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lustering retrosynthesis pathways
with learned strategy†

Yiming Mo, ‡abc Yanfei Guan, ‡a Pritha Verma,a Jiang Guo, d Mike E. Fortunato,a

Zhaohong Lu,e Connor W. Coley a and Klavs F. Jensen *a

With recent advances in the computer-aided synthesis planning (CASP) powered by data science and

machine learning, modern CASP programs can rapidly identify thousands of potential pathways for

a given target molecule. However, the lack of a holistic pathway evaluation mechanism makes it

challenging to systematically prioritize strategic pathways except for using some simple heuristics.

Herein, we introduce a data-driven approach to evaluate the relative strategic levels of retrosynthesis

pathways using a dynamic tree-structured long short-term memory (tree-LSTM) model. We first curated

a retrosynthesis pathway database, containing 238k patent-extracted pathways along with �55 M

artificial pathways generated from an open-source CASP program, ASKCOS. The tree-LSTM model was

trained to differentiate patent-extracted and artificial pathways with the same target molecule in order to

learn the strategic relationship among single-step reactions within the patent-extracted pathways. The

model achieved a top-1 ranking accuracy of 79.1% to recognize patent-extracted pathways. In addition,

the trained tree-LSTM model learned to encode pathway-level information into a representative latent

vector, which can facilitate clustering similar pathways to help illustrate strategically diverse pathways

generated from CASP programs.
Introduction

Computer-aided synthesis planning (CASP), initially proposed
by Corey,1 has recently been extensively investigated and
improved with the implementation of data science and
machine learning.2–5 CASP aims at decomposing the target
molecule step by step into commercially available compounds
or simple precursors that can be easily synthesized. During this
process, single-step retrosynthetic reactions can be proposed
using reaction templates (expert-encoded reaction rules3,6,7 or
machine-extracted retrosynthetic transformations8–10) or
template-free retrosynthesis models.4,11–14 For each interme-
diate molecule, there could be numerous valid strategies to
transform it into corresponding precursors. To avoid the
assachusetts Institute of Technology,

ail: kensen@mit.edu

eering, Zhejiang University, Hangzhou,

nological Innovation Center, Hangzhou,

e Laboratory, Massachusetts Institute of

39, USA

s Institute of Technology, Cambridge,

tion (ESI) available. See DOI:

his work.

the Royal Society of Chemistry
combinatorial explosion during recursive expansion to nd
viable multistep retrosynthesis pathways, either heuristic
rules15,16 or data-driven ranking models2,5,8 can be implemented
to prioritize promising single-step retrosynthetic reactions.
Depending on the constraints that users set for the retrosyn-
thesis search, such as search time and number of single-step
expansions allowed per intermediate, a successful retro-
synthetic search could result in thousands of potential retro-
synthesis pathways. For example, the open-source program,
ASKCOS,5,17,18 gave a total of 1498 different retrosynthesis
pathways for hydroxychloroquine with only 30 seconds search
time on a 20-core workstation.

Two challenges naturally arise with the large number of
pathways proposed by the modern CASP programs:

(1) Prioritizing strategic retrosynthesis pathways. In spite of
the effort to improve the quality of the single-step retrosynthetic
transformation, the nal retrosynthesis pathways found may
not be useful even though each single-step reaction is valid and
selective. As an intuitive example, protection and deprotection
reactions are important steps in the retrosynthesis design;
however, without pathway-level guidance during the retro-
synthetic search, the program could produce pathways
composed of a series of nonproductive protection and depro-
tection reactions.

(2) Clustering similar retrosynthesis pathways. A majority of
the retrosynthesis pathways proposed differ only at a sub-
portion level, leaving users overwhelmed by similar pathways,
Chem. Sci., 2021, 12, 1469–1478 | 1469
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and making it hard to focus on the pathways that are strategi-
cally different.

