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Antibiotic abuse causes the emergence of bacterial resistance. Photodynamic antibacterial chemotherapy

(PACT) has great potential to solve serious bacterial resistance, but it suffers from the inefficient generation

of ROS and the lack of bacterial targeting ability. Herein, a unique cationic photosensitizer (NB) and

bacteriophage (ABP)-based photodynamic antimicrobial agent (APNB) is developed for precise bacterial

eradication and efficient biofilm ablation. Thanks to the structural modification of the NB photosensitizer

with a sulfur atom, it displays excellent reactive oxygen species (ROS)-production ability. Moreover,

specific binding to pathogenic microorganisms can be provided by bacteriophages. The developed

APNB has multiple functions, including bacteria targeting, near-infrared fluorescence imaging and

combination therapy (PACT and phage therapy). Both in vitro and in vivo experiments prove that APNB

can efficiently treat A. baumannii infection. Particularly, the recovery from A. baumannii infection after

APNB treatment is faster than that with ampicillin and polymyxin B in vivo. Furthermore, the strategy of

combining bacteriophages and photosensitizers is employed to eradicate bacterial biofilms for the first

time, and it shows the excellent biofilm ablation effect as expected. Thus, APNB has huge potential in

fighting against multidrug-resistant bacteria and biofilm ablation in practice.
Introduction

Bacterial infection is recognized as one of the main causes of
death and poses a great threat to human health.1–3 Since peni-
cillin was rst discovered to treat bacterial infections, people
began to widely use antibiotics for infectious disease therapy.
Unfortunately, antibiotic abuse causes the emergence of drug-
resistant bacteria, such as vancomycin-resistant Enterococcus
(VRE), carbapenem-resistant Enterobacteriaceae (CRE) and
multidrug-resistant Acinetobacter baumannii (MRAB).4,5 Specially,
MRAB is a type of Gram-negative bacteria and severe nosocomial
infections can be caused by MRAB. In addition, MRAB also exists
in the form of biolms. Bacteria enclosed in biolms can be 1000
times more resistant to antibiotics.6,7 The use of polymyxin is
regarded as the last chance for treatment of MRAB, but it usually
causes signicant nephrotoxicity and polymyxin-resistant Acine-
tobacter baumannii is gradually emerging.8 The emergence and
the rapid spread of MRAB make slight injuries difficult to treat,
and it is conceivable that there will be no available drugs to use to
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treat even common infections in the end. Therefore, it is urgent
to explore new antibacterial strategies for effectively combating
MRAB infections and biolm ablation.

Photodynamic antimicrobial chemotherapy (PACT) has
gained broad attention9 and the use of many inorganic and
metallic nanocomposites is the most researched strategy.10,11

However such nanomaterials are difficult to degrade in vivo,
which is the most fatal drawback for their practical applica-
tion.12–14 In contrast, organic small molecules have high bio-
safety owing to easy metabolism in vivo, and they hold great
promise in PACT.15–17 However, many of the small molecular
photosensitizers (PSs) used in PACT suffer from poor sensitivity
due to inefficient generation of ROS and poor selectivity due to
the lack of bacterial targeting ability. Thus the aim of this article
is to develop a novel PACT agent that possess high selectivity
and sensitivity to ght against MRAB and their biolms.

