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Investigations have been made to explore the applicability of an off-the-shelf deep convolutional neural

network (DCNN) architecture, residual neural network (ResNet), to the classification of the crystal

structure of materials using electron diffraction patterns without prior knowledge of the material systems

under consideration. The dataset required for training and validating the ResNet architectures was

obtained by the computer simulation of the selected area electron diffraction (SAD) in transmission

electron microscopy. Acceleration voltages, zone axes, and camera lengths were used as variables and

crystal information format (CIF) files obtained from open crystal data repositories were used as inputs.

The cubic crystal system was chosen as a model system and five space groups of 213, 221, 225, 227, and

229 in the cubic system were selected for the test and validation, based on the distinguishability of the

SAD patterns. The simulated diffraction patterns were regrouped and labeled from the viewpoint of

computer vision, i.e., the way how the neural network recognizes the two-dimensional representation of

three-dimensional lattice structure of crystals, for improved training and classification efficiency.

Comparison of the various ResNet architectures with varying number of layers demonstrated that the

ResNet101 architecture could classify the space groups with the validation accuracy of 92.607%.
1. Introduction

Many of the fundamental materials properties originate from
the interatomic bonding and the way the lattice atoms are
arranged in unit cells.1 These properties as reected in the
property tensors and band structures of crystalline materials lie
in the symmetries of the unit cells. The crystal symmetry,
starting from the seven crystal systems, can be broken down to
the 230 space groups via the 32 crystal classes corresponding to
the 32 point groups, in accordance with appropriate symme-
tries.2 Identication and classication of the crystal structure,
the starting point of investigating the structure–property rela-
tions, is the process of assigning any given materials system to
one of these space groups and/or crystal classes, usually assisted
by diffraction techniques.3 Various beam sources are incident
on materials samples under investigation. The beams are then
diffracted by the crystallographic planes inside the materials,
generating material-specic signals recorded in one-
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dimensional (1D) diffractograms such as X-ray diffraction
(XRD) patterns or two-dimensional (2D) geometric patterns
such as selected area diffraction (SAD) patterns and electron
backscatter diffraction (EBSD) patterns.3

The diffraction patterns containing the symmetry informa-
tion of materials are the results of interaction between the
incident beam represented by the wave vector and the samples'
crystal structures reconstructed as reciprocal lattices, gener-
ating geographic relations between the beam direction, sample
orientation, and particular crystallographic planes.3 Addition-
ally, there exist selection rules determining which crystallo-
graphic planes should be absent in the diffraction patterns.3

Analysis of the diffraction data and extracting the crystallo-
graphic information from them inevitably require in-depth
knowledge of crystallography and expertise as well as experi-
ences. Although a high-throughput diffraction measurement
method has been developed,4 analyzing diffraction data for
materials characterization is still a time-consuming task even
for expert crystallographers.

When any work requires high level of expertise including
many years of experiences and complicated processes, it can be
facilitated with the aid of computers. In the eld of crystallog-
raphy, computer-aided techniques have been in use especially
when analyzing XRD or SAD patterns.5–8 However, the process is
not fully automated, and the analysis of diffraction data still
requires guess work and computer simulations based on
RSC Adv., 2021, 11, 38307–38315 | 38307
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Fig. 1 Schematics illustrating (a) the overall sequence of the crystal
structure classification proposed in this study and (b) the inner working
of the ResNet architecture.
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experiences and in-depth knowledge. If the material of interest
is an unknown type as happens in the development of novel
materials or if no prior material information is available, the
process becomes more complicated. Recent advances in arti-
cial intelligence (AI), assisted by ever-increasing computing
power at lower costs, suggest possibilities of simplifying the
analysis by non-experts. Deep learning techniques have been
adopted to analyze domain-specic data due to its accurate
prediction capabilities. More specically, useful techniques
including dropout9 and residual learning10 allow the construc-
tion of fast and accurate deep neural networks which show
better performances than human in some areas.11 Concerning
the diffraction patterns, recent studies include analysis of both
the 1D and the 2D patterns. It has been demonstrated that
convolutional neural network, coupled with large amount of
powder XRD pattern data, could classify the space group,
extinction group, and crystal system with the accuracy levels of
81.14, 83.83, and 94.99%, respectively using about 150 000 XRD
data with no feature engineering involved.12 In this work, the
XRD pattern data in pristine forms were used to train a con-
volutional neural network (CNN). In another approach, it was
possible to develop a supervised machine learning framework,
which enabled the analysis of XRD pattern for the case where
only sparse dataset are available.13 It has also been demon-
strated that CNN and feedforward neural network (FFNN) could
classify the XRD patterns with reasonable accuracies (higher
than 80%).14 There was an interesting approach, in which 1D
diffraction intensity prole dataset was prepared by converting
2D patterns obtained by fast Fourier transformation of the high-
resolution (HR) scanning transmission electron microscope
(STEM) images.15 This suggests that 2D patterns can be classi-
ed once they are converted to 1D proles.