Simple heuristics can be implemented to partially mitigate
these two challenges. Sorting retrosynthesis pathways by the
number of reaction steps can easily prioritize pathways that
contain no or fewer nonproductive steps (e.g. a series of
protection and deprotection reactions). Schwaller et al.4 and Lin
et al.14 designed customized scoring functions, which aggre-
gates the single-step reaction likelihood and the degree of
molecule simplication, to evaluate candidate retrosynthesis
reactions in the tree search. These heuristic scoring functions
will guide the tree search towards simple precursors. Alterna-
tively, Badowski et al.7 excluded protection and deprotection
reaction rules during the retrosynthetic search to focus only on
the productive disconnections. They treated protection reac-
tions as a mask for the incompatible functional groups.
However, this is only possible with their expert-encoded reac-
tion rules that have extensive information about reaction type
and functional group tolerance. In addition, application-
oriented metrics can also be used to sort pathways. For
example, price of the nal target is one of key considerations for
process chemistry. Badowski et al.19 developed a price estimator
that used recursive formulae to assign cost to individual
components along the pathways, and price penalties were
applied to strategically similar pathways to ensure diversity in
the top-ranking routes. Despite their inclusion of many expert-
designed considerations when estimating the price, such as
reaction yield and reaction cost composed of labor plus
equipment/solvent/purication, target compound price esti-
mation may still remain challenging without accurate predic-
tion of the reaction stoichiometry, reaction concentration, and
separation efficiency.

Applying these heuristics during the retrosynthesis search
can certainly guide the retrosynthesis search towards more
desired pathways. However, retrosynthetic design is oen
referred to as an art, and these heuristics can also potentially
lead to missing “smart” pathway designs that, otherwise, could
be found without these heuristics. For example, it can be
tactically benecial to temporarily increase complexity with
directing groups or protecting groups for signicant structural
simplication in the subsequent steps in the retrosynthesis
pathway.20 Gajewska et al. designed an algorithm to enable
automatic discovery of new tactical two-step syntheses that
involves counterintuitive complexity increase in the rst step,21

highlighting that such tactical synthetic strategies are oen
ignored by retrosynthesis programs with the current imple-
mentation of the expert-enforced heuristics, i.e. preferring
simple and short pathways.

Thus, it remains of interest to develop a methodology to
evaluate CASP retrosynthesis pathways based on their strategic
viability and to cluster similar pathways aer they are gener-
ated. In this work, we address these two challenges via a data-
driven approach, which has the potential to avoid any bias
introduced by expert-designed rules. First, we curate a retro-
synthesis pathway database containing pathways extracted from
a commercial patent reaction database, Pistachio, and
machine-designed pathways using the ASKCOS program.5 Due
1470 | Chem. Sci., 2021, 12, 1469–1478
to the lack of readily available models to encode information of
the whole pathway,14 we built a dynamic tree-structured LSTM
model to encode pathways with various structures into a latent
vector. The pathway encoder was trained on the curated data-
base to differentiate between patent-extracted and machine-
designed pathways with the purpose of understanding the
relative strategic level of different pathways. This learned latent
vector aggregates the pathway-level information that can be
used for either ranking different pathways with the same target
molecule, or clustering strategically similar pathways.

Results and discussion
Curating the retrosynthesis pathway database

Previous efforts on reaction prediction and single-step retro-
synthesis planning have relied on public or proprietary single-
step reaction databases, such as Reaxys,22 USPTO,23 and Pista-
chio.24 In contrast, an accessible and well-curated retrosynthesis
pathway database is not available. One exception is Drug
Future, which offers a public Drug Preparation Database con-
taining retrosynthesis pathway information of 7000 commercial
or investigational drugs.25 However, the data is provided as
either images or texts, which require substantial effort to make
them machine-readable. This challenge motivated us to extract
and build a machine-readable database of multistep retrosyn-
thesis pathways from single-step reaction databases.

