
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/ ‘x, ' / \ M\ -60 °C
B8 T S, W . s
\ I\ EL -50°C
howst N AL —
k | A__ V1 a5 °c
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Fig. 2 'H NMR spectra of 1 in toluene-Dg at the temperatures
indicated.
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in a dynamic equilibrium with 2 and 3, which is fast relative to
the NMR timescale at 30 °C. To confirm this, we recorded the 'H
and *°Si{'H} NMR spectra of isolated 2 and 3 at low tempera-
tures and found very close matches in the chemical shifts
compared with those of 1 at the same temperatures (Fig. S13-
S$15 and S25-527%). At —50 °C, the 'H and *°Si{'H} chemical
shifts of the trimethylsilyl substituents in 3 occur at —9.69 ppm
and —213.08 ppm, respectively, and in the case of 2 the analo-
gous "H and *°Si{'H} resonances were observed at —27.77 ppm
and —285.13 ppm, respectively (Fig. S28 and S2971).

The structure of the hybrid uranocene 4 comprises two
crystallographically unique molecules with very similar
geometric parameters, only one of which is described in detail
here (Fig. 3). Molecule 1 of 4 consists of an n%-COT"™™* ligand
and an n*-Cb”’ ligand, with distances to the centroid of each
ligand of 1.916(2) A and 2.334(3) A, respectively. The associated
bending angle at uranium is 152.79(12)°. The U-COTenc
distances in 4 are somewhat shorter than those observed in the
related series of uranium(v) sandwich complexes [(1®-COT)

Fig. 3 Thermal ellipsoid representations (50% probability) of the
molecular structures of 4. For clarity, the hydrogen atoms are not
shown.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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U(X)(n>-CsMes)] (X = H, NH,, HCO,, H,NCO,), which lie in the
range 1.93-1.97 A.*”?® Exclusion of a third ligand from the
uranium centre in 4 is presumably due to the bulk of the tri-
isopropylsilyl substituents. Three of the trimethylsilyl substit-
uents in 4 deviate appreciably from the plane of the Cb"”’ ring by
127.9(3)-147.6(4)°, however the substituent containing Si7
deviates from the plane only by 105.8(3)°, which is markedly less
than observed for all analogous substituents in 1-4. This
structural feature may facilitate close approach of a methyl
group to the uranium centre, but this is not necessarily indic-
ative of an agostic interaction.*

The "H NMR spectrum of 4 in toluene-Dy is fully consistent
with the solid-state structure, consisting of a 36-proton singlet
at —9.37 ppm for the Cb”” ligand, three two-proton singlets at
—156.23, —99.09 and +103.80 ppm for the COT protons, and
resonances at —4.24, —0.14 and 2.23 ppm for the Si'Pr, groups
(Fig. S34 and S35%). Two resonances in the *°Si{'"H} NMR
spectrum were observed at 6 = —139.63 and —33.80 ppm
(Fig. $361).

To gain further insight into the energetics of THF coordi-
nation to the uranium(iv) centres in the hybrid uranocenes, the
free energies for the formation of 2 from 3 and THF, and
formation of the hypothetical complex 4-THF from 4 and THF,
were calculated at the DFT level using the pure PBE func-
tional.**** To ensure that the computational protocol provided
reasonably accurate values, the complexation energy for the
formation of 2 was also calculated using the high-level domain-
localized pair natural orbital coupled cluster (DLPNO-CCSD)
approach (Tables S2 and S3}).*>*® The calculated free energies
for the formation of 2 and 4-THF are —81 k] mol ' and
—4 kJ mol ™", respectively. Thus, the formation of 2 is very
favorable whereas the free energy gained upon complexation of
4 by THF is negligible, considering the typical accuracy of DFT
energetics.

