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of Chemistry Electronic nearsightedness is one of the fundamental principles that governs the behavior of condensed
matter and supports its description in terms of local entities such as chemical bonds. Locality also underlies
the tremendous success of machine-learning schemes that predict quantum mechanical observables —
such as the cohesive energy, the electron density, or a variety of response properties — as a sum of atom-
centred contributions, based on a short-range representation of atomic environments. One of the main
shortcomings of these approaches is their inability to capture physical effects ranging from electrostatic
interactions to quantum delocalization, which have a long-range nature. Here we show how to build
a multi-scale scheme that combines in the same framework local and non-local information, overcoming
such limitations. We show that the simplest version of such features can be put in formal correspondence

. . ber 2020 with a multipole expansion of permanent electrostatics. The data-driven nature of the model construction,
eceived 7th September L . . . .
Accepted 10th December 2020 however, makes this simple form suitable to tackle also different types of delocalized and collective effects.

We present several examples that range from molecular physics to surface science and biophysics,

DOI: 10.1039/d0sc04934d demonstrating the ability of this multi-scale approach to model interactions driven by electrostatics,
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1 Introduction

The broad success of machine-learning approaches, used to
predict atomic-scale properties bypassing the computational
cost of first-principles calculations,'™ can be largely traced to
the use of structural descriptors that are defined through
localized atomic environments."*” The assumption of locality
is supported by the principle of nearsightedness of electronic
matter first introduced by Walter Kohn,'® which implies that far-
field perturbations to the local properties of the system are
usually screened, and exponentially-decaying. Locality has been
long exploited to develop linear-scaling electronic-structure
schemes,'>* and in the context of machine-learning methods
it allows constructing models that are highly transferable and
applicable to diverse problems as well as to complex, hetero-
geneous datasets.>

Structural descriptors that are built using only local
information cannot, however, describe long-range interac-

tions and non-local phenomena. In many contexts,
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polarization and dispersion, as well as the cooperative behavior of dielectric response functions.

particularly when describing homogeneous, bulk systems,®
long-range tails can be incorporated in an effective way or
approximated by increasing the range of the local environ-
ments.”® On a fundamental level, however, the use of near-
sighted representations undermines the reliability of
machine-learning approaches whenever strong electrostatic
and polarization effects guide the macroscopic behavior of
the system. This is, for instance, the case when considering
the electrostatic screening properties of water and electrolyte
solutions,?** the collective dispersion interactions that
stabilize molecular crystals and biomolecules,*** or the
surface charge polarization of a metal electrode in response to
an external electric field.***® Several examples have been
presented that demonstrate the shortcomings of local ML
models in the presence of long-range physical effects.?*"**
Global representations that incorporate information on the
entire system exist,"* but usually they reduce the trans-
ferability of the resulting model. In the context of modelling
electronic potential energy surfaces, several strategies have
been proposed to incorporate explicitly the physical effects that
underlie long-range interactions. Approaches that use machine
learning together with an explicit description of the electrons or
the electron charge density**®® have the potential to also
address this issue, but are considerably more cumbersome than
ML schemes that use only the nuclear coordinates as inputs.
Baselining the model with a cheaper electronic-structure
method that incorporates electrostatic contributions,>'**>*
fitting separately models for long-range contributions based on

© 2021 The Author(s). Published by the Royal Society of Chemistry
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physics-inspired functional forms,* or using free-energy
perturbation to promote a short-range ML potential to full
quantum chemical accuracy* are very effective, pragmatic
approaches to circumvent the problem. Alternatively, one can
directly machine-learn the atomic partial charges and multi-
poles that enter the definition of the electrostatic energy,>*
model the atomic polarizability that underlies dispersion
interactions,®® or atomic electronegativities that are then used
to determine the partial charges of the system by minimizing its
electrostatic energy.®* The major shortcoming of these
methods is that, on one side, they are highly system dependent
and, on the other, they are limited to the prediction of energy-
related properties, and to the specific physical interaction that
they are designed to model. Some of the present Authors have
recently proposed an alternative approach to incorporate non-
local interactions into an atom-centred ML framework. Non-
local information of the system is folded within local atomic
environments thanks to the definition of smooth Coulomb-like
potentials that are subsequently symmetrized according to the
nature of the target property.®® The resulting long-distance
equivariant (LODE) representation is endowed with a long-
range character while still being defined from the information
sampled in a finite local neighbourhood of the atoms.

In this work, density and potential based descriptors are
combined within a unified multi-scale representation. The
resulting model can be formally related to an environment-
dependent multipolar expansion of the electrostatic energy, but
has sufficient flexibility to yield accurate predictions for
a number of different kinds of interactions, and regression
targets. We first consider, as an example, a dataset of organic
dimers, partitioned into pairs that are representative of the
possible interactions between charged, polar and apolar groups,
demonstrating that the multi-scale LODE features can be used to
describe permanent electrostatics, polarization and dispersion
interactions with an accuracy that is only limited by the number
of training points. We then show how our model is able to
capture the mutual polarization between a water molecule and
a metal slab of lithium. Finally, we reproduce the dipole polar-
izability of a dataset of poly-aminoacids, extrapolating the electric
response of the system at increasing chain lengths.

