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Introducing responsive elements into supramolecular recognition systems offers great advantages for the
control of intermolecular interactions and represents an important stepping stone towards multi-purpose
and reprogrammable synthetic systems. Of particular interest is implementation of light-responsiveness
because of the unique ease and precision of this signal. Here we present visible light responsive
hemithioindigo-based molecular tweezers that bear a highly polar sulfoxide function as an additional
recognition unit inside their binding site. Sulfur oxidation allows to simultaneously enhance all crucial
properties of this receptor type ie. photoswitching capability, thermal stability of individual switching
states, binding affinity, and binding modulation upon switching. With a novel titration method the
thermodynamic binding parameters were determined using reduced sample amounts. Employing these
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Introduction

The control of molecular recognition processes by external
stimuli is a current focus of supramolecular chemistry as an
important milestone on the way to programmable synthetic
behavior and multi-purpose synthetic systems. In this context
reversible control is highly desirable and many switchable
molecular processes have been devised that allow regulation of
supramolecular association by different signals."® Of particular
importance in this regard are capture and release systems with
prospects in e.g. molecular machine building,>® switchable
catalysis,'* ™ drug delivery,'® or responsive molecular tools for
chemical biology."”'® A very promising signal is light irradiation
because of its ease of application, high spatio-temporal reso-
lution, waste-free nature, and straight-forward intensity regu-
lation.*®'*'**> These advantages have been recognized early
and consequentially light controlled hydrophobic cyclodextrin
binding or metal ion capture and release represent some of the
first purely synthetic examples in the field.”>* Despite
a plethora of variants currently available (see ref. 25-49 for
selected examples) challenges remain to this day even for
fundamental light-controlled catch and release. Examples are
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the scarcity of visible light addressable systems, restrictions in
the particular types of weak bonding interactions that can be
invoked, unwanted thermal deterioration of switching states, or
low ON/OFF modulation for the affinities upon switch-
ing.%73%3%%¢ More specifically, for the majority of light-
responsive host-guest systems stilbenes, azobenzenes, diary-
lethenes, or spiropyranes are used as photochromic unit
requiring UV light for at least one photoswitching direction.
Currently many efforts are therefore directed at establishing
visible light responsive behavior in such host-guest
systems.>*">* Typical Gibbs energies of activation for thermal cis-
to-trans isomerization of azobenzenes and spiropyranes are in
the 22-26 kcal mol ' range. This leads to half-lives of the
metastable switching states in the min to hours time regimes at
ambient temperatures and thus unwanted spontaneous back-
conversion. Additionally switching capacities are oftentimes
<80% and residual binding of low affinity forms can still be
sizable leading to diminished overall responsiveness. As to the
types of weak interactions that can be used to drive
association, pure aromatic interactions, halogen bonding, or
anion-aromatic  interactions are currently  strongly
underrepresented in light-responsive supramolecular associa-
tions. We have addressed some of these issues with the devel-
opment of hemithioindigo (HTI) based supramolecular
receptors that are responsive to visible light and allow ON/OFF
switching of either weak polar aromatic interactions with elec-
tron deficient guest molecules (Fig. 1)*”*® or hydrogen bonding
driven recognition.** For example, we presented a bis-HTI
receptor 1 that folds into a helix in its high affinity state in
response to blue light irradiation and planarizes into a low
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Fig. 1 Progress in molecular receptors based on HTI for visible light photocontrol of host—guest polar aromatic interactions.

affinity state after heating.” Subsequently we devised two
different molecular tweezers®*® motives 2 and 3 that respond
reversibly to the same wavelengths of light with opposite affinity
changes.”® Tweezers 2 and 3 possess the same HTI core struc-
ture as switching unit making them responsive to visible light in
both switching directions. The stilbene fragment (see Fig. 1 for
assignment of the two fragments) is ring-fused to the photo-
isomerizable double bond to rigidify the structure and increase
preorganization. The two electron rich biphenyl arms each bear
two ortho-methyl substituents at their attachment points to the
HTI core structure. The resulting sterical hindrance forces the
biphenyls into a mutual parallel arrangement and thus pre-
organize them for the intended sandwich-type aromatic inter-
actions. At the thioindigo fragment two different attachment
points are used for tweezers 2 and 3 resulting in high affinity for
the E configuration of 2 with both biaryl arms pointing to the
same side of the molecule. In contrast the high affinity for
tweezers 3 is obtained in the Z-configuration. In combination
the tweezers 2 and 3 allowed to control supramolecular guest
translocation by reduced signaling. Only one visible light signal
orchestrates geometry changes, release from the first tweezers,
and capture by the second. A different wavelength of visible
light reverses the translocation of the guest molecule in this
system. Although both molecular tweezers 2 and 3 responded to
the same wavelengths of light and both were able to regulate
capture and release in an ON/OFF fashion, tweezers 3 showed
nonoptimal performance in their maximum affinity as well as in
their switching ability. For both molecular tweezers 2 and 3
thermal stability of the switching states was also not very high
with associated Gibbs energy of activation in the 25 kcal mol !
range. In this work we present a synthetically straight-forward
approach - one-step oxidation to the corresponding sulfoxide
- to significantly improve all important characteristics of HTI
tweezers (Fig. 1). With this approach it is possible to increase
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switching capabilities, affinity, as well as thermal stability of the
switching states - all at the same time. In addition, we present
a method enabling very convenient, precise, and repeatable
assessment of association parameters for reversibly switchable
supramolecular association phenomena - particularly if light is
used as stimulus.