The differences in the energetics can be understood by par-
titioning the free energy of formation into contributions from
fragment distortion (AEg;s), orbital interaction (AE,), disper-
sion (AEgisp), and enthalpy and entropy contributions (AH —
TAS). The distortion energy corresponds to the energy required
to distort the geometries of the 3 and 4 and the THF ligand from
relaxed structures to the geometry they possess in the adducts.
The orbital interaction energy describes the energy lowering
once the electron densities of the two distorted fragments mix
and relax. The contributions are listed in Table 1. The distortion
energy in 4-THF is at 85 k] mol™ ', much larger than in 3, most
likely due to the additional steric bulk associated with the Si'Pr;

Table 1 Energy contributions and free energies (in kJ mol™?) for the
formation of 2 and 4-THF from 3 + THF and 4 + THF, respectively

2 4-THF
AEgis 29 85
AEo, —56 —64
AEgigp —41 —54
AH — TAS —12 30
AG —81 —4

© 2021 The Author(s). Published by the Royal Society of Chemistry
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substituents. In addition, the AH — TAS contribution is unfa-
vorable for the complexation of 4 by THF to give 4-THF, which is
mostly due to a largely unfavorable entropy contribution, unlike
with the formation of 2 from 3.

The nature of the orbital interactions between the uraniu-
m(wv) ion and the Cb”’ and COT ligands in 3 and 4 was further
studied by decomposing the DFT orbitals, calculated using the
hybrid PBEO functional,*****"*® into relative contributions from
the uranium and ligand fragment orbitals. The bonding in 3
and 4 is qualitatively similar, with the Si'Pr; substituents having
only a minor quantitative effect overall, hence only 3 is dis-
cussed in detail. Quantitative values of the orbital composition
are given in Tables S4 and S5.} The metal-ligand interaction is
dominated by electron donation from the two highest occupied
and nearly degenerate orbitals of both the Cb”" and COT
ligands. Both are degenerate under ideal symmetry and we refer
to the set of two near-degenerate orbitals as the HOMO. The
electron donation from the ligands takes place both to the
partially occupied 5f shell and the empty 6d shell. These
interactions account for over 86% of the orbital compositions in
all valence molecular orbitals discussed here.

The quantitative contributions are listed in Table S4} and
the respective orbitals are shown in Fig. 4.

a 169

COT HOMO

Cb HOMO

o 164 B 164

Fig. 4 Important valence orbitals of 3.
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The mixing of the ligand and uranium 5f orbitals in 3 is more
significant than in the previously reported uranium(wv) cyclo-
butadienyl complexes, such as [(Cb”)U(BH,);].** Qualitative
examination of the orbital contributions shows that the mixing
between the Cb"””’ ligand orbitals and the 6d orbitals is more
significant than that between the ligand and 5f orbitals,
whereas the COT-5f interactions are more significant than the
COT-6d interactions. The o orbitals 168 and 169, and the
B orbitals 166 and 167 primarily describe the U-Cb"”’ covalency.
The contributions from the Cb”’ HOMOs to the orbital
composition vary between 54% and 67%, the 5f contributions
between 6% and 21%, and the 6d contributions between 6%
and 18%. The o and f orbitals 164 and 165 primarily describe
the U-COT covalency, with the contributions from the COT
HOMOs varying between 44% and 73%, the 5f contributions
between 2% and 32% and the 6d contributions between 8% and
13%. Of the two unpaired 5f electrons only one occupies an
orbital with strong atomic 5f-like character, i.e. & 166 with 90%
5f character. The only other orbital with significant 5f character
is the a orbital 167, which is strongly mixed with the COT
HOMOs and has 47% 5f character.

The synthesis and isolation of [(n*-Cb”’)U(n®-COT)] (3) and
[(n*-Cb™)U(n®-COT™®)] (4) furnishes new members of the f-
element organometallic sandwich family, which includes
Streitweiser's first-generation uranocene [U(n5-COT),]** in
addition to the divalent uranocene [U(n’-C5'Prs),>* and the
cycloheptarienyl complex [U(n’-C,H,),] ,* amongst others.*
The hybrid uranocenes 3 and 4 are the first bis(annulene)
actinocenes containing a cyclobutadienyl ligand. The tendency
for the uranium(wv) centers in 1-3 to acquire a third ligand, such
as THF or u-COT, contrasts to the behavior of uranocenes of the
type [U(n3-COTX),] (R denotes various alkyl, aryl and silyl
substituents), in which uranium generally resists additional
complexation.***¢ This property of 1-3 has also been observed
in the oligomeric thorium(v) paddle-wheel complex [Th(n*-
Cb"")(u:n®-COT)(:n>-COT)(K),(toluene)s],,* which contains
thorium in a geometry similar to that observed for one of the
uranium centers in 1. The observations on 1-4 suggest that our
hybrid uranocenes show different reactivity than first-
generation uranocenes towards Lewis bases, which is explored
further below.