2 Multi-scale equivariant
representations

The general problem we intend to tackle is that of representing
an atomic configuration in terms of a vector of features, in a way
that is both complete and concise, and that reflects the struc-
tural and chemical insights that are most important in deter-
mining the target properties. Let us start by defining a density
field associated with a structure A as the superposition of
decorated atom-centred Gaussians

Zém g(x —r). (1)

€A

(ax|A; p)

In this expression, r; indicates the position of atoms of A, and
a; labels their elemental nature. In analogy with the Dirac
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notation used in quantum mechanics, the bra-ket (X|A;rep)
refers to a representation of the structure A, whose nature is
described by a set of labels “rep” (such as p, or V further down),
and whose entries are indexed by one or more variables X (such
as a or x). In the limit of a complete basis, |A;rep) is indepen-
dent of the choice of (X|, and so the basis can be changed
following analytical or numerical convenience. The notation
and its usage are described in more detail in ref. 17.

From these smooth atomic densities, a Coulomb-like
potential can be formally defined as a result of the integral
operation

ax'|A; p>

(ax|A; V) = de/ { (2)

x—x]

A schematic representation of this construction is reported
in Fig. 1. One could build a general family of fields using
a different integral transformation of the density, but here we
focus on this 1/|x — X/| form which is well-suited to describe
long-range interactions. The two primitive representations |p)
and |V) can be individually symmetrized over the continuous
translation group.'” Imposing translational invariance on eqn
(1) has the ultimate effect of centring the representation on the
atoms 7 of the system, so that we can conveniently refer to the
set of atom-centred densities§

Zéaa/ rjl (3)

JjEA

(ax|A; p;)

where r; = r; — 1; is the vector separating atoms i and j. As
already shown in ref. 65, given that the Coulomb operator is
translationally invariant, one can obtain an analogous result
symmetrizing the tensor product |p) ® |V), yielding a set of
atom-centred potentials

(ax|A; V), = de e — (4)

The cost of the naive evaluation of (ax|A;V;) scales with the
square of the number of particles in the system but a more
favorable scaling can be obtained by applying one of the many
schemes used to accelerate the solution of the Poisson equation
in atomistic simulations.*®

Either of eqn (3) or (4) contains information on the entire
structure. Usually, however, the atom-centred density |p;) is
evaluated including only atoms within spherical environments
of a given cutoff radius r.. This truncation is not only a matter of
practical convenience: the nearsightedness principle®® indicates
that molecular and materials properties are largely determined
by local correlations, and increasing indefinitely r. has been
shown to reduce the accuracy of the model***” because, in the
absence of enormous amounts of uncorrelated training struc-
tures, the increase in model flexibility leads to overfitting. The
fundamental intuition in the construction of the atom-density
potential |V;) is that, even if one evaluates it in a spherical
neighbourhood of the central atom i, thereby avoiding an
uncontrollable increase in the complexity of the model, it

Chem. Sci., 2021, 12, 2078-2090 | 2079
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(ax|V) = f@dx’

[x"—x|

Fig. 1 Schematic representation of the construction of atomic-field representations. Top: 1-D atomic chain; bottom: hypothetical “doped
graphene” 2-D system. Left: atoms are represented by their position in Cartesian coordinates. Middle: the structure is represented as an atom-
density field, built as a superimposition of localized functions centred on each atom; each element is associated with a separate channel,
represented by color coding. Right: the atom-density potential is formally equivalent to the electrostatic field generated by the decorated atom

density; similarly to the density, each element is treated separately.

incorporates contributions from atoms that are very far away.
The nature of |V;) can be better understood by separating the
near-field from the far-field potential in the definition of eqn (4),
that is,

(@x|V)) = (ax|V=) + (ax V7 ) = del <|iX_|p§|> +de/ <|c,l(x_|p§’|>
(5)

where p; and p; are the atomic densities located inside and
outside the i-th spherical environment. We omit the structure
label A for convenience, as we will do often in what follows. The
near-field term contributes information that is analogous to
that included in |p;). The far-field contribution instead deter-
mines the effect of the density beyond r., and the choice of the
integral operator affects the asymptotic form of this effect, with
1/|x — X/| implying a Coulomb-like behavior.

Tensor products of the atom-centred density eqn (3) and
potential (4) could be separately symmetrized over rotations
and inversion, yielding respectively structural descriptors of
short-range interatomic correlations, equivalent to SOAP-like
representations,’® or long-distance equivariants (LODE)
features.®> Here we introduce a more explicitly multi-scale
family of representations, that couples |p;) and |V;) terms.
Formally, one can obtain a symmetry-adapted ket that trans-
forms like the irreducible representations of the O(3) group by
computing the Haar integral over improper rotations{ S:

’<p[®”® V,—®”’®a®xu> > -
00)

J dSSlo) ® S|Au) ® S o) ®...S|p) ®S|Vi)®...S|V;),  (6)
0o(3)

v times

’o.
v times
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which we indicate in what follows using the shorthand notation
[p;®* ®V;®"; 05 Au), omitting the o;Au indices when consid-
ering invariant features (¢ = 1, A = 0). Within this construc-
tion, the ket |Au) has the role of making the resulting features
transform as a Y% spherical harmonic,*>*® while |¢) indicates
the parity of the features under inversion.|| eqn (6) might be
intimidating, but it simply indicates a general, abstract recipe
to combine different scalar fields that describe a local atomic
environment in a way that is independent on the basis chosen
to describe such fields. For instance, the (v = 0, ¥ = 1)
invariant case can be readily evaluated by using a real-space
basis to evaluate (x|V;)

