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Novel heterostructure Cu,S/NizS, coral-like
nanoarrays on Ni foam to enhance hydrogen

evolution reaction in alkaline mediaf
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Exploring efficient alternatives to precious noble metal catalysts is a challenge. Here, a new type of non-
noble metal Cu,S/NisS, heterostructure nanosheet array is fabricated on 3D Ni foam. This electrocatalyst
has excellent activity and durability to Hydrogen Evolution Reaction (HER) under alkaline conditions. The
synergistic catalysis produced by the {210} and (034) crystal planes and the increase in charge transfer

and the number of active sites caused by lattice defects greatly improve the electrocatalytic activity of

NisS,. In the HER process, the Cu,S/NizS, interface increases the formation of S—H bonds, and Cu,S
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promotes the transformation during the HER process into S-doped CuO, optimizing the adsorption

capacity of S-doped sites for H. Among electrocatalysts made with different feed ratios, Cu,S/NizS,/NF-
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1. Introduction

H,, with its 142 M]J kg™ ' energy density and nonpolluting
reproducibility, is a sustainable energy source worthy of
research.” The application of hydrogen energy urgently requires
exploring cleaner, cheaper, and more efficient hydrogen
production technology.> A viable clean hydrogen production
technology is water splitting, but the overpotential require-
ments of the hydrogen evolution reaction (HER) and the oxygen
evolution reaction (OER) limit the wide application. The slow
HER Kkinetic process enormously limits the overall efficiency.?
Platinum-based electrocatalysts are recognized as the top elec-
trochemical HER catalysts. However, noble metal catalysts
cannot be widely used due to practical factors. Commercially
available traditional alkaline electrocatalysts are affordable but
not sufficiently active, such as stainless steel,” RANEY® nickel,®
and nickel alloys.” Therefore, exploring catalysts that are effec-
tive for HER in abundant non-noble metal elements is urgent.

Owing to these practical problems, research has been carried
out for decades to find substitutes for noble metals. Among
them, high-performance nickel-based materials with excellent
electrochemical performance and intrinsic electrocatalytic
activity are expected to become the best candidates.*** Among
various nickel sulfides, Ni;S, with inherent metallic advantages
can be a suitable candidate for HER and OER catalysts.'” As an
effective catalyst active ingredient, NisS, is widely used in
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3, for HER, only needs an overpotential of 50 mV to deliver a current density of 10 mA cm™2. This work
provides a promising non-noble metal electrocatalyst for water splitting under alkaline conditions.