Analysis of the metal-ligand orbital interactions in 3 and 4
revealed significant covalency. The significant interaction of the
Cb"" ligand with the uranium 6d orbitals relative to its inter-
action with the 5f orbitals is complementary to the interaction
of uranium with COT ligands, where the 5f orbital overlap is
stronger than with the 6d orbitals. The overall bonding scenario
is therefore somewhat different to that calculated for the acti-
nocenes [An(COT),]", in which An is the trivalent (n = —1) and
tetravalent (n = 0) cations of uranium, neptunium and pluto-
nium, where the covalency involves overlap of COT orbitals with
metal 5f and 6d orbitals, but with greater contributions thought
to originate from the latter.>*****-*> Based on our calculations,
we predict that the metal-ligand bonding in homoleptic cyclo-
butadienyl sandwich complexes with the general formula
[An(n*-C4R,),]" (An = U, Np, Pu; n = 0, —1) should tip the
balance of 5f and 6d orbital involvement further towards the

2952 | Chem. Sci, 2021, 12, 2948-2954
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latter. If correct, this would presumably result in the 5f orbitals
in these molecules adopting stronger atomic 5f character,
which may lead to interesting single-molecule magnet behavior
for 5f species such as [U(M*-C4Ry),]”, assuming they can be
synthesized.>

During our efforts to optimize the synthesis of 1-3, we
observed that, after extracting the reaction mixture obtained
from mixing K,COT and Na[U(n*-Cb"")(BH4);] into ether/
toluene, a gradual colour change from brown to dark red
occurred within a few hours. Analysis of the mixture by 'H and
*9Si{'H} NMR spectroscopy revealed the formation of a new
product in >90% yield (Fig. $39-S41}). The "H NMR spectrum in
benzene-Dg¢ of the crystalline material subsequently isolated
from the reaction (Fig. S42-S447%) features three peaks for the
SiMe; substituents at —21.37, —3.26 and +16.87 ppm inte-
grating in the ratio 18:9:9, respectively, while the COT
protons resonate at —32.54 ppm. In addition, resonances were
observed at +25.97 ppm, +45.52 ppm and +94.77 ppm, inte-
grating in the ratio 3:1:2. The *°Si{'"H} NMR spectrum
displays three peaks at —255.64, —64.11 and +37.87 ppm
(Fig. S45%). These data indicate that the local four-fold
symmetry of the Cb””’ ligand has been lowered to Cs; symmetry
in solution. On this basis, we hypothesized that the new product
contains the protonated, n*-allylic version of Cb””’, which forms
concurrently with activation of the ether solvent to give an
ethoxide ligand (Scheme 2). Further support for this proposals
was obtained from an EI-MS analysis of the isolated material,
which shows a peak at 729 Da, consistent with the formulation
[{(Cb”)U(COT)} + EtO + H], which also displays the correct
isotopic envelope (Fig. S471).

An X-ray diffraction study of single crystals obtained from an
ether solution of the new compound confirmed the proposed
molecular structure as [(n*-Cb”'H)U(n®-COT)(OEt)] (5) (Fig. 5,
Table S1%). The n’-bonding mode of the monoanionic Cb”'H
ligand displays U-C distances of 2.617(5), 2.741(4) and 2.647(4)
A, with the distance to the centroid of the ligand being 2.490(3)
A. The deviation of SiMe; substituent on the saturated carbon
atom (C3) from the Cb”"’H ring is 169.9(2)°, with the loss of ring
planarity also reflected in the C1-C2-C3-C4 torsion angle of
9.7(3)°. The U-O distance of 2.063(3) A is typical of a uranium(wv)
alkoxide. The U-COT., distance of 1.987(7) A is similar to that
found for the U1 center of 1.