Converting single-step reactions into a reaction network (i.e.
a directed graph) can help to identify pathways in the network.
However, a reaction network of the whole database will contain
single-step reactions from various literature sources, where the
roles of products and reactants could be reversed creating the
possibility of cyclic reaction paths. As a consequence, it could be
difficult to dene a meaningful retrosynthesis pathway algo-
rithmically. Considering that drug or ne chemical patents are
typically preparation-oriented, single-step reactions extracted
from a single patent would be highly related with fewer cyclic
patterns. As the example shown in Fig. 1, a reaction network was
constructed from a recent patent (US10011604B2). Starting
from root nodes, i.e. compounds only appearing as products
and not as reactants, traversing through the network with
a complete depth-rst search (DFS) algorithm will give all the
retrosynthesis pathways embedded in the network. Reagents
were omitted from the network to make the neural model focus
on assessing the retrosynthesis design strategy, i.e. how a target
molecule is decomposed step by step towards commercially
available precursors, rather than on minor differences in
reagent choices for a particular transformation. To improve
data quality, we implemented the state-of-the-art atommapping
algorithm, RXNmapper,26 for reaction validation and accurate
differentiation between reactants and reagents.

With this pathway curation algorithm, we extracted 907 209
retrosynthesis pathways with a depth of 2–20 from the single-
step reaction patent database, Pistachio.24 The extraction
process would work similarly on other single-step reaction
databases that contain reaction source identiers (e.g. USPTO23

database with patent numbers and Reaxys22 database with
literature identiers). 85% of patents provided fewer than 10
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (a) A reaction network extracted from patent US10011604B2. Each green dot represents a reaction node connecting product to its
reactants, and reagents in each reaction are omitted. The compounds with red labels are root nodes. Retrosynthesis pathways that can be
extracted from this reaction network include: (1) [1]/ [5, 6, 10]/ [14]/ [16, 17]/ [19, 20]; (2) [2]/ [6, 7, 11]/ [15]/ [17, 18]/ [19, 20]; (3)
[3] / [4, 11] / [15] / [17, 18] / [19, 20]; (4) [9] / [8, 11] / [15] / [17, 18] / [19, 20]; (5) [13] / [11, 12] / [15] / [17, 18] / [19, 20]. (b)
Histogram of number of retrosynthesis pathways extracted per patent. (c) Histogram of depth of extracted retrosynthesis pathways. (d)
Distribution of pairwise Tanimoto similarities between pairs of 50 000 randomly selected target molecules in retrosynthesis pathways.
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pathways each (Fig. 1b). The distribution of pathway depth is
shown in Fig. 1c. Because the goal of this work was to learn the
design strategies of multistep retrosynthesis pathways, we
focused on the pathways of depth 4 to 10, excluding very short
pathways (depth of 2 and 3) that seldom reect strategic design
information, as well as lengthy pathways (depth >10), typically
undesired in practice. Using these pathways, we examined the
target compounds' similarity to ensure the diversity of the ret-
rosynthesis pathways curated. Fig. 1d shows the pairwise
Tanimoto similarity of 50 000 randomly selected target
compounds, where 98% of the molecule pairs show a similarity
between 0 and 0.2, indicating diverse target molecules of the
retrosynthesis pathway data were explored.

Next, for each patent-extracted pathway, we used the ASK-
COS program5 to generate a set of articial retrosynthesis
pathways with the same target compound as the corresponding
© 2021 The Author(s). Published by the Royal Society of Chemistry
patent-extracted pathway. Up to 300 articial pathways were
randomly selected from top 3000 pathways generated from
ASKCOS. Ultimately, 238 379 patent pathways with depth
between 4 and 10 were curated, and each pathway had 5–300
articial pathways. This pathway database was randomly split
into 80% training, 10% validation, and 10% testing data for the
following study while ensuring that no pathways belonging to
the same patent ended up in two different data groups.