Attempts have also been made to classify 2D diffraction
patterns. Kaufmann et al.16 have suggested two CNN models
that can identify the Bravais lattice or the space group of
unknown materials from their EBSD patterns with the accura-
cies of 93.5% and 91.2%, respectively. Ziletti et al.17 have
developed a CNN-based method which used indexed diffraction
pattern images to classify the lattice symmetry. In this work,
they prepared dataset by superposing and color-indexing the 6
images for a material which were obtained by simulating beam
diffraction incident on a virtual sample along three crystal axes.
Although the images contain regular array of diffraction spots,
they were different from SAD patterns (SADPs) since only three
principal crystal axes were used as the beam directions (BDs)
and that the diffraction patterns were color-indexed and then
superposed. Since XRD, EBSD, and SAD are mutually compli-
mentary, AI-assisted classication of SADPs would be worth
exploration.

Inspired by the work of Ziletti et al., this study has been
carried out for the classication of crystal symmetry in terms of
the space group from 2D diffraction patterns that resemble real
SADPs obtained by aligning BDs to various zone axes in trans-
mission electron microscopy (TEM). As a starting point, the
cubic system was considered. This system contains 36 space
groups and covers many materials systems familiar to materials
scientists and engineers.2,18 To improve the training and
38308 | RSC Adv., 2021, 11, 38307–38315
classication efficiency, the diffraction pattern dataset was
regrouped and labeled from the viewpoint of computer vision,
i.e., the way how the machine ‘sees’ the patterns. Instead of
developing a dedicated DCNN architecture, a well-established
off-the-shelf image classication architecture, residual neural
network (ResNet),10 was adopted. For the space groups 213, 221,
225, 227, and 229, the ResNet101 model showed the prediction
accuracies of 92.607%. The overall workow is schematically
illustrated in Fig. 1 together with the classication structure of
the ResNet architecture.

2. Dataset
2.1 Model systems and data mining

It is hard to expect that the ResNet architecture has an
omnipotent SADP classication capability. Hence, the work
began with the cubic system which has the highest symmetry
and contains many materials systems familiar to the science
and engineering communities.2,18 Once proven successful, it is
expected that the scheme can be extended to other crystal
systems in the sequence of decreasing symmetry, namely in the
order of hexagonal, rhombohedral, tetragonal, orthorhombic,
monoclinic, and triclinic systems. Among 36 space groups
(from 195 to 230) in the cubic systems, space groups 213, 221,
225, 227, and 229 were chosen based on the distinguishability
of SADPs, which is discussed in the following subsection. Once
the model system is chosen, it is necessary to prepare the
dataset for training the neural network and for validating its
prediction accuracy.

The dataset should be in a standard format with the same
resolution and be available in large quantity (usually dataset
consists of tens of thousands of images or more). Since these
requirements cannot be met by experimental acquisition of the
SADPs and/or by collection of the SADPs published in literature,
the dataset resembling the TEM SADPs were generated by
© 2021 The Author(s). Published by the Royal Society of Chemistry
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a computer simulation in a systemized way in this study. The
material information inputs for the diffraction simulation were
provided via crystal information format (CIF). The CIF les were
obtained from the open database repositories Materials
Project19 and AFLOWLIB.20,21 The CIF les in these repositories
are experimentally obtained and/or theoretically calculated and
many of them are also deposited in Inorganic Crystal Structure
Database (ICSD).22 On average, 49.8 CIF les for each space
group to be considered were collected and used as inputs for the
diffraction simulation.
Fig. 2 Examples of the simulated SADP-like diffraction images
generated for Si (space group 227) with (a) BD ¼ [001], (b) BD ¼ [011],
(c) BD ¼ [111], and (d) BD ¼ [103]. These simulated patterns were
comparable to the experimentally obtained SADPs reported else-
where28–30 (the real SADPs are not shown due to the copyright related
issues).
2.2 Electron diffraction simulation