Although the two-electron reductive cleavage of Et,O has
been reported to occur during the reactions of Ul; with KCp®
(Cp® = CsMe;, CsH,SiMe;, CsMeyH),** to the best of our
knowledge this is the first example of ether cleavage by ura-
nium(rv) with no concurrent change in the metal oxidation

@ " "
Me;Si SiMes |~ KoCOT/ E,0/ MesSi SiMes
)%Jk THF toluene H SiMes
MeySi” 1™ sitte [1/213] MesSi L omt
Ao 1| -3ABH) CoH, -
[HaB1” | “[BHd A= Na. K
[BH4] 5

[Na(THF),]®

Scheme 2 Synthesis of 5.
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Fig. 5 Thermal ellipsoid representation (50% probability) of the
molecular structure of 5. For clarity, only the allylic hydrogen atom is
shown.

state. Further insight into this process was obtained by reacting
1 and 2/3 with approximately 54 molar equivalents of Et,O in
toluene-Dg. The "H NMR spectra of the two reactions (Fig. S48-
S50, S52 and S53%) showed the formation of 5 essentially in
quantitative (>99%) yield. Significantly, the formation of ethene
was confirmed by a singlet at 5.25 ppm (Fig. S51 and S531), and
the >°Si{'"H} NMR spectra are the same as that of isolated 5
(Fig. S51 and S54%). Conducting the reaction of 2/3 with Et,O-
D,, in benzene-Dg led to the formation of C,D, (6 = 5.22 ppm),
the deuterated ethoxide ligand and the allylic 1*-Cb"”'D ligand,
shown by the similarity of the chemical shifts in the >H NMR
spectrum (Fig. $55 and S561) compared to those in the '"H NMR
spectrum of the non-deuterated reaction (Fig. S52 and S53%).

Furthermore, the lack of reaction between ether and the
bulkier complex 4 suggests that coordination of the substrate to
uranium is required in order for the cyclobutadienyl ligand to
abstract a proton, pointing towards uranium-ligand
cooperativity.

Conclusions

In conclusion, the synthesis of the uranium(iv) sandwich
complexes 1-4 containing cyclobutadienyl and cyclo-
octatetraenyl ligands was accomplished, with hybrid urano-
cenes 3 and 4 being new members of the bis(annulene) family of
actinide complexes. The tendency of the uranium centers in 1-3
to add a third ligand contrasts to the behavior of bis(cyclo-
octatetraenyl) uranium compounds. The need for bulky
substituents to prevent coordination of additional ligands was
demonstrated with the isolation of 4. A DFT study confirmed
that formation of the THF adduct 2 is energetically favourable
whereas formation of hypothetical 4-THF has a negligible
driving force. Analysis of the bonding in 3 and 4 revealed the
presence of appreciable covalency, with an intriguing

© 2021 The Author(s). Published by the Royal Society of Chemistry
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preference of the Cb”’ HOMOs to display more significant
interactions with the uranium 6d orbitals than with the 5f
orbitals, whereas the opposite is true for the uranium-COT
interactions. The reaction of 3 with ether to give the allyl-ligated
uranium(wv) ethoxide 5 implies that the Lewis acidity of
uranium combined with the basicity of the cyclobutadienyl
ligand may be of use in small-molecule activation, a concept
which is under development in our laboratory.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors thank the University of Sussex, the European
Research Council (CoG RadMag, grant 646740), the EPSRC (EP/
M022064/2), the Academy of Finland (grant 332294) and the
University of Oulu (Kvantum Institute) for financial support.
Computational resources were provided by the Center for
Science in Finland and the Finnish Grid and Cloud Infrastruc-
ture project (urn:nbn:fi:research-infras-2016072533) for finan-
cial support. The authors also thank the reviewers of the
manuscript for their insightful comments.