Results and discussion

In this work we introduce another type of photoswitchable
molecular tweezers 4, which are based on the earlier reported
tweezers 3 but point a highly polar sulfoxide moiety into their
binding site (Fig. 1). Tweezers 4 incorporate a central HTI®
moiety as photoresponsive element, which belongs to the class
of indigoid chromophores® currently emerging as promising
alternative photoswitch motives.””*** Two electron rich
biphenyl side arms are attached on each, the stilbene and the
thioindigo, molecular fragment. The high affinity “closed” state
of 4 possesses Z configuration of the photoisomerizable double
bond and arranges the two biphenyl side-arms in a parallel
fashion on the same side of the molecule. The arms spatial
orientation and distance are ideally suited for binding of an
electron deficient planar aromatic guest molecule via polar
aromatic interactions. Oxidation of the sulfur atom to the cor-
responding sulfoxide introduces a strongly negatively polarized
group inside the binding cavity. In this way additional attractive
interactions were projected to be available for binding of elec-
tron deficient guest molecules. Thus, increased binding affini-
ties as compared to the related unoxidized tweezers 3 were
expected. Upon Z to E photoisomerization the two side arms are
spatially separated and project outwards at opposite sides of the
central HTI core. As a result, the binding site opens up, available
attractive interactions towards the guest molecule are reduced,
and the guest molecule can effectively be released.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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A computational study on the DFT B3LYP/6-311G(d,p) level
of theory was conducted to elucidate the molecular geometries
of both isomers as well as electronic and polarity characteristics
(Fig. 2a and c). In addition, the supramolecular complexation
with an electron deficient aromatic guest was also studied
theoretically to test especially interactions with the sulfoxide
function. To be able to compare affinities with the previously
reported HTI tweezers 3 the same aromatic guest molecule DTF
(5) was used throughout this study. The optimized structures of
Z-4 and E-4 are shown in Fig. 2a with the electrostatic potential
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surfaces (ESP) depicted as well. In the Z isomeric form the
electron rich biphenyl arms reside at the same side of the sulfur
atom atop of each other. The thioindigo-fragment and the
stilbene-fragment are twisted with respect to each other by 40°,
which leads to some displacement of the attached biphenyl
arms. The distance between the two arms is 7.3 A as measured
center-to-center between the parallel methyl-substituted
aromatics directly attached to the HTI core. This distance is
ideally suited for intercalation of aromatic guest molecules. As
can clearly be seen by the ESP the sulfoxide moiety establishes

d)

side view

top view

Fig. 2 Molecular structures of tweezers 4 as assessed by theory (sub-figure (a) and (c)) and crystal structural analysis (sub-figure (b) and (c)) and
calculated structure of the supramolecular complex of Z-4 with aromatic guest molecule 5 (sub-figure (d)). (a) Molecular structures of E-4 and Z-
4 optimized on the DFT (B3LYP/6-311G(d,p)) level of theory. The corresponding ESPs quantify the overall polarity distribution. (b) Structure of Z-4
in the crystalline state. Thermal ellipsoids are drawn at a 50% probability level. (c) Comparison of the structures of Z-4 assessed by theory (orange)
and crystal structure analysis (turquoise). (d) Structure of the lowest energy Z-4-5 complex calculated on the B3LYP-GD3BJ/6-311G(d,p) level of