electrode materials for supercapacitors and lithium-sulfur
batteries.’* Miaomiao Tong built special 3D NizS, nano-
rods@nanosheets, improved their adhesion properties, and
exposed more active sites. However, Ni;S, can still be modified
in terms of increasing conductivity, improving catalytic activity,
and exposing active sites.">'® Owing to the inevitable sulfur
vacancies in Ni;S,, the regulation of its surface electronic
structure has become a way to improve catalytic activity.
Metallic element doping is a feasible solution. It can adjust the
adsorption/desorption energy, expand the effective surface area,
regulate the electronic structure, and exert a synergistic role
between ions.””™ Relevant literature has reported that Fe,*
Co,” Zn,” and Mo> doping in Ni;S, improves HER or OER
performance. However, Cu-doped high-activity Ni;S, catalyst
with a great HER performance has rarely been reported. Cu, as
a doping element, does have a good effect. Several researchers
doped Cu as catalytic materials. Zhang et al.>* reported that the
charge transfer ability and surface area of Cu-doped Fe-Co
oxide have been greatly improved. Co/Cu-modified NiO
designed by Guo, ZG et al.* proved that Cu doping can activate
Ni sites at a low overpotential, thereby increasing conductivity
and accelerating charge transfer. Until now, studies have
focused on the use of doped modified substrate materials. For
example, the recent report of Du's group about Cu doped Ni;S,
has an overpotential of 91 mV.*® However, the intrinsic catalytic
activity of each substance is different, and it is a novel idea to
improve the catalytic activity by constructing a heterostructure.
There are few reports on the heterostructure of Cu,S and Ni;S,,
which is a direction worth studying. We used the activity of Cu,S
to construct a heterostructure Cu,S/Ni,S, greatly improved the
catalytic activity of Ni;S, for hydrogen evolution.
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Based on the above viewpoints, a two-step hydrothermal
method was designed to successfully grow Cu,S/Ni;S, with
a stable and regular morphology heterostructure on nickel
foam. In the first step, the precursor (Cu-Ni layered double
hydroxide [LDH]) of the composite structure of nanosheets and
nanowires is prepared by changing the feed ratio and reaction
conditions. In the second step, a sulfide ion exchange is used to
obtain the target sample (Cu,S/Ni;S,/NF). The synergistic effect
between Cu,S and Ni;S, of heterostructure makes the material
obtain excellent HER performance. Cu,S/Ni;S,/NF-3 to achieve
a current density of 10 mA cm™? only needs an overpotential of
50 mV, which is much lower than the reported Cu doped Ni;S,
and Ni-S-Cu systems.”® The number of active sites calculated by
the turnover frequency (TOF) is 3.568 x 10~ * mol. Moreover, the
actual surface area of Cu,S/Ni;S,/NF-3 is about 2.2 times that of
Ni;S,/NF. The high electrocatalytic performance of Cu,S/Ni;S,/
NF is mainly manifested in the following aspects: 1. After
vulcanization, the surface of the layer structure is “coral-like,”
exposing abundant active sites and allowing the active ingre-
dients to be in close contact with the electrolyte. 2. The
combination of Cu,S and Ni;S,, Cu,S is converted into S-doped
CuO during the HER process, where CuO introduces a defect
level near the Fermi level, accelerates charge transfer and
improves intrinsic conductivity.”” 3. The high conductivity of
Ni;S, provides a fast charge transfer and promotes the electro-
catalytic reaction of the catalyst. 4. High-index {210} of Ni;S,
and exposed (034) crystal plane of Cu,S improve electrocatalytic
performance.

2. Experimental section
2.1 Experimental materials preparation

In this experiment, chemicals include ionized water (>18.25
mQ cm™ ', Millipore), and CuCl,-2H,0, NiCl,-6H,0, CH,N,0,
NH,F, Na,S, all purchased from Sinopharm Chemical Reagent
Co., Ltd. The nickel foam (NF) used in all experiment were ob-
tained from Kunshan Desco Electronics Co., Ltd. (Suzhou,
China) and the density of NF was 350 g m ™.

2.1.1 Fabricating Ni-Cu LDH nanosheet array on NF. First,

CuCl,-2H,O and NiCl,-6H,0 were dissolved in deionized

Table 1 Different feed ratios and corresponding numbers

CuCl,-2H,0 NiCl,-6H,0 Corresponding Cu-Ni LDH
2 mmol 2 mmol Cu-Ni LDH/NF-0
2 mmol 4 mmol Cu-Ni LDH/NF-1
2 mmol 8 mmol Cu-Ni LDH/NF-2
2 mmol 18 mmol Cu-Ni LDH/NF-3
2 mmol 24 mmol Cu-Ni LDH/NF-4

Fig. 1 Schematic diagram of preparation of Cu,S/NizS,/NF.
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water(70 mL) at different molar ratios (the specific feed ratio
and the corresponding serial number are shown in Table 1),
10 mmol CH4N,O and 4 mmol NH,F were add in above solu-
tion. Then the precursor solution, stirred for 10 minutes, was
transferred into a 100 mL Teflon-line stainless autoclave. The
prepared clean NF (2 x 5 cm) was immersed in it, then reacted
at 120 °C for 6 h. After cooling, the obtained Ni-Cu LDH/NF was
washed and then placed at 60 °C to dry overnight in a vacuum
oven. Fig. 1 shows the schematic diagram of preparation of
Cu,S/Ni;S,/NF.