Tree-structured LSTM model

Linear or branched retrosynthesis pathways can be viewed as
tree-structured data. For example, convergent synthesis
contains multiple branches in order to reduce the maximum
pathway depth for improved overall synthesis yield. Consid-
ering that there are no retrosynthesis pathway encoders readily
available, we decided to implement the tree-structured long
Chem. Sci., 2021, 12, 1469–1478 | 1471
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short-term memory network (tree-LSTM) model to encode the
overall pathway information. The tree-LSTM algorithm was
initially proposed for tasks such as semantic relatedness of two
sentences and sentiment classication.27 It has recently been
used to encode an organic molecule by converting atoms into
tree nodes and bonds into tree connections.28 The encoded
pathway is represented by a latent numeric vector, which will be
further processed for two tasks as discussed above, ranking
pathways based the relative strategic level and clustering similar
pathways.

Since each retrosynthesis pathway has a different tree
structure, the tree-LSTM structure is constructed on the y
accordingly (Fig. 2). The tree-LSTM model is designed to
understand the design strategies of multistep reactions, and
thus, each reaction in the pathway is considered as a node, and
the reaction nodes are connected via intermediate compounds
as the edges. The Morgan ngerprints of products29 and reac-
tions30 with 2048 bits and a radius of 2 as implemented in
RDKit31 were used to encode the reaction node informa-
tion.2,29,30 Using both reaction ngerprint and product nger-
print as inputs gives the model a complete picture of the
reaction core and the unchanged fragments. This encoded
reaction representation was then fed into a reaction embedding
neural network. The structure of the tree-LSTM network is
Fig. 2 (a) A representative convergent synthesis pathway of cabozantin
corresponding product are converted to 2048 bit Morgan fingerprints w
workflow of the tree-LSTM network. Each reaction node information p
reaction information into a latent vector as the input of LSTM node. C
propagates following the tree connections towards the root node (Rxn 1).
aggregated via a direct sum of hidden states and a weighted sum of cel
vector of the pathway containing the overall pathway information. The la
strategic level score (SLScore) representing the design strategy of a path
clustering purpose.

1472 | Chem. Sci., 2021, 12, 1469–1478
identical to the structure of the pathway tree, and each LSTM
node takes in the corresponding learned reaction node
embedding as input (Fig. 2b). Unlike linear-chained LSTM
models, where the calculation propagates from the start to the
end of the sequence or in the reversed direction, the tree-LSTM
model evaluates child nodes rst and then traverses the infor-
mation back to their parent nodes via a direct sum of hidden
states and a weighted sum of cell states with forget gates (see
ESI for detailed descriptions†). The hidden state of the root
node is the output of the tree-LSTM model, which is a latent
vector representation of all reactions in the entire pathway. This
latent vector can either be passed through a feedforward neural
network (FFNN) scorer to give a relative strategic level score
(SLScore) for comparing pathways with the same target mole-
cule, or via unsupervised learning algorithms, it can be used to
cluster pathways with the same target into subgroups with
similar retrosynthesis designs.

Pathway ranking based on strategic level

With the tree-LSTM model, we sought to train the model to
understand the pathway-level information. The rst task was
ranking pathways based on their strategic level, which considers
various aspects of the pathway design, such as whether there are
nonproductive sequences of reactions, the complexity of the
ib 21 extracted from patent US20140155396A1. Each reaction and its
ith a radius of 2 as inputs for tree-LSTM model. (b) The structure and
asses through a feed-forward neural network (FFNN) to embed the
alculation starts from leaf nodes (Rxn 2 and Rxn 5) on the tree, and
When a node hasmultiple child nodes, the information of child nodes is
l states with forget gates. The hidden state of the root node is a latent
tent vector can be passed through a scorer neural network to give the
way, or directly used as a numerical representation of the pathway for