theory.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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high electron density at the center of the binding site. It offers
additional positive interactions to a bound guest molecule e.g.
as hydrogen bond acceptor. Together with the electron rich
biphenyl arms a highly electron rich pocket is thus created that
should be ideally suited for binding of electron deficient
aromatics via multiple noncovalent interactions. In the open E
isomeric form the two biphenyl arms appear completely sepa-
rated spatially and any synergistic chelating effects should thus
be removed. When studying the binding of DTF guest 5 several
minima structures were found for the associated complex by
Monte Carlo conformer search on the MM3* level of theory. The
main difference in these structures are the orientations of the
DTF guest inside the tweezers cavity. The five lowest energy
structures were further optimized on the DFT B3LYP-GD3B]J/6-
311(d,p) level of theory. The energetically most stable struc-
ture was found to be 2.9 keal mol " lower in energy than the
next minimum structure and consequentially should be popu-
lated almost exclusively. For this reason, it is discussed in the
following in more detail (see the ESIt for the other minimum
structures). In the complex the DTF guest is intercalated
between the two Z-4 tweezers arms in a sandwich-type fashion
(Fig. 2d). The distances between guest and biphenyl arms are
found to be below the van der Waals radii of the constituting
carbon atoms thus directly reporting on favorable polar
aromatic interactions. Additional close interactions between
the positively polarized hydrogen atoms of DTF and the sulf-
oxide oxygen atom are observed in the complex. In fact, as
judging by the ESP of DTF the most positively polarized edge of
the guest molecule is found pointing towards the sulfoxide
oxygen, which emphasizes the importance of additional
hydrogen-bond type interactions. As a result high binding
affinities are expected in the closed Z-4 form but significantly
less affinities in the E-4 form. After this promising theoretical
assessment of tweezers 4 binding capabilities, their synthesis
and experimental characterization was conducted next.

Molecular tweezers 4 were synthesized by sulfur-oxidation of
tweezers 3 to the corresponding sulfoxide as described in the
ESL.T For the first time crystals suitable for X-ray structural
analysis could be obtained for HTI tweezers, fortunately for the
closed tweezers form Z-4 (Fig. 2b). The molecular structure of Z-
4 as obtained in the crystal was found to be remarkably similar
to the DFT-optimized structure. This can be seen especially
when overlaying the two structures as shown in Fig. 2c. There is
almost perfect superposition between theoretical and crystal
structure in the HTI part of Z-4. Deviations are seen mostly on
the outer methoxy-substituted aromatics of the biphenyl arms.
As these moieties can rotate without significant barriers the
overall agreement of the two structures is still surprisingly good.
A subpopulation observed in the crystal possesses opposite
stereo configuration at the sulfoxide but the rest of the structure
remains exactly the same. This behavior emphasizes the effect
of packing forces for the induced helicity about the isomer-
izable central double bond as well as for the biphenyl orienta-
tions. Because of the crystal structure the solution spectra of 4
could straightforwardly be assigned to the respective Z and E
isomers facilitating study of their switching behavior and
binding affinities.
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Upon oxidation the (photo)physical and photochemical
properties of 4 change significantly in comparison to 3. In
agreement with a recent report from our group, oxidation of the
atom

sulfur to the corresponding sulfoxide leads to
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Fig. 3 Switching behavior of tweezers 4. (a) Schematic representation
of the switching process of 4. Z to E photoisomerization can be trig-
gered by 405 nm light. E to Z photoisomerization can by induced by
470 nm light. The energy barrier associated with thermal E to Z
isomerization is greater than 33 kcal mol ! providing a highly bistable
photoswitch. (b) Aromatic section of *H-NMR spectra (400 MHz,
20 °C, left: CD,Cly, right: CDCls) of 4 recorded after irradiation with
light of 365 nm, 405 nm, and 470 nm wavelengths until reaching the
PSS. Indicative proton signals used to quantify the isomeric ratio in the
respective PSS are highlighted. (c) Molar absorption coefficients of the
pure isomers (black: Z isomer, red: E isomer) of 4 in CHCls.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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a hypsochromic shift of the absorption - and thus to a blue-shift
of the switching wavelengths. Photoswitching of 4 was tested in
CDCI; solvent for a variety of wavelengths. Up to 88% of the E
isomer could be accumulated in the photostationary state (pss)
at 365 nm and up to 83% E isomer in the pss at 405 nm.
Effective photoswitching can thus still be obtained with blue
light, which renders these tweezers fully responsive to visible
light. At 470 nm irradiation a pss containing 80% of the Z
isomer was obtained, which could be increased to 83% at the
same wavelength when using CD,Cl, as solvent. Compared to
the unoxidized tweezers 3 (maxima of 63% E isomer at 435 nm
and 84% Z isomer at 530 nm were obtained) the photoswitching
was therefore also improved significantly by oxidation of the
sulfur atom albeit at the expense of hypsochromic absorption
shifts (Fig. 3).