Notes and references

1 D. Seyferth, Organometallics, 2003, 22, 2-20.

2 H. C. Longuet-Higgins and L. E. Orgel, J. Chem. Soc., 1956,
1969-1972.

3 G. F. Emerson, L. Watts and R. Pettit, J. Am. Chem. Soc., 1965,
87, 131-133.

4 N. V. Shvydkiy and D. S. Perekalin, Coord. Chem. Rev., 2017,
349, 156-168.

5 P. M. N. b6, N. G. Akhmedov, J. L. Petersen, B. S. Dolinar and
C. Milsmann, Chem. Commun., 2020, 56, 5397-5400.

6 D. Kumar, M. Deb, ]J. Singh, N. Singh, K. Keshav and
A. ]. Elias, Coord. Chem. Rev., 2016, 306, 115-170.

7 C. Yu, W.-X. Zhang and Z. Xi, Organometallics, 2018, 37,
4100-4104.

8 O. 1. Afanasyev, A. A. Tsygankov, D. L. Usanov,
D. S. Perekalin, N. V. Shvydkiy, V. I. Maleev, A. R. Kudinov
and D. Chusov, ACS Catal., 2016, 6, 2043-2046.

9 D. S. Perekalin, N. V. Shvydkiy, Y. V. Nelyubina and
A. R. Kudinov, Chem.-Eur. J., 2015, 21, 16344-16348.

10 B. M. Day, F.-S. Guo, S. R. Giblin, A. Sekiguchi,
A. Mansikkamiki and R. A. Layfield, Chem.-Eur. J., 2018,
24, 16779-16782.

11 J. P. Durrant, J. Tang, A. Mansikkaméki and R. A. Layfield,
Chem. Commun., 2020, 56, 4708-4711.

12 A. Chakraborty, B. M. Day, J. P. Durrant, M. He, J. Tang and
R. A. Layfield, Organometallics, 2020, 39, 8-12.

13 N. Tsoureas, A. Mansikkamiki and R. A. Layfield, Chem.
Commun., 2020, 56, 944-947.

14 J. T. Boronski, L. R. Doyle, J. A. Seed, A. J. Wooles and
S. T. Liddle, Angew. Chem., Int. Ed., 2020, 59, 295-299.

Chem. Sci., 2021, 12, 2948-2954 | 2953


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0sc05199c

Open Access Article. Published on 08 January 2021. Downloaded on 1/20/2026 11:06:15 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

15 J. T. Boronski and S. T. Liddle, Eur. J. Inorg. Chem., 2020,
2020, 2851-2861.

16 A. Sekiguchi, T. Matsuo and H. Watanabe, J. Am. Chem. Soc.,
2000, 122, 5652-5653.

17 A. Sekiguchi and T. Matsuo, Synlett, 2006, 2006, 2683-2698.

18 D. Patel, J. McMaster, W. Lewis, A. J. Blake and S. T. Liddle,
Nat. Commun., 2013, 4, 2323.

19 D. Seyferth, Organometallics, 2004, 23, 3562-3583.

20 A. Streitwieser and U. Mueller-Westerhoff, J. Am. Chem. Soc.,
1968, 90, 7364.

21 K. N. Raymond, New J. Chem., 2015, 39, 7540-7543.

22 S.K. Singh, C.J. Cramer and L. Gagliardi, Inorg. Chem., 2020,
59, 6815-6825.

23 A. Kerridge, RSC Adv., 2014, 4, 12078-12086.

24 A. Kerridge, Dalton Trans., 2013, 42, 16428-16436.

25 M. Schultz, C. J. Burns, D. J. Schwartz and R. A. Andersen,
Organometallics, 2000, 19, 781-789.

26 A. Avdeef, K. N. Raymond, K. O. Hodgson and A. Zalkin,
Inorg. Chem., 1972, 11, 1083-1088.

27 ]J. A. Higgins, F. G. N. Cloke and S. M. Roe, Organometallics,
2013, 32, 5244-5252.

28 J. A. Higgins Frey, F. G. N. Cloke and S. M. Roe,
Organometallics, 2015, 34, 2102-2105.

29 P. L. Arnold, A. Prescimone, J. H. Farnaby, S. M. Mansell,
S. Parsons and N. Kaltsoyannis, Angew. Chem., Int. Ed.,
2015, 54, 6735-6739.

30 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.,
1996, 77, 3865-3868.

31 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.,
1997, 78, 1396.