(V;®T) = Jdmxxuéu/i) = 27tde('<x§('|V,->, @)

Vi)

[ Aw)

Fig. 2 A schematic representation of the Haar integral in egn (6).
Different representations of an environment centred on atom i are
combined as tensor products (i.e. evaluated at different points, or on
different basis functions) and averaged over all possible rotations of
the system. Including also a set of spherical harmonics provides an
absolute reference system and makes it possible to build ML models
endowed with an equivariant behavior.

i)

© 2021 The Author(s). Published by the Royal Society of Chemistry
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corresponding to a spherical average of the atom-centred
potential. In the more general case, as sketched in Fig. 2, eqn
(6) can be understood as the average of the product of atom-
centered fields evaluated at v + v’ points.

In practical implementations, the abstract ket (6) can be
computed by first expanding the atom-centred features (3) and
(4) onto a discrete basis, and then evaluating the symmetrized v-
point correlation of the fields. A particularly clean, efficient,
recursive formulation can be derived exploiting the fact that the
equivariant features behave as angular momenta, and can then
be combined using Clebsch-Gordan coefficients to build
higher-order correlations.®® In analytical derivations we use
a partially-discretized basis, in which the radial contribution is
kept as a continuous index, corresponding to

(arlm| = deé(r — x)(Im|X)(ax]|, (8)

with (x|Im) = Y7'(X). Written in this basis, (arim|p;) expresses
the decomposition of the density in independent angular
momentum channels, evaluated at a distance r from the central
atom. In practical implementations we use a basis of Gaussian
type orbitals to also discretize the radial component.®® This is
the form that is usually chosen to write and compute the local
SOAP features,'® that can be evaluated as

)m

(arni; aana; llp;®2) Z\/z—l—“ (@imilmlp;)(anal(=m)lp;) — (9)

The nature of the representation, however, does not depend
on such details. The basis-set independence is most clearly seen
by considering the use of the equivariants in the context of
a linear regression model. The value of a tensorial property T for
a structure, expressed in its irreducible spherical components
(ISC,”® the combinations of the components of a Cartesian
tensor that tranform under rotation as Y%) and decomposed in
atom-centred contributions, can be formulated as

T (A D) = jdX<T; 01|X><XIA;,0,-®”®/>,-®”’;0; Mt>7 (10)
where X indicates any complete basis that provides a concrete
representation of the ket, and (X|T;o2) is the set of regression
weights. One sees that (1) the regression model is invariant to
a unitary transformation of the basis; (2) the equivariant nature
of the model is associated with the Au indices of the ket, while
the weights are invariant under symmetry operations. Linear
models are especially useful to reveal the physical meaning of
a representation: they allow to demonstrate the relation
between short-range density correlations (v = 0) and the body-
order expansion of interatomic potentials,’”””*”* and the rela-
tion between the first-order LODE(v = 0, »' = 1) and fixed point-
charge electrostatics. In the next section, we use this idea to
show how the simplest multi-scale LODE(v = 1, ¥ = 1) can be
put in formal correspondence with the physics of multipole
electrostatics.”

© 2021 The Author(s). Published by the Royal Society of Chemistry
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3 Features and models for long-range
interactions

Even though neither the atom density |p;) nor the associated
potential field |V;) correspond to physical quantities, the multi-
scale combination of the two quantities in LODE(v = 1, v = 1)
entails formal similarities with physics-based electrostatic
models. This connection can be demonstrated both analytically
and with numerical benchmarks.

3.1 Analytical connection with the multipole expansion

Consider a linear model to predict the ground-state electronic
energy U of a system A. This corresponds to taking the scalar (2
= 0) and polar (¢ = 1) limits within the prediction formula of
eqn (10):

(11)

:i(/,.( i JdX UIX)(X|A; 0, @ V).

i=1 i=1

We aim to prove that in the LODE(1,1) case, where the
density and potential representations are both introduced to
first order, this functional form can be used to model rigorously
a multipolar expansion of the long-range contributions to U.

To see this, let us start by representing the energy prediction
in terms of the partially-discretized basis of eqn (8). Upon
symmetrization of the tensor product between p and V, and
going to the coupled angular momentum basis,* one obtains
a set of invariants that can be expressed using the basis (X| =
<a1r1§azr2§l|

{ayry; apra; fp; @ V) (aaryIm|V;)*,

(11 r lm|pl
(12)

where (a,rilm|p;) and (a,r,Im|V;) indicate the spherical
harmonics projections of the local density and the local
potential fields respectively, and we omit the indication of the
structure A, for brevity. Eqn (12) shows explicitly how |p; ®V;)
contains information on the correlation between the value of
the atom density |p;) and the potential |V;), each evaluated at
a given distance from the central atom. General symmetry
considerations dictate how angular terms in the two correla-
tions must be combined to obtain a rotationally invariant set of
features, in clear analogy with the construction of the SOAP
representation (9). By using in eqn (12) the splitting of the
potential field in short and long-range parts, |V;) = |V;) +
|V7), we can partition the prediction for the atom-centred energy
contribution in range separated terms, U; = U; + U;. Focusing in
particular on the long-range contribution, we can write explic-
itly eqn (11) as follows:

Imax

[],-> :ZZL) drIJ dlz(Ulalrl,a272,1> X Z(alrllm|pf>

1=0 ajay Iml=1
x (ayralm|V;” )*.
(13)

Chem. Sci., 2021, 12, 2078-2090 | 2081


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0sc04934d

Open Access Article. Published on 11 December 2020. Downloaded on 2/5/2026 5:07:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

Here, (Ulajri;asrs;l) indicates the regression weights for the
total potential energy, that also incorporate the 1/v/2[ + 1 factor
in eqn (12). We are now interested in representing the spherical
harmonic components of the potential in terms of the far-field
contribution V; of eqn (5). Using the Laplace expansion of the
Coulomb operator, we can rewrite |V;) as:
ol
(aoralm| V7 ) = 2[4% de<pi> Jasx) 7 ()

4 I'z’

=51 Jdr<pi> |asrim) T (14)

Plugging this into eqn (13), one sees that the contribution to
the energy coming from the far-field can be written as

* 1
U~ = EZ J} drm (p larrim){ayar; Im|M = (U)),  (15)

ayay Im o

where we introduce a set of spherical multipoles

4 reo re
(ayax; Im|M = (U)) T J drzrzlj dri(Ulayry; azra; 1)

T 2+1), o

x {ayrImlp; ) (16)

that are determined indirectly as a consequence of the fitting
of the energy, rather than by explicit calculations of the
density distribution around the molecular components of
the system.

Eqn (15) shares a striking resemblance with the expression
for the interaction of a far-field charge density with the
electrostatic potential generated by the near-field charge
distribution.” As we shall see in what follows, this formal
equivalence underpins the ability of |p;®V;) to model accu-
rately several kinds of interactions. Crucially, however, p;
and V; do not represent physical quantities, but are just
a representation of the spatial arrangement of atoms. Atoms
in the far-field respond in a way that depends only on their
chemical nature, but the local multipoles are modulated in
a highly flexible, non-trivial fashion by the distribution of
atoms in the local environment. The form of eqn (16) also
hints at how changing the representation would affect this
derivation. Increasing the density order » would allow for
a more flexible, higher-body-order dependence of the local
multipoles on the distribution of atoms in the vicinity of
atom i, while increasing »' would bring a more complicated
dependency on the distribution of atoms in the far-field,
leading to a linear regression limit that does not match
formally the electrostatic multipole expansion and to an
explicit coupling between |V;) and |V;). Changing the
asymptotic form of the potential in eqn (2) could be used to
incorporate a formal connection with dispersion-like, 1/r°
features. We want to stress that even in this form the model
is not limited to describing the physics of permanent elec-
trostatics. In fact, the coupling between the inner and outer
atomic species (a; and a,) carried by the definition of the
regression weights makes it possible for the local multipoles
to respond to species of the far-field distribution. We test the
limits of this data-driven approach in Section 4.

2082 | Chem. Sci,, 2021, 12, 2078-2090
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3.2 A toy model for multipolar interactions

Before doing so, we want, however, to demonstrate numerically
the mapping between these multi-scale LODE features and
multipole models. We analyze quantitatively the behavior of
a linear model based on |p; ® V;) by observing its performance in
representing the far-field interactions between an H,O and
a CO, molecule - since the interactions between the two
molecules are essentially driven by permanent electrostatics.
We build a dataset considering 33 non-degenerate reciprocal
orientations between the two molecules, and learn the inter-
action over a range of distances between the centres of mass
from 6.5 to 9 A. We then extrapolate the predicted interaction
profile in the asymptotic regime of R > 9 A, verifying how the
model converges towards the dissociated limit which is also
included in the training set.

According to our construction, the cutoff value /,,, chosen to
define the angular resolution of the representation determines
the number of multipoles that are included within the expan-
sion of eqn (14). For example, taking the /,,.x = 0,2 — 6, 7. —
0 limits of eqn (15) leads to

=1
Um =y JM dr—(8;” |axr00)(@ian; 00|M;” (U)),  (17)
ap

where we define the g — 6 limit of the atom density as

<a2r|(5,.>> = Zéajazé(r - |rji|)7

JFi

(18)

and we consider that the only atom inside the inner cutoff is the
central atom, so the multipole coefficient depends only on the
chemical nature of a; and a,. By evaluating explicitly the radial
integral in eqn (17), one obtains an explicit sum over atom pairs

- Z<a,-a,-; 00| M < (U)>.

i Tji

U (19)

If one interprets (a;a;;00|M~(U)) as the product of the partial
charges of the two species q,, and 9ay this form is equivalent to
a simple, Coulomb interaction energy between fixed point-
charges. Including multipoles for [ > 0 makes it possible to
represent the anisotropy of the electrostatic interaction.