In this article, we construct a multi-functional antibacterial
system based on the ABP phage and Nile blue photosensitizer
(NB) for the treatment of multi-drug resistant A. baumannii (A.
b), and the strategy of combining bacteriophages and photo-
sensitizers is also used to eradicate biolms for the rst time
(Scheme 1). Nile blue dyes (NB) are cationic photosensitizers
and their excellent photodynamic effect has been previously
validated.18–20 Structural modication with a “sulfur atom” can
effectively improve the triplet yield, thus improving the sensi-
tivity of PACT. Furthermore, bacteriophages have demonstrated
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Schematic of the multi-functional antibacterial system (APNB) based on the ABP phage and Nile blue photosensitizer (NB) for the
treatment of multi-drug resistant Acinetobacter baumannii and its biofilms. Structural modification of NB with a sulfur atom contributes the high
ROS generation ability, and the bacteriophages provide specific binding to pathogenic microorganisms. The developed APNB has multiple
functions, including bacteria targeting, near-infrared fluorescence imaging and combination therapy (PACT and phage therapy).
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particular specicity to their hosts.21 Before the discovery and
wide use of antibiotics, bacteriophage therapy was an important
antibacterial strategy, and it is revived due to the outbreak of
antibiotic resistance.22–24 However, if bacteriophages alone are
used in the treatment of bacterial infection, the optimal thera-
peutic effect oen cannot be achieved. Therefore, NB-carried
ABP, combining ABP and NB, provides a positive synergistic
effect in the killing of pathogens in vitro and in vivo, and ABP
can also enhance the targeting properties of NB photosensi-
tizers as ABP specially targets MRAB. Meanwhile, therapeutic
processes can be easily evaluated by the uorescence of NB,
realizing the real-time monitoring of therapeutic efficacy.

Compared with antibiotics, the developed PACT agent (APNB)
has the following advantages: (1) it can act on both Gram-positive
and Gram-negative bacteria, and is also highly effective against
multi-drug resistant bacteria and their biolms; (2) the particular
bacterial targeting properties of APNB owing to the selective
binding ability of bacteriophages; (3) resistance is not easy to
develop: APNB can bind to the main components of biolms and
eliminate drug resistance caused by biolms. At the same time,
drug internalization is not a prerequisite for PACT to kill bacteria;
(4) low toxic and side effects: APNB is injected to the infected sites
and light is used to achieve the therapeutic effect, resulting in low
damage to normal tissues; (4) multi-target destruction: ROS
produced by APNB can destroy proteins, polysaccharides, nucleic
acids, lipids and many other substances.
© 2021 The Author(s). Published by the Royal Society of Chemistry
Results and discussion
Synthesis and characterization of the APNB conjugate

The NB-phage bioconjugate (APNB) is rst synthesized through
the reaction between the carboxyl group in the outside proteins
of bacteriophages and the amino group in NB molecules.
According to the UV-vis spectra (Fig. 1A), the NB characteristic
absorbance peak (668 nm) is observed from the obtained APNB
conjugate, suggesting the successful NB loading onto the ABP
phage. Furthermore, APNB shows absorption in the therapeutic
window (600–900 nm), indicating that APNB has lower photo-
toxicity to normal tissues and deeper penetration into infected
sites. Fig. S1† shows the standard absorbance curves of NB and
ABP, respectively. The results show that Abs668 nm and Abs285 nm

increase linearly with the increase of concentrations of NB and
ABP. According to the standard curve method, the concentra-
tions of NB and ABP are calculated to be 0.103 mM and 0.25 �
109 PFU mL�1, respectively. Meanwhile, high near-infrared
uorescence is exhibited aer 660 nm excitation (Fig. 1B),
indicating that the uorescence can be maintained aer the NB
loading onto the ABP phage. The morphology of the ABP phage
is observed through transmission electron microscopy (TEM),
and the diameter of ABP is about 20 nm (Fig. 1C). In addition, A.
baumannii is a kind of Gram-negative bacteria, and it has
a dense outer membrane, thus usually making PACT have less
effect on it. However, lipopolysaccharide molecules in its outer
Chem. Sci., 2021, 12, 1054–1061 | 1055
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Fig. 1 (A) UV-vis spectra and (B) fluorescence spectra of NB and
APNB. (C) TEM image of the ABP phage (scale bar ¼ 20 nm). (D) Zeta
potentials of A. baumanni, the ABP phage and APNB in water. (E)
Relative fluorescence intensity and (F) activation rates of 20,70-
dichlorofluorescein (DCFH) with addition of APNB, NB, the positive
control and the negative control upon exposure of 660 nm light (20
mW cm�2). ***P < 0.001. (G) Targeted bacterial imaging of APNB by
fluorescence imaging of A. baumanni and P. aeruginosa co-incubated
with APNB for 15 min and 30 min. Arrows indicate A. baumannii with
staining by APNB (scale bar¼ 5 mm). [APNB]¼ 0.5 mM. lex¼ 660 nm for
APNB.
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membrane are negatively charged, and thus this kind of
cationic photosensitizer (APNB) can easily bind and penetrate
into A. baumannii through electrostatic adsorption, and shows
the potential antibacterial activity for A. baumannii (Fig. 1D).
Detection of ROS