© 2021 The Author(s). Published by the Royal Society of Chemistry
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pathway design, and the commonality of decomposing the
molecule in a certainway. In brief, the strategic levelmeasures the
likelihood of pathways to be carried out by chemists in practice.
Each patent pathway has up to 300 articial pathways with the
same target compound as the patent pathway. The patent path-
ways were designed by chemists and evaluated in practice, while
the quality of pathways proposed by current CASP programs varies
wildly because current state-of-the-art retrosynthesis programs
still only examine single-step plausibility without evaluating
pathway-level design strategy. Thus, we assumed that patent
pathways are more likely to be more strategic than the articial
pathways of the same targets. Although this assumption doesn't
always hold since pathways proposed by ASKCOS have been
demonstrated experimentally with successful syntheses of drug
molecules,5 the consequence of having articial pathways to be as
strategic as or better than the patent pathways would only make it
hard for the model to differentiate between those pathways. With
this assumption, we aimed at training the tree-LSTM model to
give a higher strategic level score (SLScore) for the patent pathway
compared to its accompanied articial pathways. With this
training procedure, the SLScore is interpreted as a relative
quantity that is only used for comparing pathways with the same
target molecule. To be noted, the SLScore absolute value of an
individual pathway has little meaningful information itself, or
when comparing across pathways with different targets. The
trained tree-LSTM pathway ranking model gave a top-1 accuracy
of 79.1% on the testing dataset described above (Table 1).

To facilitate the understanding of how the developed tree-
LSTM model was capable of differentiating the patent path-
ways and articial pathways, we implemented the following
three baseline models that utilized heuristic metrics to rank
pathways.

Depth baseline model. Pathway depth is oen the rst
metric to consider since a short and simple retrosynthesis
design is always preferred due to its reduced synthesis effort in
practice. However, relying on this metric alone does not give
a full picture of pathways' strategic level, resulting in 13.9%
(54.9%) top-1 accuracy.

SCScore baseline model. A portion of the non-strategic
pathways given by the retrosynthesis programs contain
Table 1 Overall top-k accuracy in pathway ranking tested using on the
held-out testing dataset. Top-k accuracy denotes the percentage of
data where patent-extracted pathway is ranked in the top-k scored
pathways

Model Deptha (%) SCScore (%)
Hybrid
(%)

Tree-LSTM
(%)

Top 1 13.9 (54.9) 33.5 39.6 79.1
Top 5 21.9 (63.0) 48.0 55.0 88.6
Top 10 29.0 (70.2) 58.0 64.3 92.6
Top 30 55.2 (85.6) 76.2 80.7 97.5
Top 50 72.0 (92.1) 83.6 87.0 98.7
Top 100 90.8 (97.7) 92.0 93.8 99.6

a Pathways with the same depth were given a unique ranking position.
The worst-case and best-case scenario accuracy were reported outside
and inside the parenthesis, respectively.

© 2021 The Author(s). Published by the Royal Society of Chemistry
nonproductive sequence of reactions, leading to non-
decreasing molecular complexity along the pathway. This
pattern could be captured by the complexity change of inter-
mediate compounds. To represent the evolution of complexity
through the pathway, the second baseline model starts with
linearizing the tree-structured retrosynthesis pathway into
individual linear pathways via splitting at branching nodes, and
then tracks the intermediates' complexity ow through each
linear pathway with a complexity vector. We used SCScore
developed by Coley et al.20 to quantify the complexity of each
compound. For multi-reactant reactions, the most complex
compound was selected to represent the complexity. The con-
structed complexity vector was then passed through a FFNN to
generate a score for each linear pathway, followed by min-
pooling to aggregate the scores of all linear pathways
belonging to the same retrosynthesis pathway as its score. The
min-pooling was used since the strategic level assessment of
retrosynthesis pathways should be dominated by the least
strategic linear pathway (see ESI for detailed model
description†). Because the presence of the nonproductive
sequences of reactions will lead to increasing the pathway
depth, the improvement using the SCScore baseline over the
depth baseline was only marginal (top-1 accuracy of 31%).