Number of soware packages are available for the simulation
and analysis of electron diffraction: JEMS,23 QSTEM,24 Landyne
Soware Suite,25 SingleCrystal,26 etc. for example. These so-
ware packages provide user-friendly interfaces and have many
functionalities. On the other hand, they are not fully automated
and not suitable to generate large number of diffraction
patterns required to train the neural network in reasonable time
at reasonable cost. In the absence of fully automated simulation
tools, an open-source package Condor27 was adapted to prepare
the simulated electron diffraction pattern images that resemble
the SADPs. While the Condor package was designed to simulate
the diffraction of ash X-ray, preliminary tests showed that they
can also be used to simulate the electron diffraction with minor
modications. Modications of Condor here include the
followings: (i) generation of virtual single crystals by replicating
the unit cell information provided by the input CIF les as
required by the users; (ii) automatic alignment of the zone axes
of the virtual crystal along the direction of the incident beam as
intended by the users; (iii) selection of the electron wavelength
by varying the acceleration voltage with the relativistic correc-
tions; (iv) normalization of the intensity of the diffracted beams
with respect to the highest intensity as appear in the brightness
of the diffraction spots in the simulated images; and (v)
assumption of the three-dimensional Gaussian distribution of
the intensity of the incident electron beams.

Normalization of the diffracted beam intensity was necessary
since the neural network was designed to recognize relative
differences in the intensities of the diffraction spots in the
images. Three-dimensional Gaussian wave assumption was
used to simulate the blurring of the edges of the diffraction
spots in real SADPs, despite the plane-waves assumption of the
incident electron beam is used in TEM diffraction theories.2,31

Use of the three-dimensional Gaussian beam was also effective
in eliminating the effect of sample shapes and sizes especially
when the virtual crystal is small compared with real samples
used in experiments. The simulated diffraction patterns were
formed as portable graphics format (PNG) images consisting of
256 � 256 pixels. This image size was chosen to minimize the
computing resource requirements for image generation while
enabling the meaningful recognition and classication of
images by the neural network. Examples of the simulated SADPs
for Si (space group 227) herein with varying BDs are shown in
Fig. 2. These simulated images were comparable to the real
SADPs reported in the literature28–30 in that: (i) the simulated
© 2021 The Author(s). Published by the Royal Society of Chemistry
SADPs include relative differences in the brightnesses of the
diffraction spots; and (ii) individual diffraction spots have
Gaussian distribution of the intensity from its center to the edge
while the edge itself is blurry like the real ones, indicating that
the simulation by the modied Condor was suitable to generate
the SADP-like dataset.
3. Space group classification by deep
learning
3.1 Data regrouping for training AI

The SADPs are 2D representations of 3D atomic conguration in
reciprocal spaces. Inevitably, a single SADP obtained for one
beam direction (BD) corresponding to a specic zone axis does
not include all the symmetry information pertaining to the
space group of the material under investigation. Further, over-
lapping diffractions may be obtained from two different mate-
rials belonging to different space groups. For example, one
material in the space group 225, CeTe, and the other material in
the space group 227, LiGa, can show indistinguishable SADPs if
the BD is aligned to [001] zone axis. Another example is the case
of the SADPs for CeTe with BD ¼ [111] and for Co (space group
194 in the hexagonal system) with BD ¼ [001]. These examples
are shown in Fig. 3a through 3d. Usually, materials scientists
utilize number of SADPs obtained with varying zone axes to
analyze the crystal structure of any given material. Even in such
a case, not all space groups can be distinguished using SADPs.
For example, SADPs for the materials in the space groups 197
and 229 always overlap when the same BD is applied to obtain
RSC Adv., 2021, 11, 38307–38315 | 38309
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Fig. 3 Examples of (a) & (b) the similar diffraction patterns with the
same zone axis obtained for the materials belonging to different space
groups while sharing the same crystal system; (c) & (d) similar
diffraction patterns with the different zone axes obtained for the
materials belonging to different space groups and crystal systems; and
(e) & (f) apparently different diffraction patterns with the same zone
axis obtained for the materials sharing the same space group. These
diffraction patterns were simulated using JEMS23 and CIF files from
Materials Project19 repository.