The ability of ROS production is a key factor that needs to be
considered for an outstanding PACT agent.25,26 Thus we use
20,70-dichlorouorescein (DCFH) as a probe to explore the ROS
generation ability of APNB, and utilize UV-vis spectroscopy to
measure the generation rate of ROS. A positive control and
negative control are used as the reference. As shown in Fig. 1E
and F, aer light exposure, APNB can efficiently sensitize
surrounding oxygen to produce ROS, and the ROS generation of
APNB is nearly equal to that of NB. The results show that APNB
can rapidly generate ROS and has the potential to act as an ideal
PACT agent for A. baumanni killing.
Specic targeting imaging for A. baumanni by APNB

It has been demonstrated that bacteriophages have specic
targeting ability to their hosts.27,28 Compared with the antibody-
based targeting strategy, they have the following advantages: (1)
the large surface area enables more photosensitizer delivery; (2)
1056 | Chem. Sci., 2021, 12, 1054–1061
the bacteria targeting ability can be adjusted as needed.
Therefore, based on the particular recognition of the ABP
phage, we investigate the bacteria targeting ability of APNB
through confocal laser scanning microscope (CLSM) imaging of
A. baumanni and P. aeruginosa co-incubated with APNB for 15
min and 30 min. As shown in Fig. S2,† a bright uorescence
signal is observed in A. baumannii aer incubating with APNB
for 30 min and 660 nm light irradiation for 15 min, while there
is almost no red uorescence from APNB in P. aeruginosa under
light irradiation. Futhermore, the real-time monitoring of
bacteria targeting in mixed microbes using the APNB probe is
examined. As shown in Fig. 1G, when the mixed bacteria
including host bacteria (A. baumannii) and P. aeruginosa are
incubated with APNB, only A. baumannii can be specically
stained under light irradiation, and P. aeruginosa cannot be
stained by APNB absolutely. The arrows indicate the stained A.
baumannii by APNB. The results conrm the specic targeting
ability of APNB and its great promise in precise antibacterial
therapy.
Evaluation of in vitro antibacterial activity

The ABP phage not only has the function of bacteria targeting,
but also has an antibacterial effect. Therefore, the constructed
APNB system has dual antibacterial effects, including photo-
dynamic therapy and phage therapy. In order to test the
synergistic photodynamic killing effect of APNB in vitro, A.
baumannii in the log phase is treated with ABP, NB and APNB
respectively. Firstly, we optimize therapy conditions including
the time of APNB incubation and light exposure through eval-
uating the survival rate of A. baumannii. As shown in Fig. S3,†
the survival rate of A. baumannii decreases from 32.3% to 5.6%
along with different incubation times (10, 20 and 30 min) and
a xed light exposure time (15 min), and thus 30 min is chosen
as the optimal APNB incubation time. Then, we x 30 min of
APNB incubation and excite the bacterial suspensions by using
660 nm light (20 mW cm�2) for 5, 10, and 15 min, respectively.
Nearly 94% of A. baumannii can be killed aer 15 min of light
exposure (Fig. S4†), and 15 min is chosen as the optimal irra-
diation time. Therefore, the 30 minutes of incubation and 15
minutes of light exposure are employed in the following anti-
bacterial experiments.

To conrm the antibacterial effect of PACT with APNB, a live/
dead bacterial viability kit is rst used to stain the treated
bacteria by confocal laser scanning microscope (CLSM)
imaging. The live bacterial cells show as green and the dead
bacterial cells show as red because of the intact and damaged
membrane. As shown in Fig. 2C and 2D, the free NB group and
control group exhibit a large amount of green uorescence,
indicating that all bacteria are alive, while almost all bacteria in
the APNB-group show red uorescence because of the effective
killing with light irradiation by APNB (Fig. 2A). In the ABP-
treated group, ABP also shows moderate toxicity toward A.
baumannii because of the intrinsic antibacterial activity of the
ABP phage (Fig. 2B).