Hybrid baseline model. Next, we developed a third baseline
model that used hybrid descriptors of the pathway. In addition to
SCScore, this model also includes pathway depth, the number of
linear pathways within a retrosynthesis tree, number of nodes
and leaves, and maximum number of child nodes. To describe
the intermediates' complexity evolution through the pathway
Fig. 3 Embedding of single-step reactions from ten representative
reaction classes projected to a two-dimension space using t-SNE. The
embeddingwas generated by passing the single-step reaction features
(product fingerprint and reaction fingerprint) through the trained
reaction encoder. Each reaction class contains 600 randomly selected
reaction records from the testing dataset. Reaction classes were
assigned in the Pistachio database using the NameRxn tool.33

Chem. Sci., 2021, 12, 1469–1478 | 1473
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without linearization as the previous SCScore baselinemodel, the
complexity descriptors used in this hybrid baselinemodel are the
maximum SCScore for leaf nodes, the minimum and the
maximum SCScore for intermediates, the minimum and the
maximum SCScore difference for each reaction, and the SCScore
for the target compound. Similarly, the constructed vector of
hybrid descriptors was passed through a FFNN to generate the
strategic level score for each pathway (see ESI for detailed model
description†). This hybrid model provided an improved ranking
accuracy on the testing dataset, indicating that the strategic level
is partially reected among these descriptors.

The tree-LSTM model signicantly outperformed baseline
models in distinguishing the patent pathways from articial ones
(Table 1). As mentioned in the Introduction section, a strategic
retrosynthetic design can be considered as an art indicating the
difficulty to standardize the evaluation of a newly designed
pathway. Using human-designed metrics similar to the three
baseline models described above shows a low-to-medium level of
Fig. 4 Examples from the testing dataset where tree-LSTM model score
pathways from patent US07419984B2. (b) Example pathways from paten

1474 | Chem. Sci., 2021, 12, 1469–1478
success, and it is expected that adding more descriptors to the
hybrid model will further improve the accuracy. On the other
hand, directly learning from data with tree-LSTM model avoids
bias introduced by the human-designed metrics.

To demonstrate that the tree-LSTMmodel captures the overall
single-step reaction relationship in the pathway, we examined the
output of the reaction node embedding NN (i.e. the input to the
LSTM node). 6000 randomly selected single-step reactions from
the testing dataset belonging to 10 different frequently used
reaction types were embedded using the trained reaction node
embedding NN from the tree-LSTM model, giving a vector
representation of each single-step reaction. These 6000 vector
representations were projected to a two-dimensional space using
t-Distributed Stochastic Neighbor Embedding (t-SNE) method32

(Fig. 3). Reactions of different types were clustered in groups,
indicating that the trained reaction node embedding under-
stands what type of reaction is performed at each reaction node.
Then, the tree-LSTMmodel incorporates all single-step reactions
d the patent pathways higher than the ASKCOS pathways. (a) Example
t US20120015941A1.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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and uses the characteristics of their interconnections to rank
strategic pathways higher than non-strategic ones.

Fig. 4 and 5 depict several representative pathway ranking
examples from the testing dataset, and additional examples can
be found in the ESI.†

A consequence of not having pathway-level guidance when
searching viable synthetic routes is the generation of nonpro-
ductive sequences of reactions despite each single-step reaction
being feasible. In Fig. 4a. ASKCOS pathway 1 uses an indirect
two-step approach for the synthesis of the boronic ester 38 from
the aryl iodide 36, while it could be synthesized in a single step
from 36 directly. Thus, despite that the ASKCOS pathway 1 has
the same step count as the patent pathway, the tree-LSTM
model gives it a slightly lower SLScore since the reaction
sequence [35, 38] / [39] / [36] can be simplied with a single
reaction. Furthermore, in the ASKCOS pathway 2, the unnec-
essary manipulation of the aryl boron reagents led to an
extremely low SLScore. In addition to recognizing nonproduc-
tive reaction sequences, the tree-LSTM model is also able to
capture pathways with functional group incompatibility issues,
especially as it pertains to the strategic use of protecting groups.
For example, the ASKCOS pathway in Fig. 4b, compared to the
Fig. 5 Examples from the testing dataset where tree-LSTM model score
pathways from patent US07737173. (b) Example pathways from patent U

© 2021 The Author(s). Published by the Royal Society of Chemistry
patent pathway, involves a reversed order of the Boc group
deprotection step and the amide formation step. The potential
site-selectivity issue arising in the amide bond formation step is
captured effectively by the tree-LSTMmodel that assigns a lower
SLScore to the ASKCOS pathway.