For tweezers 4 the Z-isomeric state is the thermodynamically
most stable state and spontaneous thermal relaxation of the
metastable E isomer therefore needs to be investigated. After
accumulation of E-4 via blue light irradiation the thermal E to Z
isomerization was attempted to be followed by "H NMR spec-
troscopy in the dark. Toluene-dg was used as solvent to facilitate
measuring the associated kinetics on manageable time scales at
higher temperatures. However, heating the sample to 100 °C for
27 h in the dark did not lead to a change in the isomer
composition. It was thus possible to establish a lower limit for
the associated Gibbs energy of activation AG* by assuming
conservatively that 5% isomer conversion was obtained during
the heating but was not detectable by the "H NMR experiment.
With this assumed conversion and applying first order kinetics
for a fully converting system, a lower limit of AG* =
33.0 keal mol ™" was obtained (see ESIT for details). Accordingly
in chlorinated solvents such as CDCI; or CD,Cl, no thermal
conversions were observed at the limited higher temperatures
(up to 50 °C) available. With such high energy barrier truly
bistable HTI tweezers are now available for the first time.

We then investigated the affinity of tweezers 4 for electron
deficient aromatic guest molecule 5 with the aid of "H NMR
spectroscopy (see Fig. 4). In the open E isomeric form no
binding affinity is observed as proton signals of the guest and
tweezers E-4 show no visible shifts in the spectra. Likewise no
signal shift of the DTF guest is observed in the presence of pure
E-4. This behavior is similar to tweezers 3 in their low affinity
open E isomeric form. The situation is quite different for the
closed Z conformation of 4 where a binding constant K= 1090 L
mol ' fora1 : 1 stoichiometry was measured at 20 °C by a newly
developed and convenient in situ irradiation-titration method.
For the latter an excess of tweezers 4 was added to solutions of
the DTF guest molecule 5. Excess of guest could not be used
because of its low solubility in CDCIl;. By irradiation of the ob-
tained solutions for varying duration times different ratios of
binding Z-4 to guest 5 (with constant concentration) were ob-
tained representing different titration points. The exact twee-
zers to guest ratios were determined by integration of suitable
"H NMR signals. Because of the full reversibility of the photo-
isomerization of 4 it is possible to collect as many titration
points as desired using the same single sample. Analysis of the
chemical shift differences occurring during titration then

© 2021 The Author(s). Published by the Royal Society of Chemistry
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allowed us to determine the binding affinity of Z-4 with high
precision. Another advantage of this titration method becomes
evident when measuring the temperature dependence of
binding constants. Again the same sample can be used for
measuring at different temperatures, each time collecting as
many titration points as desired by simple stepwise irradia-
tions. In this way we have determined the enthalpy and entropy
contributions to the binding affinity of Z-4 with respect to DTF
5. Based on this assessment the binding between Z-4 and DTF is
mainly enthalpy driven with an enthalpy contribution of AH =
—4.77 keal mol ' and an entropy of AS = —2.4 cal mol . When
comparing the binding affinities of tweezers Z-4 (K = 4100 L
mol " at —20 °C) with Z-3 (K = 2300 L mol " at —20 °C) for the
same DTF guest a significant improvement of the binding for
the former is observed.

In order to test if the observed improvements of binding
performance upon oxidation is a general property of HTI-based
molecular tweezers we have measured the photoswitchable
host-guest performance for three additional guest molecules 6,
7, and 8 comparing both molecular tweezers 3 and 4 (see Table 1
as well as Fig. 4e for a comparison of the binding parameters for
all guests and tweezers combinations). All titration experiments
were done in independent duplicates to obtain error estimates
for the obtained binding constants K. Because of solubility
issues the binding constants for guests 6 and 8 were measured
in CD,CIl, solution instead of CDCl;. For all cases the same
behavior was observed: high affinity for the closed Z-isomeric
tweezers configuration and basically no affinity for the open E-
isomeric form. Roughly a doubling of the binding constant for
the oxidized tweezers 4 was found as compared to the unoxi-
dized version 3 with the exception of guest 8, which was bound
only 1.2 times better by 4. Additionally a remarkable selectivity
for guest molecules with more extended mw-surfaces was
observed since the binding constants with guests 6 to 8 were
significantly weaker compared to guest 5 by factors of 31-47
(values are compared at the same temperature of 293 K).

Therefore, it can be concluded that the additional intro-
duction of a strongly negatively polarized residue at the binding
site is indeed very effective in increasing the binding affinity in
HTI-based molecular tweezers for electron deficient aromatic
guests.