In Fig. 3 we report the results of the extrapolation for a given
reciprocal orientation at increasing angular cutoffs /.. We
also compare different choices for the possible atomic centres
that contribute to the energy prediction: in panel (a) we express
the energy in terms of a single environment centred on the
oxygen atom of the H,O molecule; in panel (b) we use a single
environment centred on the carbon atom of CO,; in (c) we use
multiple environments centred on each atom. This exercise
probes the possibility of choosing between a model for the
electrostatic energy that is based on the definition of molecular
rather than atomic multipoles.””** As one would expect from
a classical interpretation of the long-range energy, the binding
profile for the selected test configuration is ultimately driven by
the interaction between the dipole moment of the water mole-
cule and the quadrupole moment of CO,. This is reflected in the
sharp transition of the prediction accuracy when crossing

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Extrapolated interaction profiles for a given configuration of
H,O and CO, at different angular cutoff values [nax. Top, middle and
bottom panels show the results of the asymptotic extrapolation when
centring the representation on the oxygen atom of H,O, the carbon
atom of CO; and all the atoms of the system respectively.

a critical angular cutoff /,,.. When centring the local environ-
ment on the water molecule (Fig. 3(a)), for instance, truncating
the expansion at [, = 1 is enough to reproduce the interaction
between the dipolar potential of water and the CO, molecule.
Conversely, when centring the representation on carbon dioxide
(Fig. 3(b)), the H,O density in the far-field has to interact with
a CO, potential that is quadrupolar in nature, which requires an
angular cutoff of at least /,,x = 2. When centring the repre-
sentation on all the atoms of the system (Fig. 3(c)), using an
angular cutoff of [,,,x = 0 suffices to obtain qualitatively accu-
rate interaction profiles.

The analogy between |p;® V;)-based models and the multi-
pole expansion raises the question of the relationship with ML
electrostatic models based on atomic point charges. Traditional
parametrized force fields as well as machine-learning potentials

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Asymptotic prediction errors of a representative CO,/H,O
configuration obtained at different levels of theory. Green and blue
lines correspond to [max = 0 and [ax = 1 LODE(L,1) models while the
orange line refers to a fixed point-charges model.

that simply rely on representing the electrostatic energy of the
system via a set of point-charges®®® generalize this form by
making the atomic charges dependent on the local environ-
ment, and/or on overall charge neutrality conditions. Given that
here we use rigid molecules, moving beyond the range of the
local featurization, these ML schemes are well-approximated by
a model based on fixed partial charges for C, H, O, and pairwise
Coulomb interactions. Such a model yields binding curve
profiles and overall accuracy similar to those of a LODE(1,1)
model truncated at [,,x = 0, which is consistent with the
limiting case of eqn (19) (optimal charges correspond to qy =
0.24e, gc = 0.96e, go = —0.49¢, Fig. 4). The approach we take
here is, instead, to increase the order of the expansion, and to
use the additional flexibility to improve the accuracy of the
model in a data-driven fashion, which allows to improve the
accuracy further, particularly in the intermediate distance
range.

On a conceptual level, the issue is to find the balance
between a functional form that is flexible enough to describe
arbitrary interactions, and one that maps naturally onto the
physics of the interactions of interest. For this simple toy
problem, increasing the expansion at /;,,x = 1 with an atomic
multipole model achieves almost perfect predictions. However,
a too general form is prone to overfitting and requires enormous
amounts of training data: this is the case, for instance, one
would encounter when increasing by brute force the cutoff of
a local featurization.®>*” The scattering transform* provides an
entirely general framework that, similarly to the one we discuss
here, aims at achieving a multi-scale description of interactions.
The considerable improvement of its performance that is
observed when applying feature selection®>’*”” indicates
a similar tendency to overfitting.

4 Results

The toy system we have discussed in the previous section
reflects the behavior of the multi-scale LODE representation. In
this section we present three applications to substantially more
complicated systems to demonstrate that, even in their simplest
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form, this family of features is suitable to address the
complexity of challenging, real-life atomistic modelling prob-
lems, and physics well beyond that of permanent electrostatics.
We compare multi-scale LODE models with those based on
local machine-learning schemes, in particular with SOAP
features.'® We indicate these as the two-point density correla-
tion |p;®2) to stress that similar results are to be expected from
any equivalent local featurization” such as atom-centered
symmetry functions,” SNAP,”” MTP,* ACE,”” NICE.*” We
report errors in terms of the root mean square error (RMSE), or
the percentage RMSE (RMSE%), which is expressed as
a percentage of the standard deviation of the target properties.

4.1 Binding energies of organic dimers

We start by testing the ability of multi-scale LODE to describe
different kinds of molecular interactions. To this end, we
consider the interaction energy between 2291 pairs of organic
molecules belonging to the BioFragment Database (BFDDb).*" For
each dimer configuration, binding curves are generated by
considering 12 rigid displacements in steps of 0.25 A along the
direction that joins the geometric centres of the two molecules.
Then, unrelaxed binding energies are computed at the DFT/
PBEO level using the Tkatchenko-Scheffler self-consistent van
der Waals method®* as implemented in the FHI-aims package.*®
For each binding trajectory, we also include in the training set
the dissociated limit of vanishing interaction energy, where the
two monomers are infinitely far apart. The dataset so generated
includes all the possible spectrum of interactions, spanning
pure dispersion, induced polarization and permanent electro-
statics. In order to better rationalize the learning capability of
such a large variety of molecular interactions, we choose to
partition the molecules in the dataset in three independent
classes, namely, (1) molecules carrying a net charge, (2) neutral
molecules that contain heteroatoms (N, O), and can therefore

a) charged-charged

b) charged-polar

View Article Online

Edge Article

exhibit a substantial polarity (3) neutral molecules containing
only C and H, that are considered apolar and interacting mostly
through dispersive interactions. Considering all the possible
combinations of these kinds of molecules partitions the dimers
into six classes, i.e., 184 charged-charged (CC), 267 charged-
polar (CP), 210 charged-apolar (CA), 161 polar-polar (PP), 418
polar-apolar (PA) and 1051 apolar-apolar (AA) interactions. For
each of the six classes, several, randomly selected binding
curves are held out of the training set, to test the accuracy of our
predictions. The remaining curves are used to fit one separate
linear model for each class, using either local features (the SOAP
power spectrum,’® |p;®2)) or multi-scale LODE(y = 1, v’ = 1)
features. In order to also assess the reliability of our predictions,
we use a calibrated committee estimator® for the model
uncertainty, which allows us to determine error bars for the
binding curves. 8 random subselections of 80% of the total
number of training configurations are considered to construct
the committee model. The internal validation set is then
defined by selecting the training structures that are absent from
at least 25% of the committee members.