2.1.2 Ni-Cu LDH sulfide to Cu,S/Ni;S,. Prepared 0.2mol
L~ ' Na,S solution and dried NiCu-LDH were put into Teflon-line
stainless autoclave. After reacting at 100 °C for 8 h, the black
Cu,S/Ni;S,/NF was obtained. After the Cu,S/Ni;S,/NF is washed
and dried, the subsequent characterization and performance
can be performed.

2.2 Preparation for material characterizations and
electrochemical measurements

The X-ray diffraction (XRD) of Ni-Cu LDH and Cu,S/Ni;S, was
measured using a PANalytical Empyren equipment at 45 kV and
40 mA with a Cu target. The scanning electron microscopy
(SEM) images of Ni-Cu LDH and Cu,S/Ni;S, were from Zeiss
Sigma 500. Energy dispersive spectroscopy (EDS) analyses were
recorded by FEI Talos 200s. The valence states of the elements
on the electrode surface were obtained by an ESCALAB 250Xi X-
ray photon spectrometer (XPS). Transmission electron micros-
copy (TEM), selected area electron diffraction (SAED), high-
resolution TEM (HRTEM), and scanning TEM were all ob-
tained by using a JEM2100F microscope.

All electrochemical tests use CHI660B electrochemical
workstation. A three-electrode system consisting of graphite,
saturated calomel electrodes (SCE, KCl saturated) and the
sample to be tested was made up in 1 M KOH at 25 °C. The
potentials measured in the experiment has been calibrated, and
the potential (vs. SCE) was converted into a reversible hydrogen
electrode (RHE) through the Nernst equation:* E,s gyg = E s.5cE
+0.242 V + 0.059 pH. The polarization curves were corrected by
the equation:® Ecorrected = Evs.rue — IR linear sweep voltammetry
(LSV), cyclic voltammetry (CV), electrochemical impedance
spectroscopy (EIS) and continuous CV cycles were used to
evaluate the electrocatalytic performance of the catalyst.

3. Experimental results
3.1 Cu,S/NizS, structure analysis

NF with 3D conductive network structure and macropores was
used as a base material for electrocatalyst growth. After the two-
step hydrothermal reaction mentioned above, the silver white

o,/ Sulfide . E 7Y
<\ T _
Cu-Ni LDH Cu:S/NisS2/NF

© 2021 The Author(s). Published by the Royal Society of Chemistry
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NF changed to brick red (the NiCu LDH precursor) and then
black (Cu,S/NizS,/NF). The SEM images in Fig. 2(a)-(f) can
visually present the microscopic morphology of the sample.
Fig. 2(a)-(c) show the SEM images of NiCu LDH. NiCu LDH is
uniformly anchored on the NF substrate in a sheet-like manner.
After further increasing the magnification, “nano fluff” was
evenly distributed on the nanosheets. Compared with NiCu
LDH, the SEM images of Cu,S/Ni3S,/NF did not change signif-
icantly, as shown Fig. 3(d)-(f), indicating that the required LDH
layered structure can exist stably. After vulcanization, the “nano
fluff” is transformed into a “coral” with a rough surface,
exposing more active sites. The SEM picture of Cu,S/Ni3S,/NF
after 58 h chronopotentiometry test is placed in the support
information. As shown in Fig. S1,7 some cracks appeared on
Cu,S/Ni;S, layer after the test. And the original thin nanosheets
are transformed into a stacked coral layer. This transition from

View Article Online
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“nano fluff” to “rough coral” increases the specific surface area
and helps improve electrocatalytic activity.