One of the other key issues for PACT application is the bio-
safety of the PACT agent. In terms of this issue, we study the
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Live/dead bacterial viability test by confocal laser scanning microscope (CLSM) imaging. (A) Confocal images of APNB-treated bacteria
and COS-7 cells post live/dead staining (scale bar¼ 20 mm). (B) Confocal images of ABP-treated bacteria and COS-7 cells post live/dead staining
(scale bar¼ 20 mm). (C) Confocal images of NB-treated bacteria and COS-7 cells post live/dead staining (scale bar¼ 20 mm). (D) Confocal images
of control group post live/dead staining (scale bar ¼ 20 mm). The PACT treatment is conducted under 660 nm light irradiation (20 mW cm�2) for
15 min. [APNB] ¼ [NB] ¼ 0.5 mM. [Calcein-AM] ¼ 5 mM. [PI] ¼ 5 mM. lex ¼ 490 nm for Calcein-AM, and lex ¼ 530 nm for PI.

Fig. 3 Intracellular detection of ROS production in APNB-treated A.
baumannii and COS-7 cells using confocal laser scanning microscope
(CLSM) imaging (scale bar¼ 20 mm). [APNB]¼ [NB]¼ 0.5 mM. [DCFH]¼
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binding ability of APNB towards mammalian cells in vitro, and
COS-7 cells are selected as the models. According to the live/
dead staining results, all the COS-7 cells in the APNB-group
display bright green uorescence, demonstrating that APNB
shows almost no killing effect against COS-7 cells (Fig. 2A),
furthermore conrming its perfect selectivity and bio-safety
towards mammalian cells.

To eliminate bacteria, APNB must be close to and penetrate
into the outer surfaces of bacterial cells, which allows the
generation of a large amount of ROS and the destruction of
proteins, polysaccharides, nucleic acids, lipids and many other
substances in bacterial cells.29–31

Hence, the intracellular ROS levels are next evaluated using
confocal laser scanning microscope (CLSM) imaging. We use
DCFH staining to study intracellular ROS production in APNB-
treated A. baumannii. As shown in Fig. 3, there is almost no
green uorescence from DCF in A. baumannii in the absence of
APNB and slight green uorescence in the presence of NB. In
contrast, the distinct green uorescence from DCF is observed
in A. baumannii when treated with APNB under light irradiation.
Meanwhile, the uorescence intensity increases as the
concentration of APNB increases from 0.25 mM to 0.5 mM
© 2021 The Author(s). Published by the Royal Society of Chemistry
(Fig. S5†), suggesting that much more ROS can be produced
because APNB can specically bind to A. baumannii. When
compared to COS-7 cells, APNB shows relatively weak binding
10 mM. lex ¼ 488 nm for DCH.

Chem. Sci., 2021, 12, 1054–1061 | 1057
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Fig. 4 Antibacterial evaluation of APNB based PACT in vitro. (A) Survival rates of bacteria and (B) viable bacteria remained in the culture after
different treatments using the CFU counting method. (C) A. baumannii and P. aeruginosa are incubated together with APNB. The arrows indicate
A. baumannii identified via the colony morphology. (D) SEM images of A. baumannii before and after being treated with APNB (scale bar ¼ 1 mm).
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affinity with COS-7 cells because no uorescence is observed
through DCFH staining. In contrast, when treated with NB, light
uorescence in COS-7 cells is observed, and the uorescence
intensity increases as the concentration of NB increases from
0.25 mM to 0.5 mM, demonstrating the better selectivity of APNB
(Fig. S6†).