Analyzing the cases where the model failed help reveal the
underlying reasons that the rest 20.9% of testing patent path-
ways were considered less strategic than some articial path-
ways. In Fig. 5a, the high scoring ASKCOS pathway involved
Nenitzescu indole synthesis as a key step that signicantly
reduces the complexity of the intermediates 61, leading to the
usage of simpler starting materials and a shorter synthetic route
compared to the patent pathway. This example echoes our
previous assumption and demonstrates that, despite having
articial pathways that are more strategic than the patent
pathways, the model was still able to learn to recognize good
retrosynthetic designs proposed by ASKCOS. Nevertheless,
training the tree-LSTM model as a ranking task, to some extent,
limits model's capability besides understanding the relation-
ship of single-step reactions. For example, the articial pathway
in Fig. 5b was given a slightly higher score than the patent
pathway even though it unnecessarily utilizes an unsaturated
d the ASKCOS pathways higher than the patent pathways. (a) Example
S08586607B2.
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ester containing starting material that is later reduced, thus
introducing an additional step in the synthesis. This example
demonstrates that the current tree-LSTM model is unable to
Fig. 6 (a) The reaction network graph of 2000 retrosynthesis pathways
a unique compound, and the node size is linearly correlated with it
connections from one example cluster are highlighted with blue color.
The node size is linearly correlated with its appearance counts among
pathways. Pathway 1 and 2 are from the example cluster shown in Fig. 6

1476 | Chem. Sci., 2021, 12, 1469–1478
evaluate pathways out of the scope of the given pathway infor-
mation, e.g., knowing that there are more desirable precursors
to improve the retrosynthetic design.
of vadadustat 77 generated from ASKCOS. Each circle node represents
s appearance counts among the 2000 pathways. Compounds and
(b) The reaction network subgraph of the highlighted example cluster.
this cluster. (c) Three representative pathways chosen from the 2000
b, and pathway 3 is from a different cluster.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Clustering similar pathways

As demonstrated above, the tree-LSTM model was trained to
capture the relationship among single-step reactions within
a pathway, and the latent vector output from the root node is
a learned embedding of the pathway. This pathway-level repre-
sentation encodes both single-step reactions and their connec-
tivity. Intuitively, this representation can be used to analyze the
similarity between two pathways with the same target compound.
Thus, we decided to use this learned pathway embedding to
cluster retrosynthesis pathways given by the current ASKCOS
program to tackle the challenges in organizing numerous retro-
synthesis pathways found and only providing meaningfully
different pathways for users to examine. The pathway embeddings
were clustered with hierarchical density-based spatial clustering
algorithm (HDBSCAN)34 to group pathways with similar strategies.

To illustrate how this approach can help organize a large
number of pathways generated, we selected vadadustat 77 as the
target molecule. Aer searching pathways for 45 seconds using
ASKCOS, we selected the top 2000 pathways found for the following
analysis (current ASKCOS ranks pathways based on pathway depth
and plausibility of all single-step reactions). Fig. 6a shows the
reaction network graph of these 2000 pathways, with each node
and edge representing a unique compound and a reaction
connection, respectively. Despite having 2000 pathways, there are
only 142 unique compounds in total, indicating that many path-
ways share common intermediates. Aer clustering, the blue-color
highlighted nodes and edges in Fig. 6a exemplies a pathway
cluster, and Fig. 6b zooms in this cluster showing that three major
intermediates compounds are shared within this cluster. We
picked two pathways from this cluster (pathway 1 and 2 in Fig. 6c),
and they are strategically similar only with a reversed order of the
amide formation reaction and Suzuki–Miyaura C–C coupling
reaction. In contrast, the pathway from a different cluster (pathway
3 in Fig. 6c) is a fundamentally different retrosynthetic design, that
installs the carboxylic acid group with a Kolbe–Schmitt reaction on
the phenylpyridine precursor instead of constructing this biaryl
structure using a Suzuki–Miyaura reaction in pathway 1 and 2
shown in Fig. 6c. This demonstrates that the tree-LSTM model,
despite being trained for pathway ranking, can encode pathways
from a retrosynthetic design perspective giving the opportunity to
use this learned pathway encoding for clustering purpose.
Limitations and frontiers