Furthermore, Fig. 2(g) shows the XRD pattern of Ni;S,/NF
and Cu,S/Ni;S,/NF. Both XRD spectra have the same three
strong peaks, based foam nickel (PDF #70-1849). The diffraction
peaks of both at 26 = 21.75°, 31.10°, 37.78°, 49.73°, and 55.16°
correspond to Ni;S, (PDF #44-1418) (101), (110), (003), (113),
and (122) crystal planes, respectively. Obviously, the character-
istic peak of Cu,S (PDF #33-0490) appeared in the XRD spec-
trum (indicated by the orange line) after Cu was added. The
XRD spectrum qualitatively showed the existence of Cu,S/Ni;S,.
EDS confirms that Ni, Cu, and S are present in Cu,S/Ni;S,/NF
sample, and their atomic ratio is close to the feed ratio. The
Cu,S/Ni;S,/NF after 58 h chronopotentiometry test was char-
acterized by XRD. As shown in the ESI Fig. S2, after the 58 h
stability test, the XRD spectrum of Cu,S/Ni;S,/NF showed a CuO
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(a—c) SEM image of NiCu LDH-3, (d—f) SEM image of Cu,S/NizS,/NF-3, (g) XRD pattern of NizS,/NF, Cu,S/NizS,/NF and NF, (h) EDS image
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Fig. 3

peak (PDF #89-5899) that had not appeared before the test. The
diffraction peaks at 26 = 35.6°, 38.8°, and 48.7° correspond to
CuO (—111), (111), and (—202) crystal planes, respectively. The
intensity of the Cu,S peak weakened, indicating that Cu,S was
partially converted to CuO.

In addition, the element composition of Cu,S/Ni;S,/NF-3 can
be obtained by XPS. The overall XPS spectrum of Cu,S/Ni3S,/NF-
3 is shown in Fig. 3(a), where Ni, Cu, and S are present. Fig. 3(b)
shows the XPS spectrum of the Ni 2p region, where the inten-
sities of the Ni 2p;;, and Ni 2p;, peaks are 855.48 eV and
873.23 eV, respectively, indicating that Ni exists in the form of
Ni;S,.* The peaks of 879.2 and 860.8 eV are the concomitant
satellites.*>** The small peak on the far right (852.8 eV) is
a typical metal nickel sulfide or metal nickel peak.** In the XPS
spectrum of Cu 2p region shown in Fig. 3(c), 932.03 eV is the
peak of Cu 2p3, in Cu,S, and 951.93 eV is the peak of Cu 2p,/,.>*
The last picture in Fig. 3(d) is the XPS spectrum of S 2p, where
162.48 and 161.48 eV are attributed to S 2py/, and 2p3, in Ni3S,,
respectively.®® And 162.25 eV is attributed to S 2p;, in Cu,S. All
XPS spectra fully prove that the synthesized sample is Cu,S/
Ni;S,. After 58 h chronopotentiometry test, the XPS spectra of
the electrode is placed in the ESI Fig. S3.1 In Fig. S3(b)f shows
that Ni 2p3/, and Ni 2p,,, of NizS, are the main strong peaks,
which can match the conclusion of XRD (Fig. S21). Moreover, in
Fig. S3(b).T The Cu 2p spectra (Fig. S3(c)t) shows Cu* and Cu**
peaks. Among them, the Cu 2p;/, and Cu 2p,,, match with the
Cu,S and the strong Cu*" satellite match with the CuO detected
by XRD (Fig. S2t). Compared with the original XPS spectra, the
intensity of S 2p (Fig. S3(d)t) is reduced after the chro-
nopotentiometry test. We suspected that the heterostructure
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(a) XPS survey spectrum for Cu,S/NizS,. XPS spectra of Cu,S/NisS; in the (b) Ni 2p, (c) Cu 2p and (d) S 2p regions.