Fig. 4 Examples of SAD patterns matched to 2D lattice: (a) for BaSe
(space group 225) with BD ¼ [102] matched to a rectangle and (b) for
BaSe with BD ¼ [214] matched to a parallelogram. The angles defining
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the SADP for each space group. Meanwhile, diffraction patterns
for some materials in the same space group are apparently
different in that diffraction spots corresponding to the same
crystallographic planes show some differences in their inten-
sities (brightnesses). For instance, the SADPs with BD ¼ [112]
for LiGa and for Zr4Pt2N (space group 227) look different
although the diffraction spots have the same arrangements as
shown in Fig. 3e and f. In fact, the choice of space groups 213,
221, 225, 227, and 229 among 36 space groups in the cubic
system in this study is based on the similarity of the diffraction
patterns as mentioned herein. The space group 213 shares
similar diffraction patterns with the space group 212; 221 with
195, 200, and 215; 225 with 196, 202, and 216; 229 with 197, 199,
204, 211, and 217. In the case of space group 227, appearances
of the diffraction patterns suggest that it can be divided into
three sub-groups.
38310 | RSC Adv., 2021, 11, 38307–38315
Concerning the adoption of the DCNN algorithm for crystal
structure classications, the axiom is that what is indistin-
guishable to humans is also indistinguishable to machines.
Therefore, grouping the diffraction pattern data by the space
group and the zone axis (or BD aligned to it) and labeling them
accordingly is not suitable to train the neural network, not to
mention the humans, if it is intended that the data be classied
only through the images without any knowledge of crystallog-
raphy and geometry and any information regarding thematerial
system of interest. What the machine does is to sort and classify
the input data only by the ‘appearance’, viz. pixel by pixel
information. Therefore, necessity arises as to how the diffrac-
tion patterns should be regrouped and labeled to train the
DCNN architecture. This regrouping and labeling scheme will
be referred to as ‘dataset class labeling’ hereinaer.

The dataset class labeling scheme herein is based on how the
diffraction patterns ‘look’ to human as well as to the machine.
Noting that the diffraction pattern is the 2D periodic array of the
diffraction spots, one may expect that the diffraction patterns
can be matched to ve 2D lattice systems dealt with in crystal-
lography.32 Accordingly, the diffraction patterns are regrouped
to four of these ve systems, namely square primitive (square,
category A), rectangular primitive (rectangle, category B),
hexagonal primitive (rhombus, category C), and oblique prim-
itive (parallelogram, category D). Rectangular centered system
was merged to oblique primitive lattice since the former can
also be described as the latter.

In the cubic crystal system, the SADPs for the h100i zone axis
are square and those for the h111i zone axis are hexagonal. On
the other hand, those for other zone axes will be rectangular or
parallelogrammatic with varying side lengths and angle
between the sides depending on the zone axes. When an SADP
forms a rectangular primitive lattice, its zone axis can be iden-
tied by the relative lengths of two intersecting sides. This
length ratio can be represented by the angle between a diagonal
and a principal axis as illustrated with an example SADP in
Fig. 4a. Hence, this angle can be used to identify whether two (or
more) patterns look the same or different. If an SADP forms an
oblique primitive lattice, differences in zone axis will be re-
ected in the relative lengths of two intersecting sides of the
the geometric feature of the patterns are marked in these patterns.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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primitive cell and the angle between them. The parallelogram
can be partitioned into two triangles, and the two angles of
a triangle, namely :BOA and :OAB in Fig. 4b shown with an
example SADP, can represent the geometric features of the
parallelogram. Once the sequence of these two angles is also
included, they can be used to distinguish zone axis of
a diffraction pattern including the chirality. While the diffrac-
tion spots form specic regular arrays, they can show difference
in intensities (brightnesses). Oen, some of the diffraction
spots are absent depending on the combination of the Miller
indices for a plane (h, k, and l), which also possesses some
regularity. This feature can also be used to classify the dataset.
Now, there are three criteria for the dataset class labeling. First,
the arrangement of diffraction spots in the SADPs are used to
assign any pattern to four primary groups classied as A, B, C,
and D by the primitive lattice shapes as mentioned above. Next,
the angle information described above is used to subdivide the
primary group into sub-groups. These sub-groups are desig-
nated by numbers following the primary group designation
characters. Finally, the sub-group is partitioned in accordance
with the patterns of the absence and the relative intensities of
the diffraction spots. These partitions are denoted as numbers
following a hyphen. One example of these regrouping and
labeling scheme is illustrated in Fig. 5.