Based on the above results, we study the in vitro antibacterial
activity of APNB against A. baumannii utilizing the colony-
forming units (CFU) counting method under 660 nm light
irradiation (20 mW cm�2) for 15 min. As shown in Fig. 4A and B,
both the NB-treated group and phage-treated group show
moderate antibacterial activity with light exposure. In the APNB-
treated group, APNB also shows moderate toxicity toward A.
baumannii without light exposure probably because of the
intrinsic antibacterial activity of the phage. However upon 660
nm light irradiation and a low dose of APNB (0.03 mM), the
growth rate of A. baumannii could be inhibited effectively as low
as 17.63%, which was far above that of the NB or phage-treated
group. It indicates that the light-excited APNB can damage the
bacterial cells and enhance bacteria killing.

The targeted killing of bacteria is another key factor for
evaluation of the antibacterial effect. This capability of APNB is
veried in mixed systems by culturing host bacteria (A. bau-
mannii) with non-host bacteria (P. aeruginosa), respectively. As
shown in Fig. 4C, in the presence of light irradiation, A. bau-
mannii are killed effectively and few colonies formed with APNB
treatment. However the colony quantity of P. aeruginosa is
nearly uninuenced, which agrees with the above result of tar-
geting imaging for A. baumanni by APNB.

To furthermore explore whether APNB could disrupt the
integrity of the bacterial cell membrane, a scanning electron
microscope (SEM) is used to study the microscopic structure of
A. baumannii before and aer PACT. As shown in Fig. 4D, the
1058 | Chem. Sci., 2021, 12, 1054–1061
untreated A. baumannii displays intact cell walls with a smooth
surface. By contrast, aer incubation with APNB at a concen-
tration of 0.5 mM and applying light illumination for 15 min, the
cell walls are wrinkled and the cellular structures, particularly
the outer membrane, are wholly ruptured and collapsed, indi-
cating that the A. baumannii have been killed owing to the
leakage of intracellular contents (Fig. S8†). The morphological
structures of bacteria observed by SEM further conrm that the
light-excited APNB could greatly damage the cell membrane and
has great potential to be used for A. baumannii treatment in vivo.
Cytotoxicity assay

For in vivo applications, cell viability is an important charac-
teristic that needs to be checked. The MTT assay is employed to
investigate the cytotoxicity of APNB. As shown in Fig. S7,† aer
incubation with APNB for 24 h without light irradiation, the cell
viability is over 90% at concentrations lower than 0.5 mM, con-
rming the low dark cytotoxicity of APNB. When the cells are
treated with APNB for 24 h followed by 660 nm light (20 mW
cm�2) irradiation for 15 min, the cell viability exceeds 83% at
a concentration of 0.5 mM. When the concentration further
decreases, the cell viability increases to more than 90%. Cyto-
toxicity experiments verify that APNB shows excellent biocom-
patibility, which is much better than that of NB.
Bacterial biolm ablation and inhibition effects in vitro

Besides the free form, MRAB also exists in the form of bio-
lms.32–34 In clinics, a large number of implantable medical
device-caused bacterial infections are related to MRAB bio-
lms.35,36 Once the biolms are formed on the surface of
implantable devices, they are difficult to eradicate due to the
protection of the polymeric matrix in biolms. What's worse,
© 2021 The Author(s). Published by the Royal Society of Chemistry
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antibiotics and other kinds of drugs can be prevented from
penetrating into bacteria by the polymeric matrix in biolms.
The bacteria enclosed in the biolms can be 1000 times more
resistant to antibiotics.37,38 Thus, it takes a lot of effort for bio-
lm removal, such as washing with acidic compounds or strong
oxidizing agents and high pressure water jet cleaning devices,
but those suffer from the high costs and need of high energy
devices.39,40