Fig. 5 shows characteristic interaction profiles for the six
different classes of molecular pairs. The models use r. = 3 A
environments centred on each atom. The configurations we
report are those that exhibit median integrated errors within the
test set of each class. The root mean square errors associated
with the predictions over the entire test sets of each class are
listed in Table 1. The results clearly show that while SOAP(2) is
limited by the nearsightedness of the local environments, the
LODE(1,1) multi-scale model is able to predict both the short
and the long-range behaviour of the binding profiles on an
equal footing. What is particularly remarkable is the fact that
a simple, linear model can capture accurately different kinds of
interactions, that occur on wildly different energy scales and
asymptotic behavior: the typical binding energy of charged
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Fig. 5 Median-error binding curves for six different classes of intermolecular interactions. (black lines) Quantum-mechanical calculations.
(green lines) Predictions of a |p;® p;) model. (blue lines) Predictions of a |p; ® V;) model.
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Table 1 Prediction performance expressed in terms of the RMSE over
all the points of the binding curves, for the six classes of interactions
andp ® p,p ® Vand V ® Vmodels. For each class we also indicate the
number of training samples, and the characteristic energy scale,
expressed in terms of the standard deviation of the energies in the test
set

RMSE/eV
Class Nerain STD/eV p®p pOV VeV
CC 100 1.86 0.72 0.049 0.058
CP 200 0.379 0.25 0.074 0.092
CA 150 0.083 0.056 0.041 0.034
PP 100 0.131 0.10 0.062 0.125
PA 350 0.046 0.032 0.013 0.021
AA 950 0.063 0.026 0.004 0.006
102 J
i
[%2]
=
4
X
101 4

102
Training dimers

10!

Fig. 6 Learning curves for the 6 classes of molecular interactions
computed using the LODE(1,1) representation. The curves indicate that
all interactions can be learned with comparable efficiency and that the
accuracy of the model is limited by the small number of available
reference structures. Interactions between charged molecules, that
have a formal connection with the form of the multi-scale features,
can be learned effectively with a small number of training samples.

dimers is of the order of several eV, and has a 1/r tail, while the
typical interaction energy of two apolar molecules is of the order
of a few 10 s of meV, and decays roughly as 1/r°.

A LODE(Y = 2) model (i.e. based on |V;®2) features) also
allows to predict the binding curves beyond the 3 A cutoff, but
usually yields 50-100% larger errors than those observed with
|p;®V;) - not only for charged molecules, but also for dimers
that are dominated by dispersion interactions. The multi-scale
nature of LODE(v = 1, ¥ = 1) yields a better balance of short
and long-range descriptions, and is sufficiently flexible to be
adapted to the description of systems that are not dominated by
permanent electrostatics, even though interactions between
charged fragments are considerably easier to learn, in
comparison to the others. We also observe that the uncertainty
model works reliably as the predicted curves always fall within
the estimated error bar. Larger uncertainties are found for
interaction classes that have few representative samples in the
training set, such as those associated with polar-polar molec-
ular pairs (Fig. 5(d)). The learning curves, plotted in Fig. 6,

© 2021 The Author(s). Published by the Royal Society of Chemistry
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provide insights into the performance of LODE(1,1) for different
kinds of interactions. CC dimers are learned with excellent
relative accuracy - which is unsurprising given the formal
connection with the multipole expansion. All other classes of
interactions yield a relative accuracy for a given training set size
which is an order of magnitude worse (with the exception of AA
interactions, whose learning performance is intermediate).
However, learning curves show no sign of saturation,® reflect-
ing the fact that multi-scale features have sufficient flexibility to
provide accurate predictions, but that the lack of a natural
connection to the underlying physics would require a larger
train set size. This is consistent with the considerations we
made in the previous section based on the simple H,0/CO,
example.

4.2 Induced polarization on a metal surface

The previous example proves that linear |p; ® V;) models capture
a wide class of molecular interactions, ranging from pure
dispersion to permanent electrostatics. Beyond molecular
systems, however, a large number of phenomena occur in solid
state physics that are driven by long-range effects, and involve
more subtle, self-consistent interactions between far-away
atoms. A particularly relevant example is represented by the
induced macroscopic polarization that a metallic material
undergoes in response to an external electric field, which
underlies fundamentally and technologically important
phenomena for surface science and nanostructures.®**®
Physics-based modelling of these kinds of systems usually
exploits the fact that, for a perfectly-conductive surface, the
interaction is equivalent to that between the polar molecule and
the mirror image, relative to the surface plane, of its charge
distribution, with an additional inversion of polarity.* It would
not appear at all obvious that our atom-centred framework,
which does not include an explicit response of the far-field atom
density to the local data-driven multipole, can capture the
physics of a phenomenon associated with the polarization of
electrons that are delocalized over the entire extension of the
metallic solid.