As a result of the application of the above labeling scheme,
the number of dataset classes decreased substantially. For the
example shown in Fig. 5, there can be 15 dataset classes by
crystallography. Compared with this, regrouping by using the
2D-pattern-based dataset labeling scheme reduced them to 9
dataset classes. This decrease helps improving the training
efficiency of the neural network, because confusing classes
(space groups 225 with BD ¼ [001] and 227 with BD ¼ [001] for
example) due to the indistinguishable diffraction patterns are
merged into the same new class label (A1-0 in this example
case). Now the neural network can compare the input SADPs
obtained for several zone axes with the regrouped class labels.
Combinations of the regrouped class label will lead to a specic
space group by the ensemble of the probability result for each
Fig. 5 Schematic illustrating the structure of the dataset labeling schem

© 2021 The Author(s). Published by the Royal Society of Chemistry
SADP. This procedure is further discussed in 3.2. For the ve
space groups considered in this study (in fact, the space group
227 may contain 3 effective space groups based on the SADPs
considering the brightness of the diffraction spots), the SADPs
were generated with respect to 16 zone axes. In terms of crys-
tallography, this leads to 112 dataset classes. However, once the
2D-pattern-based dataset class labeling scheme herein is
applied, this was reduced to 60. It is emphasized that this is not
only a simple reduction in number but also a dataset restruc-
turing with the dataset labeling scheme as stated in this section
for efficient classication to be performed by the ResNet
architectures!
3.2 Space group classications

Using the dataset as regrouped by the labeling scheme
described above, ve ResNet architectures with different sizes
(different number of layers) were trained and then tested to
verify whether they can predict the space group of a material
using SADPs with varying zone axes. The ResNet architectures
used herein include ResNet18, ResNet34, ResNet50, ResNet101,
and ResNet152. One advantage of ResNet architecture associ-
ated with its residual block is that increasing the number of
layers does not induce a vanishing gradient problem which
hinders a training process for a deep network.10,33 Before
training these architectures, entire CIF les were rst split into
the training set and the validation set separately at a ratio of 8.5
to 1.5. Subsequently, SADP-like patterns were simulated using
the modied Condor package, generating 68 480 images for the
training set and 11 200 images for the validation set, respec-
tively. When it comes to real diffraction pattern images, the
patterns may have different scales, may be randomly rotated
with respect to the BDs, or may be off-centered, i.e., the (000)
position is not located in the image center. To help the ResNet
architectures cope with these variations in images thereby
improving a generalization capability, data augmentations were
carried out by transforming geometries of the simulated SADPs.
Differences in scales of the diffraction patterns were considered
by generating the simulated images with varying camera
e developed in this study.

RSC Adv., 2021, 11, 38307–38315 | 38311
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lengths and acceleration voltages (wavelengths of the electron
beams). For the random rotation issues, each SADP was rotated
with the angles from 0 to 30 degrees about image surface
normal direction. For the off-centering problems, the original
256 � 256-pixel simulated images were randomly cropped with
224 � 224-pixel resolutions. Examples of these dataset
augmentation are shown in Fig. 6.

To train the ResNet architectures, two paradigms can be
considered. One is the training from scratch, in which the
neural network starts to update the model weights from
randomly initialized weight and uses mostly target dataset
(simulated SADPs) during the training process. The other is the
ne-tuning, in which the neural network starts to update the
model weights from the existing model, called pre-trained
model, that was trained to solve different problems.34,35 Typi-
cally, pre-trained model is trained on a large-scale dataset
containing over 10 million images such as ImageNet.36 The
basic idea of ne-tuning is that the ability of a pre-trained
model to generate visual representations helps improve the
performance of the target application. Since renowned deep
learning frameworks (e.g., TensorFlow,37 PyTorch,38 Caffe,39 etc.)
Fig. 6 Examples of the dataset augmentation to reflect irregularities in
the SADPs obtained from real experiments: (a–c) scaling by changing
the camera length; (d–f) of rotations; and (g) random cropping.

38312 | RSC Adv., 2021, 11, 38307–38315
provide pre-trained models for the off-the-shelf architectures, it
is better to utilize pre-trained models and ne-tune the neural
networks instead of training them from scratch.