When binding of DTF (5) was studied, strongly visible
changes in the color of the solutions were noticed. As shown in

Table 1 Binding affinities of tweezers Z-3 and Z-4 measured in
chlorinated solvents via *H NMR titration experiments

Guest Z-3 Z-4
DTF (5) 2380 (253 K, CDCly) 4140 (253 K, CDCly)

1830 (273 K, CDCl,)

1090 + 70 (293 K, CDClL;)*
TCNB (6) 10 =+ 1.5 (293 K, CD,Cl,)* 26 £ 0.6 (293 K, CD,Cl,)*
PhA (7) 16 + 1.3 (293 K, CDCLy)* 35 + 4.7 (293 K), CDCL*
3NPN (8) 18 =+ 1.6 (293 K, CD,Cl,)* 23 £ 0.04 (293 K, CD,Cl,)”

“ Average values obtained from two independent titration experiments
with error margins given.
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Fig. 4 Photocontrolled capture and release of DTF (5) by molecular tweezers 4 and light control of charge transfer from the host to the guest. (a)
Schematic representation of visible light induced capture and release of guest molecule 5 by tweezers 4. Light of 405 nm wavelength induces
release of 5. 470 nm light induces capture of 5. (b) Aromatic section of *H-NMR spectra (400 MHz, CDCls, 20 °C) recorded to assess binding
between 5 and 4. Spectra of pure guest 5and al: 17 : E isomeric mixture of pure tweezers 4 are shown for comparison. No proton signal shifts are
observed when combining pure E-4 and 5. Photoswitching of £-4 with 470 nm light induces strong shifts of the proton signals of 5. Photoswitching
of 4 with 365 nm light reverses the shift of the proton signals of 5 and restores them to their original position. (c) Photographs illustrating the color
changes associated CT modulations upon catch and release of 5 by tweezers 4 in CHCls solution. Addition of 5 to a solution of pure Z-4 induces
a strong color shift to red, originating from the CT band of the formed Z-4-5 complex. Addition of 5 to E-4 does not induce a color change.
Photoisomerization of the respective solutions cause color changes to lighter and deeper orange. (d) Van't Hoff plot depicting the temperature
dependence of the binding between Z-4 and 5 enabling determination of AH and AS contributions. (e) Comparison of the measured binding
constants K, for association of different guest molecules 5-8 with tweezers Z-3 (grey bars) and Z-4 (orange bars). K, values for guests 5 and 7 were
obtained in CDClz and for guests 6 and 8 in CD,Cl, solutions. K, values for guest 5 are compared at 253 K and for all other guests at 293 K.
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Fig. 4c addition of excess 5 to a CHCI; solution of pure Z-4
results in a change from the initial yellow to a deep brown-red
color. Such color change is indicative of a pronounced inter-
molecular charge transfer (CT) complex.®®”> No significant color
change is observed for the mixture of 5 and pure E-4 except for
a slight deepening of the yellow hue. Therefore, the strong ON/
OFF modulation of binding between the two isomeric states of 4
is evident by the naked eye. Upon photoirradiation of the
respective solutions reversible photoisomerization of 4 takes
place and an orange coloration is observed. The less obvious
changes visible to the naked eye upon reversible switching
between the PSS at 405 nm and 470 nm irradiation can be
explained by the less than 100% switching conversion in both
directions and the excess of 5 used in the experiments. This
leads to still significant color impression to the human eye even
in the presence of only small amounts of remaining Z isomer.
Nevertheless a deeper coloration is seen in Z-4 enriched solu-
tion as compared to the E-4 enriched one. In this way visible
light photocontrol of intermolecular CT events was achieved by
employing the herein reported molecular tweezers 4.

In summary we present a novel variant of HTI molecular
tweezers bearing a highly polar sulfoxide within their binding
site. As a result of the sulfur oxidation all properties of the
tweezers are improved significantly. Photoswitching capabil-
ities are enhanced and fully reversible >80% enrichment of
either isomer is now possible with visible light irradiation.
Thermal stability of the metastable E isomer is heightened and
the associated energy barrier reaches beyond 33 kcal mol %,
which renders the oxidized tweezers truly bistable. Binding
affinity of the Z isomer towards electron deficient aromatic
guests is almost doubled as compared to the unoxidized twee-
zers, while for the E isomer no discernible binding affinity is
present. Because of this favorable behavior a combined
irradiation-titration method could be developed that allows
repeated and precise measuring of the association constant
and elucidation of its temperature dependence using
the same sample. Overall very high ON/OFF modulation of
supramolecular aromatic binding is observed with this receptor
allowing to bring intermolecular CT under the control of visible
light. In the future, further applications will be explored with
special emphasis on achieving water solubility and recognition
of biological substrates.
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