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urethane-derived nitrogen-doped
carbon dots for a high-performance fluorescence
bioimaging probe†

Fang-Jun Cao,a Lu Wang,a Cheng-Li Feng,a Xiao Lin*b and Hui Feng *a

Carbon quantum dots, as a new type of fluorescent material, possess many advantages with adjustable

fluorescence performance and low toxicity. In this work, a universal and robust strategy using

polyurethane (PU) sponge as precursor was developed to synthesize highly-soluble nitrogen-doped

carbon quantum dots (NCDs) via a solvothermal method. The decomposition and polymerization

process of PU sponge result in the formation of NCDs-1 with oxygen and nitrogen-containing functional

groups. Specifically, the as-prepared NCDs-1 showed high photostability and tunable

photoluminescence properties. Most importantly, this strategy enables us to fabricate other NCDs using

various polyurethane sponges. Cytotoxicity studies indicated that these highly-soluble NCDs-1 show low

cytotoxicity for HeLa and MC3T3-E1 cells, and can be used as good probes for cellular imaging. This

work not only develops an eco-friendly strategy to utilize polyurethane material, but also provides

a simple method to fabricate fluorescence carbon dots for cellular imaging and other therapeutic

applications.
Introduction

Nitrogen-doped carbon dots (NCDs), one of the most signicant
classes of uorescent materials, have attracted much attention
owing to their excellent photoluminescence and low toxicity for
bioimaging, bio-labeling, sensing and photoelectric devices.1–4

What's more, bioimaging of the NCDs can also be used for real-
time monitoring of drug distribution and delivery, metastasis
cell differentiation and protein distribution in vivo. They can be
used as drug carrier and uorescence bioimaging probe for
drug delivery and drug release control, which is of great
signicance in clinical disease diagnosis and real-time tracing.
At present, various raw materials including small molecule
compounds, natural products and water-soluble synthetic
polymers for use in the synthesis of diversied carbon mate-
rials.5–15 For instance, Gu's group demonstrated that NCDs were
synthesized using natural honey as raw material via a sol-
vothermal method.12 This NCDs emitted blue light under
ultraviolet irradiation and could be used as a uorescence
quenching/recovery probe for the detection of Au and gluta-
thione. However, some methods always suffer from shortcom-
ings with high temperature, complicated and time-consuming
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procedures.16 Therefore, in order to facilitate large-scale
production and application, a facile and low-cost method to
synthesize NCDs from easily available raw materials is highly
desirable.

Polyurethane (PU) sponge, as commonly used cushioning
materials, is consisted of a chain of organic units joined by
carbamate links. Owing to its characteristic three-dimensional
(3-D) porous structures, PU sponge can serve as a template
material to synthesize hybrid composites. In view of the fact
that the nitrogen account for about 8 wt% of PU sponge, which
can be used as raw materials to fabricate doped functional
carbon materials. Yang developed a general method of carbon
coating, depending on the process of PU sponge decomposition
and polymerization in aqueous solution.17 They found that the
hydrothermal process of PU sponge enables to synthetize
tunable N-doped carbonaceous coating. Obviously, it was
demonstrated that the properties of NCDs were closely related
to their composition and structure.14 For example, nitrogen
doping was the most common and effective way to improve the
luminescence properties by changing the band gap spacing and
charge structure of the NCDs and improving the photo-
luminescence performance of the NCDs.18,19 Wu's group re-
ported that CDs were prepared using petroleum coke as raw
material by solvothermal treatment.20 DMF, as a common
solvent, could be used as nitrogen source to realize nitrogen
doping process. Song’ group combined folate with NCDs by
passivating 4,7,10-trioxy-1,13-tridecanediamine. Based on the
principle that the tumor cells were related to the overexpression
of folate receptor.21 The normal cells and tumor cells with folate
© 2021 The Author(s). Published by the Royal Society of Chemistry
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receptor could be distinguished by uorescence imaging.
Inspired by this, it is necessary to investigate the uorescence
spectrum and luminescence performance of PU-derived N-
doped carbon materials.

In this work, we present a universal and simple strategy
toward luminescent NCDs derived from PU sponge using one-
step solvothermal method. PU sponge will decompose into
small molecular compounds under solvothermal conditions. At
the same time, nitrogen can be in situ introduced into the
NCDs-1. The as-prepared NCDs-1 showed exciting photo-
luminescence (PL) features, such as bright luminescence, high
photostability and excitation wavelength dependent emission
spectra. Most importantly, such a highly biocompatible NCDs-1
could easily enter cells and show low cytotoxicity and excellent
cell imaging performance. This work provides a simple and
general method to fabricate uorescence carbon dots for
cellular imaging and other therapeutic applications.

Experimental and characterization
Chemicals

All chemicals were purchased from Sinopharm Chemical
Reagent Beijing Company and were analytical grade. Deionized
water was used throughout the experiments.