During the training process, weights of the ResNet archi-
tectures were updated through the stochastic gradient descent
(SGD) algorithm40 with iterations. A key difference between the
SGD and the ordinary gradient descent is that the SGD only
considers a random subset of data at one iteration. Therefore,
a concept of epoch is utilized to indicate how many times the
network sees the entire dataset during the training. For
comparisons between the ResNet architectures, identical hyper
parameters for SGD are utilized such that: (i) initial learning
rate was set as 0.001; (ii) learning rate was decreased by a factor
of 0.1 for every 7 epochs; (iii) momentum of the SGD was set as
0.9; and (iv) iteration of the SGD for 25 epochs. All the ResNet
architectures were trained to classify 60 regrouped dataset
classes and the resulting validation accuracies and the average
GPU runtime are summarized in Table 1. Even though the
dataset class labeling makes the space group classication task
easier, the simplest ResNet architecture (ResNet18) showed the
accuracy of only 84.9%. However, as the size of the architecture
(or number of parameters) increases by increasing the number
of layers, the accuracy of the architecture improved to 92.6% for
the ResNet101. Further increasing the number of layers to 152
did not lead to higher accuracy. This result indicates that
trained ResNet152 network formed overly complex classica-
tion boundaries and some input data were misclassied
through the network.

The ResNet-based space group classication system devel-
oped in this study is designed to utilize the training dataset
which was prepared by the way how the neural network (and
human) recognizes the diffraction patterns without prior
knowledges of materials science. Both the machine and non-
expert human recognize the diffraction patterns as regular
and periodic arrays of diffraction spots in two-dimensional
plane since the diffraction pattern is the 2D representation of
3D reciprocal space with appropriate selection rules. Hence,
regrouping the SADPs in accordance with similarities in 2D
patterns would be useful to train both the machine and non-
expert human by eliminating the necessity to ‘learn’ crystal-
lography in detail.

Since the regrouped dataset classes are smaller than the
crystallographic dataset classes, inevitable ambiguity arises
when a single SADP corresponding to one zone axis is used to
Table 1 Comparison of the validation performances of the trained
ResNet architectures. The differences in the ResNet architectures are
reflected in the numbers in the architecture types. For example, the
ResNet101 means a 101-layer architecture

Architecture Accuracy # of parameters Avg. GPU runtime

ResNet18 84.946% 11.2 M 0.0821 ms
ResNet34 88.607% 21.3 M 0.1395 ms
ResNet50 90.339% 23.6 M 0.1711 ms
ResNet101 92.607% 42.6 M 0.3123 ms
ResNet152 92.393% 58.5 M 0.4468 ms

© 2021 The Author(s). Published by the Royal Society of Chemistry
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classify the space group through the proposed system. However,
the space group classication system herein can ensemble the
results from multiple SADPs with varying zone axes to produce
a more certain classication result. For example, suppose that
an SADP with BD ¼ [001] of Mg belonging to the space group
225 is to be classied. Considering the indistinguishability of
the [001] zone SADPs of the materials having cubic symmetries,
the ResNet-based classication system herein can only predict
that the material of concern—the machine does not have any
prior knowledge of the material—belongs to the space groups
221, 225, 227, and 229 with the equal probability of 25%. Among
the space groups considered in this study, the space group 213
has different SADPs for the same BD and therefore it is excluded
from the candidate. Suppose again that an additional SADP
with BD ¼ [103], which is unique to each space group (it differs
from space group to space group due to detailed arrangement of
lattice atoms in the unit cells), is provided. Now, the ResNet
system predicts that the material belongs to the space group 225
with the probability of 62.5% and to the other space groups with
12.5% probability each, by combining the prediction results
from two SADPs with BD ¼ [001] and BD ¼ [103]. This classi-
cation scheme is graphically shown in Fig. 7. In fact, any non-
expert human can do the same with suitable image classica-
tion training using the training dataset without the knowledge
of crystallography; however, it should be noticed that the
training dataset for the 5 space groups considered in this study
alone consists of more than 60 000 SADPs while there are 36
space groups in the cubic system, not to mention the 230 space
groups altogether. In this probability ensemble scheme, the key
is that at least one SADP which is unique to a target space group
helped the ResNet system properly classify the space group.
Therefore, it should be noted that the ResNet architectures
trained with more dataset class labels may perform better
especially when each space group is matched to a class label
that is unique to it.
Fig. 7 Schematic illustrating the space group classification system base