To benchmark the performance of multi-scale LODE in this
challenging scenario we consider the interaction of a slab of bec
lithium with a water molecule that is located at various
distances from the (100)-surface. We start by selecting 81 water
molecule configurations, differing in their internal geometry or
in their spatial orientation relative to the surface. For each of
these configurations, 31 rigid displacements are performed
along the (100)-direction, spanning a range of distances
between 0.5 A and 8 A from the lithium surface. Using this
dataset we compute unrelaxed binding energies at the DFT/PBE
level using the FHI-aims package.*® We converge the slab size
along the periodic xy-plane, minimizing the self-interaction
between the periodic images of the water molecule, resulting
in a5 x 5 unit cell repetitions and a k-points sampling of 4 x 4
x 1 A~'. We set the slab extension along the non-periodic z-
direction so that the Fermi energy is converged within 10 meV,
resulting in a total of 13 layers. To remove the spurious inter-
actions along the z-axis, we set a large vacuum space of roughly
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80 A in conjunction with a correction suitable to screen the
dipolar potential.*® Following these prescriptions, we obtain
attractive potential profiles for all molecular geometries and
orientation, consistently with the interaction between the
dipolar field of the water molecule and the induced metal
polarization.

For this example, we construct |p;) and |V;) representations
within spherical environments of r. = 4 A with a Gaussian-
density width of ¢ = 0.3 A. The regression model is trained on
75 lithium-water binding curves while the remaining 6 are used
for testing the accuracy of our predictions. Fig. 7 shows
a comparison between a local |p;£2) model and a multi-scale
LODE |p;®V;) model in learning the interaction energy of the
metal slab and the water molecule for one representative test
trajectory (all test trajectories are reported in the ESIt). We
observe that the local SOAP description is able to capture the
short-range interactions but becomes increasingly ineffective as
the water molecule moves outside the atomic environment,
leading to an overall error of about 19 RMSE%. This is in sharp
contrast to the performance of the |p;®V;) representation,
which can capture both the effects of electrostatic induction at
a large distance and the Pauli-like repulsion at short range with
the same level of accuracy, halving the prediction error to about
9%. Learning curves are shown in the ESIL}

To further investigate what aspects of the physics of the
molecule-surface interaction can be captured by the model, we
perform a Mulliken population analysis on the reference DFT
calculations, to extract the polarization vector of the water
molecule in response to the interaction with the metal, i.e., P*
="V — uy, where u"V and uy’ are the dipole moment of the
water molecule in the lithium-slab system and in vacuum
respectively. Physically, the polarization PV involves the
response of water's electrons to the rearrangement of the elec-
tronic charge in the surface triggered by the dipolar field, and so
it involves explicitly a back-reaction. Furthermore, the polari-
zation shows both a (usually larger) component along the z-axis,
and a tangential component in xy-plane. To account for the
vectorial nature of PV, we take advantage of the tensorial
extension of eqn (6). To single out the long-range nature of the

U (eV)

2 4 6 8
z (A)

Fig. 7 Predicted binding curve of a test water-lithium configuration.
(black dots) Reference DFT calculations; (green line) predictions of
a |p;®p;) model; (blue line) [p;®V;) model.
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Fig. 8 Learning curves for the induced polarization of the water
molecule due to interaction with image charges in the metal slab,
computed only for separations greater than 4.5 A. The error is
computed as a fraction of the intrinsic variability of the test set of 215
configurations. Contrary to the local model (green), a linear |p; ®V;)
model (blue) can learn this self-consistent polarization, with no
significant reduction of the learning rate up to 1000 training
configurations.

polarization interaction, we restrict the regression of PV to
water configurations that are more than 4.5 A far from the
surface. Our dataset contains 1215 such configurations, out of
which we randomly select 1000 for training, while the remain-
ing 215 are retained for testing. Given that the training set
contains no structures within the local descriptor cutoff, it
comes as no surprise that a pure density-based tensor model
[p;®2%;1;1 ) entirely fails to learn the long-range polarization
induced on the water molecule. Making use of the potential-
based tensor model of eqn (10), in contrast, allows us to effec-
tively learn the polarization vector PV, showing an error that
decreases to ~20% RMSE at the maximum training set size
available (Fig. 8). This example provides a compelling demon-
stration of the ability of |p;®V;) to build models of effects that
go well-beyond permanent electrostatics.

4.3 Response functions of oligopeptides

As a final example, we consider the challenging task of pre-
dicting the polarizability of a dataset of poly-aminoacids.
Dielectric response functions are strongly affected by long-
range correlations because of the cooperative nature of the
underlying physical mechanism. Poor transferability of local
models between structures of different sizes has been observed
for molecular dipole moments,** polarizability,* and the elec-
tronic dielectric constant of bulk water.*® For this purpose, we
use a training set composed of 27 428 conformers of single
aminoacids and 370 dipeptides, testing the predictions of the
model on a smaller test set containing 30 dipeptides, 20 tri-
peptides, 16 tetrapeptides and 10 pentapeptide configurations.
Reference polarizability calculations are carried out with the
Gaussian 16 quantum-chemistry code using the double-hybrid
DFT functional PWPB95-D3 and the aug-cc-pVDZ basis set.”*

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Learning curves for the A = 0 component of the polarizability
tensor of a database of polypeptide conformers. The green curve
corresponds to the non-linear kernel which is equivalent to |[p;€2]®?),
the blue curve to a linear kernel based on [p; ®V;), and the red one to
an optimal linear combination of the two.