Cu,S/Ni;S, catalyst is converted to sulfur-doped CuO in this
process. It is reported that the AGy+ of sulfur-doped CuO is
lower than that of pure CuO.*® The heterostructure between
Cu,S/Ni;S, promotes interface electron transfer. The Ni sites at
the Cu,S/Ni;S, interface interact with O in water molecules to
adsorb water molecules on the surface. After that, the water
molecules adsorbed on the Ni site interact with hydrogen bonds
or form S-H bonds, which accelerate the adsorption and
dissociation of water and increase the speed of the Volmer
step.®*° It is reported that S optimizes the free energy of H*
(AEH*) adsorption of CuO, and the O site of CuO near the S-
doped site increased the H adsorption capacity.*

Fig. 4(a) clearly shows the TEM image of Cu,S/Ni;S,/NF layer
structure stacked on top of one another. The SAED pattern of
Cu,S/NizS,/NF in Fig. 4(b) shows typical polycrystalline
diffraction rings. These calibrated diffraction rings can corre-
spond well to the peak of the XRD spectrum. Comparing with
the PDF card confirmed it to be Ni;S,. The diffraction ring of the
(034) crystal planes of Cu,S can also be observed, which corre-
sponds to the strong peak appearing after Cu doping in the XRD
spectrum. The exposed (034) crystal planes of Cu,S is beneficial
for the improvement of the HER performance of the catalyst.
The HRTEM lattice fringe image of Cu,S/Ni;S, is in Fig. 4(c).
The crystal planes with interplanar spacings of 0.287, 0.234, and
0.237 nm correspond to the (110), (021), and (003) crystal planes
of NizS, (PDF#44-1418), respectively. The exposed crystal
surface of the catalyst has an important influence on its catalytic
performance. The angle between the two (110) is 60°, indicating
that the thermodynamically stable {001} crystal planes is
exposed. The angle between (003) and (021) is about 70.5°, then

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4
images of Cu,S/NizS, nanosheet.

high-index {210} is exposed.*”* Research by Liang-Liang Feng
et al.** showed that the synergistic catalysis produced by the
nanosheet array and the exposed {210} high-index facets help
improve electrocatalytic performance. Numerous disordered
defects and the exposed (034) crystal planes of Cu,S can also be
observed in the HRTEM image, indicating that the exposed
active sites and electrical conductivity can be increased.*
Moreover, the mapping of Cu,S/Ni;S, nanosheet in Fig. 4(d)
reflects that Ni, S, and Cu are evenly distributed on the nano-
sheets, which is conducive to the uniform dispersion of active
sites.

Table 2 Comparison of overpotential of different samples

Current density Overpotential

Catalysts (j mA cm™?) (n/mvV)

Pt/C 10 31

Ni,S,/NF 10 180
Cu,S/Ni;S,/NF-0 10 182
Cu,S/NisS,/NF-1 10 159
Cu,S/Ni,;S,/NF-2 10 122
Cu,S/Ni,S,/NF-3 10 50
Cu,S/Ni;S,/NF-4 10 134

© 2021 The Author(s). Published by the Royal Society of Chemistry
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(a) TEM image of Cu,S/NisS; layer structure, (b) SAED pattern and (c) HRTEM image of Cu,S/NisS,, (d) mapping of Ni, Cu, S and overlap

3.2 Catalyst electrochemical performance analysis

3.2.1 Catalyst HER performance. The LSV of Pt/C, Ni;S,/
NF, and Cu,S/Ni3S,/NF-x (x represents various feed ratios) was

Table 3 Comparison of the electrocatalysts performance of Cu,S/
NizS,/NF and other NisS,

Electrolyte Overpotential
Catalysts Solution (m10)
Cu,S/Ni,S,/NF-3 1 M KOH 50 mV
S-v-NizS,—xP,_4 (ref. 44) 1M KOH 89 mV
Mo-doped Ni;S, (ref. 45) 1 M KOH 90 mV
V-doped Ni;S,/Nis*® 1 M KOH 85 mV
CONi,S,/Ni;S,@NF*” 1 M KOH 171 mV

Table 4 Number of active sites of Cu,S/NizS,/NF-x and NizS,/NF

Number of active

Catalysts sites (x10™* mol)
Ni;S,/NF 1.625
Cu,S/Ni;S,/NF-2 2.639
Cu,S/Ni;S,/NF-3 3.568
Cu,S/Ni3S,/NF-4 3.533