Encouraged by the highly efficient antibacterial ability of
light-excited APNB, the combination of PACT and the phage is
also expected to effectively eradicate existing biolms and
inhibit biolm formation. The capability of APNB to ablate
existing biolms and prevent the formation of bacterial bio-
lms is investigated through a crystal violet (CV) staining assay.
As shown in Fig. 5A, the APNB-treated group exhibits excellent
ablation effects on the biolms with light exposure, and the
biolm ablation rate is 89.3% when the concentration of APNB
is up to 0.5 mM, and APNB could efficiently ablate the bacterial
biolms at a low concentration (0.25 mM). The photographs
(Fig. 5B) and optical microscope photographs (Fig. 5C) of the
remaining biolms aer the different treatments also conrm
the efficient biolm ablation effect. Besides, the bacterial bio-
lms are obviously ablated in a concentration-dependent
manner of APNB (Fig. S9†). Surprisingly, the NB-treated group
shows remarkable ability of biolm ablation as well. The bio-
lm ablation rate is 74.8% when the concentration of NB is up
Fig. 5 (A) In vitro A. baumannii biofilm eradication by APNB without or
with light irradiation (15 min at 20 mW cm�2); phage and NB served as
the controls. (B) The Photographs and (C) optical microscope
photographs of the remaining biofilms after the different treatments.
(D) Photographs of in vitro inhibition of biofilm formation by the phage,
NB and APNB without or with NIR light irradiation (15 min at 20 mW
cm�2); the phage and NB served as the controls. (E) Biofilm inhibition
rate of APNB by CFU counting.

© 2021 The Author(s). Published by the Royal Society of Chemistry
to 0.5 mM, and it could also efficiently ablate the bacterial bio-
lms at a low concentration (0.25 mM) (Fig. 5A).

Apart from the ability to effectively eradicate existing bio-
lms, APNB is also able to efficiently inhibit biolm formation.
Fig. 5D and S10† show the CV staining results for the formed
biolms aer treatment with APNB without or with light irra-
diation. Limited inhibition effects are observed aer treatment
with 0.9% NaCl. Aer treatment with the phage, NB, and APNB
with NIR light, the inhibition effect is signicantly enhanced,
and APNB exhibits the highest inhibition effect. CFU counting
assay also conrms the inhibition of the biolm formation by
APNB (Fig. 5E).
Evaluation of the in vivo antibacterial effect

Encouraged by the excellent in vitro antibacterial effect, the in
vivo antibacterial effect of APNB is explored. 6–8 weeks female
BALB/c mice, with 1 � 108 CFU A. baumannii triggered skin
infection, are used as the models to evaluate the in vivo anti-
bacterial effect of APNB. The infected mice are randomly
assigned to four groups for the following different treatments:
0.9% NaCl, ampicillin, polymyxin B, and APNB. The APNB is the
PACT group, while the ampicillin and polymyxin B are positive
control groups and 0.9% NaCl is the negative control group.
Fig. 6A shows the experimental procedure of the in vivo anti-
bacterial evaluation; at day 1 and day 2 post injection of A.
baumannii, the different treatments are conducted. As shown in
Fig. 6B, the infected mice that are treated with APNB and
exposed to 660 nm light can recover more rapidly compared to
the control groups at the 4th day, including the untreated
control group, NB group and APNB without light exposure
group. As shown in Fig. 6C, the mice in AP the NB-treated group
almost recover at the 7th day, and the recovery rate is noticeably
faster than that of ampicillin (AMP) and polymyxin B (PB).
Meanwhile, mice with the treatment of 0.9% NaCl (control),
cannot fully recover even aer 10 days, demonstrating that
APNB can effectively suppress the bacterial infection. At day 3
post injection of A. baumannii, we collect the skin tissues from
Fig. 6 The antibacterial ability in vivo. (A) Experimental procedure of
the in vivo antibacterial evaluation; the different treatments are con-
ducted at day 1 and day 2 post injection of A. baumannii. (B) Photo-
graphs and (C) the sizes of the infected areas. (D) the number of
bacterial colony-forming units counting from the infected wounds at
day 3 post injection of A. baumannii. **P < 0.01 and ***P < 0.001.
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the infected wounds for CFU counting. As shown in Fig. 6D, A.
baumannii could be effectively killed and there is a negligible
amount of A. baumannii in the APNB group under light irradi-
ation, whereas other groups including positive control groups
(ampicillin and polymyxin B) and the negative control group
(0.9% NaCl) are still infected by A. baumannii. To further
investigate the bio-safety of APNB, the body weights of the
treated mice are measured, and they show a similar trend
regardless of the treatment (Fig. S11†). The above results
demonstrate that APNB can effectively kill A. baumannii and can
act as an effective PACT agent to treat A. baumannii infection in
vivo.