32 C. Riplinger and F. Neese, J. Chem. Phys., 2013, 138, 34106.

33 C. Riplinger, B. Sandhoefer, A. Hansen and F. Neese, J.
Chem. Phys., 2013, 139, 134101.

34 C. Riplinger, P. Pinski, U. Becker, E. F. Valeev and F. Neese, /.
Chem. Phys., 2016, 144, 24109.

35 M. Saitow, U. Becker, C. Riplinger, E. F. Valeev and F. Neese,
J. Chem. Phys., 2017, 146, 164105.

36 Y. Guo, C. Riplinger, U. Becker, D. G. Liakos, Y. Minenkov,
L. Cavallo and F. Neese, J. Chem. Phys., 2018, 148, 11101.

2954 | Chem. Sci, 2021, 12, 2948-2954

View Article Online

Edge Article

37 M. Ernzerhof and G. E. Scuseria, J. Chem. Phys., 1999, 110,
5029-5036.

38 C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158-
6170.

39 F.-S. Guo, N. Tsoureas, G.-Z. Huang, M.L. Tong,
A. Mansikkamaéki and R. A. Layfield, Angew. Chem., Int. Ed.,
2020, 59, 2299-2303.

40 F.-S. Guo, Y.-C. Chen, M.-L. Tong, A. Mansikkamaki and
R. A. Layfield, Angew. Chem., Int. Ed., 2019, 58, 10163-10167.

41 T. Arliguie, M. Lance, M. Nierlich, J. Vigner and
M. Ephritikhine, J. Chem. Soc., Chem. Commun., 1995, 183—
184.

42 M. Xémard, S. Zimmer, M. Cordier, V. Goudy, L. Ricard,
C. Clavaguéra and G. Nocton, J. Am. Chem. Soc., 2018, 140,
14433-14439.

43 H. Braunschweig, M. A. Celik, K. Diick, F. Hupp and
1. Krummenacher, Chem.—Eur. J., 2015, 21, 9339-9342.

44 J. Rausch, C. Apostolidis, O. Walter, V. Lorenz, C. G. Hrib,
L. Hilfert, M. Kiihling, S. Busse and F. T. Edelmann, New J.
Chem., 2015, 39, 7656-7666.

45 V. Lorenz, B. M. Schmiege, C. G. Hrib, J. W. Ziller,
A. Edelmann, S. Blaurock, W. J. Evans and F. T. Edelmann,
J. Am. Chem. Soc., 2011, 133, 1257-1259.

46 J. S. Parry, F. G. N. Cloke, S. J. Coles and M. B. Hursthouse, J.
Am. Chem. Soc., 1999, 121, 6867-6871.

47 J. T. Boronski, A. J. Wooles and S. T. Liddle, Chem. Sci., 2020,
11, 6789-6794.

48 R. G. Hayes and N. Edelstein, J. Am. Chem. Soc., 1972, 94,
8688-8691.

49 M. Pepper and B. E. Bursten, Chem. Rev., 1991, 91, 719-741.

50 J. P. Clark and J. C. Green, J. Chem. Soc., Dalton Trans., 1977,
505-508.

51 N. Roesch and A. Streitwieser, J. Am. Chem. Soc., 1983, 105,
7237-7240.

52 A.H. H. Chang and R. M. Pitzer, J. Am. Chem. Soc., 1989, 111,
2500-2507.

53 K. R. Meihaus and J. R. Long, Dalton Trans., 2015, 44, 2517~
2528.

54 C. P. Larch, F. G. N. Cloke and P. B. Hitchcock, Chem.
Commun., 2008, 82-84.

© 2021 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0sc05199c

	Synthesis, bonding properties and ether activation reactivity of cyclobutadienyl-ligated hybrid uranocenesThis paper is in memory of Professor...
	Synthesis, bonding properties and ether activation reactivity of cyclobutadienyl-ligated hybrid uranocenesThis paper is in memory of Professor...
	Synthesis, bonding properties and ether activation reactivity of cyclobutadienyl-ligated hybrid uranocenesThis paper is in memory of Professor...
	Synthesis, bonding properties and ether activation reactivity of cyclobutadienyl-ligated hybrid uranocenesThis paper is in memory of Professor...
	Synthesis, bonding properties and ether activation reactivity of cyclobutadienyl-ligated hybrid uranocenesThis paper is in memory of Professor...
	Synthesis, bonding properties and ether activation reactivity of cyclobutadienyl-ligated hybrid uranocenesThis paper is in memory of Professor...