RSC Adv, 2021, 11, 39493-39502 | 39497
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(a) iR-Corrected linear sweep voltammetry curves of NizS,/NF and Cu,S/NizS,/NF-x (x represents various feed ratios) for HER in 1 M KOH

at 5mV s7%, (b) Tafel plots of NizS,/NF, Pt/C and Cu,S/NisS,/NF-3, (c) CVs of NizS,/NF and Cu,S/NisS,/NF-x at pH = 7 at the scan rate of 50 mV
571 (d) TOF curves of NisS,/NF and Cu,S/NisS,/NF-x, (e) polarization curves of NizS,/NF and Cu,S/NisS,/NF-x normalized by the ECSA, (f)

measured capacitive currents plotted as a function of scan rate.

evaluated in 1 M KOH solution. Comparing the polarization
curves clearly shows that Pt/C has the best HER performance
(m1o = 31 mV), whereas Ni;S,/NF requires 180 mV. The Cu,S/
Ni;S,/NF-3 curve, which is closest to Pt/C curve, requires an

39498 | RSC Adv, 2021, 11, 39493-39502

overpotential of 50 mV at 10 mA cm ™ >. The overpotentials of five
samples are shown in Table 2. Compared with Ni;S,/NF, the
HER performance of Cu,S/Ni;S,/NF is indeed improved much.
However, experiments have shown that the amount of Cu

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 (a) The chronopotentiometry curve of Cu,S/NisS,/NF at constant current density of 10 mA cm™2. (b) The polarization curves of Cu,S/
NizS2/NF-3 before and after 2000 CV cycles. (c) Stability test of Cu,S/NizS,/NF-3 carried out at multiple currents. (d) Impedance Nyquist plots of

CUZS/Ni3SZ/NF—2, CUZS/N|352/N F-3 and CUzs/N|3SZ/NF—4

cannot be too much, which is consistent with Byung Keun Kim's
report*® that excessive Cu will increase the internal stress and
cause the coating to fall off, thereby reducing catalytic perfor-
mance. Cu,S/Ni;S,/NF was also compared with the results of
other scientific researchers. Detailed data can be found in Table
3.

In alkaline solution, HER follows Volmer-Tafel or Volmer-
Heyrovsky mechanism.*® They all consist of three steps: 1.
Discharge (H,O + e — H* + OH, Volmer reaction) 2. Elec-
trochemical desorption (H,O + H* + e~ — H, + OH ", Heyrovsky
reaction) and 3. Recombination (2H* — H,, Tafel reaction). The
calculated Tafel slope of Cu,S/Ni;S,/NF-3 is 107 mV dec ™" (lower
than 120 mV dec™ '), indicating that hydrogen evolution is
mainly limited by the Volmer reaction and follows the Volmer-
Heyrovsky mechanism. The Tafel slope of Cu,S/Ni3S,/NF-3 is
clearly much smaller than that of Ni;S,/NF, indicating that
Cu,S/Ni3S,/NF-3 catalytic reaction kinetics is faster in an alka-
line medium, and the catalytic activity of HER is better.*®

Turnover frequency (TOF) can be used to reflect intrinsic
activity.*® First, CV curves were measured in a ph = 7 phosphate

© 2021 The Author(s). Published by the Royal Society of Chemistry

buffer saline solution at a scan rate of 50 mV s~ ' and a voltage
range of —0.2-0.6 V. Then, the number of active sites was
calculated from the method reported by Merki.** In Table 4, the
active sites loaded on the Cu,S/Ni;S,/NF-3 surface is 3.568 x
10~* mol, which is more than Ni;S,/NF (1.625 x 10~* mol). This
result may be related to the coral-like surface on the nanosheet
shown in the SEM image. This specific morphology can expose
more active sites. The calculated TOFs are shown in Fig. 5(d).
The overpotentials of NizS,/NF, Cu,S/Ni;S,/NF-2~4 at TOF of
0.2 ™" are 182, 168, 72, and 119 mV, respectively. In Fig. 6(a),
TOFs denote that Cu,S/Ni3S,/NF-3 has a higher catalytic activity.