Conclusions

In summary, the ABP phage with photosensitizer (NB) conju-
gation (APNB) is fabricated in this work as a new generation
photodynamic antibacterial agent for highly efficient antibac-
terial treatment and the ablation of biolms. Thanks to the
structural modication of the NB photosensitizer with a sulfur
atom, it shows a high ROS generation ability. Moreover, the
bacteriophages provide specic binding to pathogenic micro-
organisms. Compared with free NB, APNB shows greatly
enhanced in vitro PACT-induced antibacterial efficacy towards
A. baumannii owing to the ability of phage-based bacterial tar-
geting. Experiments with mouse A. baumannii infection further
conrm the excellent in vivo anti-infection performances of
APNB, and the recovery aer treatment with our APNB is faster
than that with ampicillin and polymyxin B. Furthermore, the
strategy of combining bacteriophages and photosensitizers is
employed to eradicate bacterial biolms for the rst time, and it
shows the excellent biolm ablation effect in vitro. In summary,
the above results clearly show that APNB is a highly efficient and
multifunctional antibacterial agent, and it has great potential in
combating MRAB infections and biolm ablation.

Conflicts of interest

There are no conicts to declare.

Acknowledgements

This work was supported by the National Natural Science
Foundation of China (project 21421005), National Natural
Science Foundation of China (project 22008025), and NSFC-
Liaoning United Fund U1608222 and U1908202.

Notes and references

1 M. Baym, L. K. Stone and R. Kishony, Science, 2016, 351,
aad3292.

2 J. Besser, H. A. Carleton, P. Gerner-Smidt, R. L. Lindsey and
E. Trees, Clin. Microbiol. Infect., 2018, 24, 335–341.

3 B. R. Levin, F. Baquero, P. Ankomah and I. C. McCall, Trends
Microbiol., 2017, 25, 878–892.

4 W. Chin, G. Zhong, Q. Pu, C. Yang, W. Lou, P. F. De Sessions,
B. Periaswamy, A. Lee, Z. C. Liang, X. Ding, S. Gao, C. W. Chu,
1060 | Chem. Sci., 2021, 12, 1054–1061
S. Bianco, C. Bao, Y. W. Tong, W. Fan, M. Wu, J. L. Hedrick
and Y. Y. Yang, Nat. Commun., 2018, 9, 914–917.

5 D. Wong, T. B. Nielsen, R. A. Bonomo, P. Pantapalangkoor,
B. Luna and B. Spellberg, Clin. Microbiol. Infect., 2017, 30,
409–447.

6 H. Koo, R. N. Allan, R. P. Howlin, P. Stoodley and L. Hall-
Stoodley, Nat. Rev. Microbiol., 2017, 15, 740–755.

7 C. R. Arciola, D. Campoccia and L. Montanaro, Nat. Rev.
Microbiol., 2018, 16, 397–409.

8 L. Poirel, A. Jayol and P. Nordmann, Clin. Microbiol. Rev.,
2017, 30, 557–596.

9 M. Wainwright, T. Maisch, S. Nonell, K. Plaetzer, A. Almeida,
G. P. Tegos and M. R. Hamblin, Lancet Infect. Dis., 2017, 17,
e49–e55.

10 W. Chen, J. Ouyang, H. Liu, M. Chen, K. Zeng, J. Sheng,
Z. Liu, Y. Han, L. Wang, J. Li, L. Deng, Y.-N. Liu and
S. Guo, Adv. Mater., 2017, 29, 1603864.

11 W. Liu, Y. Zhang, W. You, J. Su, S. Yu, T. Dai, Y. Huang,
X. Chen, X. Song and Z. Chen, Nanoscale, 2020, 12, 13948–
13957.

12 C. Wang, Y. Xiao, W. Zhu, J. Chu, J. Xu, H. Zhao, F. Shen,
R. Peng and Z. Liu, Small, 2020, 16, 2000589.

13 K. Turcheniuk, V. Turcheniuk, C.-H. Hage, T. Dumych,
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