© 2021 The Author(s). Published by the Royal Society of Chemistry
At this point, it is worth mentioning that there have been
some works which enabled the prediction of crystal structure of
a material without using the diffraction data.41 In this approach,
all thematerial systems listed in theMaterials Project repository
were used as the dataset. Such a scheme will be useful if one
tries to nd the crystal structure of a material with known
chemical formula. On the other hand, if a novel material has
been synthesized or if one does not know the exact chemical
formula of a material as happens in the case of observing
unknown precipitates in alloy systems, diffraction-based clas-
sication will be useful. What is more, the ResNet-based system
in this study required only 49.8 CIFs for each space group to
train and validate it. In other words, in the diffraction-based
approaches, it is not necessary to have all the materials data
to train the neural network system.
3.3 Limitations of the current ResNet system

Despite the above feasibility demonstrations, it should be
mentioned that the ResNet-based classication system has
limitations, too. An SADP (or a group of SADPs) is not a master
key to reveal all the crystal structure. Machines cannot do what
humans cannot. If SADPs of two materials in different space
groups overlap for all possible BDs (or corresponding zone
axes), the best answer would be limited to a specic point group
or several space groups with some probabilities, instead of
a particular space group. Even in such a case, once the classi-
cation system provides some probability information for
candidate space groups, additional tasks to be done by human
for further narrowing down the space group can be much
simpler compared with the case without the assistance by the
neural network. Alternatively, the SADP classication system
can be augmented by the analysis of XRD and EBSD patterns,
which is le for the future work. Perhaps, classication capa-
bility can be improved if information as to the elements utilized
to synthesize the material of concern is provided so that the
d on the probabilities and the ensemble of the results.

RSC Adv., 2021, 11, 38307–38315 | 38313

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1ra07156d


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
N

ov
em

be
r 

20
21

. D
ow

nl
oa

de
d 

on
 5

/8
/2

02
5 

4:
39

:2
9 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
crystal structure identication system without diffraction41 is
used collaboratively.

Further limitations of the current work are expected when it
comes to the analysis of real experimental SADPs. The SADPs to
train the ResNet architectures were generated by simulation
under an implicit assumption that the diffraction occurs under
ideal conditions. This is obviously not the case in real TEM
electron diffractions since the samples may contain defects and
the instrumental conditions of the electron microscopes may
vary from machine to machine. This being the situation, it is
hard to expect that the ResNet architecture herein can handle
the experimental SADPs properly. However, as mentioned in the
Dataset section, training the ResNet architecture using the real
patterns is practically impossible. It is thus suggested that a way
to bridge the gap between the real and the simulated diffraction
patterns should be adopted. One possible approach would be
the use of the image-to-image translation algorithm42,43 which
can convert the experimental data into what appears to be the
simulated data. Since this approach requires collection of the
real SADPs to train the image-to-image translation algorithm, it
is le as a future work. Another challenge to the neural-network-
based classication of the diffraction patterns is whether the
machine can analyze the polycrystalline crystals and/or the
materials containing defects such as dislocation and stacking
faults that affect the diffraction patterns substantially.44 No
work has reported the classication of the SADPs for these cases
so far. It would be therefore a great contribution to thematerials
community if any method to deal with this problem is
developed.
4. Conclusions

Work has been carried out to investigate the feasibility of
adopting the deep convolutional neural network to classify the
crystal structures of materials using SADPs. While an off-the-
shelf architecture ResNet was adopted for this purpose
instead of developing new architectures, a machine-oriented
dataset labeling scheme was developed noting that the 2D
array of diffraction spots as recognized by the machine can be
represented as regrouped 2D lattice pattern. This is a conver-
sion of the crystallography problem to be solved by a machine
learning algorithm into the well-established computer vision
problem. This made the dataset labeling consistent with the
intuitive recognition of the patterns by human without the prior
knowledge of crystallography and materials information,
thereby enabling efficient interpretation of the SAD data and
deduction of physical insight. The ResNet architectures analyze
the individual SADPs one by one and ensemble the result to
predict the space group of thematerials system of interest based
on prediction probabilities. This probability-based approach
would be useful when many SADPs overlap across several space
groups. The ResNet101 architecture showed the validation
accuracy of 92.6% demonstrating the possibility of applying
articial intelligence algorithms to materials science problems
without developing dedicated algorithms from scratch.
38314 | RSC Adv., 2021, 11, 38307–38315
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