Electrochemical Active Surface Area (ECSA) test was carried
out. First, the CV curves were measured at various scan rate.
Then, Half of the values of the positive and negative current
density differences (4j) at the median value of the scanning
range are plotted versus the CV scanning rates in Fig. 5(f). The
electrochemical double layer charge (Cq;) value can be obtained
from the fit slope. Cu,S/Ni;S,/NF-3 and Ni;S,/NF are both cut
into 1 cm x 1 cm rectangles, with the same geometric surface
area. The Cq4 of Cu,S/NizS,/NF-3 (17.95 mF cm™?) is

RSC Adv, 2021, 11, 39493-39502 | 39499
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approximately 2.2 times that of NizS,/NF (8.23 mF cm ?),
indicating that the actual surface area of Cu,S/Ni;S,/NF-3 is
larger. From Fig. S4,7 the surface loading of Cu,S/Ni3S, is
2.8 mg cm 2,

The chronopotentiometry curve was measured to evaluate
the mechanical strength and excellent mass transfer perfor-
mance of Cu,S/Ni3S,/NF-3. In Fig. 6(a), Cu,S/NizS,/NF can
maintain 95.1% activity stably for at least 58 hours. The fluc-
tuation of the curve in the first 30 minutes is due to the gradual
increase in the potential during the activation phase caused by
the removal of the hydroxide/oxide on the electrode surface.” A
CV was performed 2000 times continuously from 100 mV to
—300 mV. In Fig. 6(b), the HER performance of Cu,S/Ni3S,/NF-3
decreased slightly after the CV and need 70 mV to 10 mA cm ™.
Multistep chronopotentiometry (from 10 mA to 100 mA with 10
mA interval) was used to evaluate the mass transfer and stability
of Cu,S/NizS,/NF-3. The electrode reaction Kkinetics can be
studied by EIS. The Nyquist diagrams of Cu,S/Ni;S,/NF-2,3,4
were obtained at 200 mV. The equivalent circuit in Fig. 6(d):
a constant-phase element (CPE) connected in parallel with
a charge transfer resistance (R.), then an electrolyte resistance
(Rs) is connected in series. The fitting line represented by the
red line is semicircular, which means that the charge transfer
controls the entire HER. R can be determined in the semi-
circular low-frequency region to reflect the electron transport
efficiency.” The R . values of Cu,S/Ni;S,/NF-2,3,4 are 2.44 Q,
0.79 Q, and 1.98 Q, respectively. Cu,S/Ni;S,/NF-3 has the
smallest R.., which means fast electron transfer. The excellent
HER performance of Cu,S/Ni;S,/NF-3 also echoes this result. By
contrast, a small Ry value indicates that the bonding between
the catalyst and the current collector is good.** The impedance
results of Cu,S/Ni;S,/NF-3 are consistent with the previous HER
results, which can prove that it can be a candidate with excellent
HER kinetics and outstanding electron transport performance.

4. Conclusion

Overall, the heterostructure Cu,S/NizS, were successfully
synthesized by two-step hydrothermal method and exhibited
excellent HER activity. Compared with the recently reported
system, Cu,S/NizS,/NF-3 has a lower overpotential (7,9 = 50
mV). After vulcanization, the coral-like rough surface exposes
more active sites. The heterostructure of Cu,S/NisS, exposes
specific {210} crystal planes as well as a large number of defects
and (034) crystal planes, which helps expose more active sites.
The structural characterization is consistent with the electro-
chemical test results. In HER process, Cu,S/Ni;S, interface
increase the formation of S-H bonds, optimizing the adsorption
capacity of S-doped sites for H. And Cu,S promotes the trans-
formation of the HER process into S-doped CuO. Therefore, the
combination of Cu,S and Ni;S, further increases the catalytic
activity.
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