We compute the multi-scale |p;®V;) features and their local
counterparts using a Gaussian width of ¢ = 0.3 A and a spher-
ical environment cutoff of r. = 4 A. This data set is interesting,
because it combines large structural variability with tens of
thousands of distorted aminoacid configurations with longer-
range interactions described by a few hundred dipeptide
conformers.

We consider three models: a linear |p;®V;) multi-scale
model; a square kernel model, that is equivalent to using
a quadratic functional of the SOAP features,
[0:%2]%%) =|p;®2) ® |p;€2), which incorporates 4 and 5-body
correlations and enhance the many-body character of the
representation at the local scale;** a weighted combination of
the two. The learning curves for the trace (A = 0) of the polar-
izability tensor, shown in Fig. 9, are very revealing of the
behavior of these three models. The |[p;®2]®*) model, which
disregards any non-local behavior beyond the atomic environ-
ment, is initially very efficient, but saturates to an error of 0.06
a.u. In contrast, equipped with non-local information, the
|p;®V;) representation reduces the error of prediction to 0.05
a.u., but is initially much less effective. This is not due to the
lack of higher-order local density correlations: a linear |p;®2)
model performs well, despite showing saturation due to its local
nature (see discussion in the ESIt). We interpret the lackluster
performance of the LODE model in the data-poor regime as an
indication of the dominant role played by short-range effects in
this diverse dataset, which can be learned more effectively by
a nearsighted kernel, similarly to what observed in ref. 24, 67
and 93. Inspired by those works, we build a tunable kernel
model based on a weighted sum of the local and the LODE
kernels, that can be optimized to reflect the relative importance
of the different ranges. We optimize the weight by cross-

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Absolute RMSE in learning the A = O spherical tensor of
polarizability of polypeptides as a function of the peptide length. The
model was trained on 27 428 single-amino acids and 370 dipeptides.
The error was computed on 30 dipeptides, 20 tripeptides, 16 tetra-
peptides and 10 pentapeptides respectively.

validation at the largest train size, obtaining a reduction of
50% of the test error, down to 0.028 a.u.

An analysis of the test error which separates the contribu-
tions from oligopeptides of different length, shown in Fig. 10, is
consistent with this interpretation of the learning curves. All
models show an error that increases with the size of the mole-
cule because there are interactions that are just not described at
the smaller train set size. However, the purely local model
shows by far the worst extrapolative performance, while multi-
scale models - in particular the one combining a non-linear
local kernel and LODE features - show both a smaller overall
error, and a saturation of the error for tetra and penta-peptides.
This example illustrates the different approaches to achieve
a multi-scale description of atomic-scale systems: the |p;®V;)
features offer simplicity and physical interpretability, while
a multi-kernel model makes it possible to optimize in a data-
driven manner the balance between local and long-ranged
correlations.

5 Conclusions

The lack of a description of long-range physical effects is one of
the main limitations of otherwise greatly successful machine-
learning schemes which are more and more often applied to
model atomic-scale phenomena. We show how it is possible to
construct a family of multi-scale equivariant features that
combine the properties of well-established local ML schemes
with the long-distance equivariant features that have been
recently proposed by some of the authors. This multi-scale
framework shows enticing formal correspondences with
physically-meaningful interaction terms, such as multipole
electrostatics. Still, the data driven nature of the construction
allows the description of long-range interactions that do not fit
this specific physical model. We show examples of how a multi-
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scale LODE model can accurately predict interactions between
different kinds of molecular dimers that include charged, polar
and apolar compounds. Results are also very promising when it
comes to modelling systems that clearly go beyond permanent
electrostatics, such as a water molecule interacting with
a metallic slab, and the dielectric response of oligopeptides. Our
results also provide a glance at the remaining challenges in the
description of long-range effects. The performance of the
specific flavor of multi-scale features we discuss degrades
progressively as the link of the target property with permanent
electrostatics become less direct, even though this degradation
translates in bigger data requirements rather than in an
outright failure of the scheme. In the last example we present,
that involves the tensorial response properties of oligopeptides,
careful tuning of the relative importance of short and long
range effects is necessary to achieve optimal transferability.
Meanwhile, we have only scratched the surface of the more
general idea that we introduce here. Different symmetry-
adapted combinations of atom-centred fields can be
computed with minor modifications of our scheme and could
offer a strategy to further improvements. The combination of
a physics-inspired formulation and data-driven flexibility that
underlies this multi-scale LODE framework addresses one of
the outstanding issues in atomistic machine-learning, and
paves the way towards an even more pervasive use of statistical
methods to support the computational investigation of mole-
cules and condensed-phase systems.
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§ Strictly speaking, g in eqn (3) has twice the variance as that in (1), but we re-
define the density function accordingly.

9§ Formally, improper rotations combine SO(3) rotation operators R and
inversion 7, 50 fo(3) ds = Z Jso dR with § = R,

I'n particular, we consicklzg'la = 1 if the learning target behaves as a polar tensor
and o = —1 if it mimics a pseudotensor under inversion symmetry.
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