The tree-LSTM model was demonstrated to understand strategic
retrosynthesis design and cluster strategically similar pathways.
Nevertheless, due to limitations in data labelling, the tree-LSTM
model was trained to differentiate patent-extracted pathway and
articial pathways, with the assumption that patent-extracted
pathways should be considered more strategic than articial
pathways. Thus, the model, to a certain extent, will ignore crea-
tive articial pathways with comparable or improved strategic
levels compared to the patent-extracted pathways. In addition,
since the sources of patent-extracted and articial pathways are
different, certain data discrepancy (e.g. appearance frequency of
different reaction types) may exist, biasing the model towards
patterns that appear more frequently in patent-extracted
© 2021 The Author(s). Published by the Royal Society of Chemistry
pathways than in articial pathways. Looking forward, these
limitations can be mitigated by (1) having multiple patent-
extracted pathways (currently only one) for the same target
molecule, (2) having more accurate and richer labelling of
different pathway designs, and (3) having more examples with
tactical retrosynthesis designs (e.g. the use of directing groups).

The current tree-LSTMmodel does not explicitly evaluate the
plausibility or selectivity of each single-step reaction. However,
there have been many models developed for examining single-
step reactions,35–38 and the pathways fed into the tree-LSTM
model can be pre-evaluated with those models. Thus, we
decided to omit single-step evaluation and only focus on overall
strategic relationship of all singe-step reactions in the pathway.

Furthermore, this work relied on the Pistachio patent dataset
that was extracted using natural language processing algorithm
(NLP) by Nextmove. Despite that data was deeply cleaned and
curated with the state-of-the-art atom mapping algorithm, the
potential data quality issuemay still mislead the tree-LSTMmodel
to using some minor features that have never appeared in the
articial pathways for ranking. Thus, using high-quality or even
human-curated pathway dataset can further rene the model's
ability of understanding the retrosynthesis design strategies.

Conclusions

This work implemented a tree-LSTM neutral network structure
to encode pathway-level retrosynthesis design information. In
order to facilitate learning how chemists design synthetic routes
in practice, we curated a retrosynthesis pathway database from
the single-step patent reaction database. For each target mole-
cule in the pathway, 5–300 articial pathways were generated by
the ASKCOS program. The tree-LSTM model was trained to
understand the strategic level of the retrosynthesis pathways via
ranking patent-extracted retrosynthesis pathways higher than
the articial ones. The model was able to achieve a top-1
ranking accuracy of 79.1%, which signicantly outperformed
the other three heuristic baseline models. Case studies on the
correctly and incorrectly ranked results showed that tree-LSTM
model was indeed able to recognize strategic synthesis designs
and penalize nonproductive or non-selective reaction
sequences. The trained tree-LSTMmodel can also serve as a tool
to cluster pathways with strategically similar designs by
encoding the pathway into a learned pathway embedding, so
that users can focus on strategically different pathways
proposed by the retrosynthesis program.

Methods and data

The reaction database used in this work is the Pistachio patent
database from NextMove (v3.0 released in June 2019). All scripts
were written in Python 3.7. RDKit31 was used for molecule/
reaction parsing, molecular ngerprint conversion, and
various cheminformatics calculations. PyTorch 1.4 (ref. 39) was
used for building the machine learning architectures. See ESI†
for detailed model structures and training procedures. All code
used in this work can be found on GitHub.40 The patent-
extracted pathway dataset can be provided upon request with
Chem. Sci., 2021, 12, 1469–1478 | 1477
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a valid Pistachio license. The pathway dataset generated by
ASKCOS is available on Figshare.41
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