Solvothermal synthesis of N-CDs from PU sponges

For the uorescent N-CDs, polyurethane sponges with 50 mg
were immersed in 30 mL N,N-dimethylformamide (DMF) solu-
tion thoroughly. The mixture was then put into 50 mL poly-
tetrauoroethylene lined autoclave and heated at 180 �C for 6 h.
Aer the reaction, the solution was cooled naturally and the
yellow supernatant was collected through simple ltration to
obtain N-CDs solution. Finally, NCDs-1 sample was collected
through a simple ltration and freeze-drying treatment. The
yield of sample was about 4 mg.

Cell culture and MTT assay

Cytotoxic activity of the as-prepared N-CDs was determined
using MTT assay. HeLa cells and MC3T3-E1 cells were cultured
in DMEM (high glucose), respectively, supplemented with 10%
fetal bovine serum, penicillin (100 U mL�1) and streptomycin
(100 mg mL�1) at 37 �C in 5% CO2. The tested N-CDs were dis-
solved in deionized water and diluted freshly before each
experiment to various preset concentrations in DMEM medium
for HeLa cells and MC3T3-E1 cells. HeLa cells and MC3T3-E1
cells at exponential growth phase were seeded into a 96 well
plate at 4.8 � 103 cells per 200 mL per well and cultured for 24 h.
Aer removal of the medium, the cells in each well were treated
with 200 mL solution containing different concentrations of the
tested N-CDs and vehicle controls which only received an
equivalent amount of deionized water in quintuplicate for 48 h
at 37 �C. Thirty microliters of MTT solution (5 mg mL�1 in PBS)
was added to each well with 150 mL fresh medium for an
additional 4 h. Aer removing the supernatant, 150 mL of DMSO
was added to completely dissolve the formazan crystals that had
formed in viable cells in the wells. Finally, the plates were
© 2021 The Author(s). Published by the Royal Society of Chemistry
shaken and the absorbance (A) was determined using micro-
plate reader (Bio-Rad 680) at 570 nm. The wells containing the
same media as other test wells but no cells were used as blank
controls. All the doses were tested in quintuplicate and the
experiments were repeated at least three times. The inhibition
rates (IRs) were calculated according to the following formula
and expressed as means � S.D.

IRs% ¼ (Acontrol � Aexperimental)/(Acontrol � Ablank) � 100
Confocal microscopy imaging

Approximately 105 cells per well were seeded on 35 mm special
laser confocal culture dish in DMEM overnight. The cells were
treated with 0.08 mg mL�1 of N-CDs for 2 hours at 37 �C. The
cells were then washed three times with isotonic PBS (pH 7.4) to
remove the remaining extracellular N-CDs. The treated cells
were observed and photographed under a confocal microscope
(Leica, Wetzlar, Germany).
Characterization

The phase and crystal structure of as-prepared N-CDs were
characterized by XRD (A Bruker D8 ADVANCE diffractometer
using Cu Ka radiation). The micro morphology and crystal
structure of N-CDs were observed by transmission electron
microscope (TEM, G2 F20 S-TWIN), high-resolution eld emission
(SEM, JEOL JSM-6390A), aberration-corrected HAADF-STEM
instrument (Themis Z, FEI) at 300 kV combine with a SEM
(SU8220, Hitachi) at 15 kV. X-ray photoelectron spectroscopy (XPS,
Thermo Fisher Escalab 250Xi) was applied to measure the surface
elements and chemical states of N-CDs. Infrared spectrometer was
investigated by Bruker Tencer 2. The F97 Pro uorescence spec-
trophotometer was obtained to characterize the uorescence
properties of N-CDs. The N-CDs solution was mixed to the
appropriate concentration and the xenon lamp was used as the
excitation light source. From 370 nm to 440 nm, an excitation
wavelength was selected with each 10 nm to test the uorescence
emission spectrum and the maximum emission wavelength was
obtained to test the excitation spectrum.
Result and discussion
Structural characterization

Fig. 1 shows the schematic illustration of NCDs by one-step
solvothermal method in DMF solution. Such a solvothermal
treatment of PU sponge exhibited excellent reproducibility. As
shown in Fig. 1, the commercial PU sponge was rstly cleaned and
then cut into small squares (Fig. S1†). Then, the small sponge
cubes were immersed in 30 mL DMF solution thoroughly and put
into polytetrauoroethylene lined autoclave. Aer heating at
180 �C for 6 h, the mixture was cooled naturally and the sample
existed in the upper yellow solution. Finally, NCDs-1 sample was
collected through a simple ltration and freeze-drying treatment.

The structure and morphology of NCDs-1 was initially
investigated using X-ray diffraction and transmission electron
RSC Adv., 2021, 11, 34174–34180 | 34175
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Fig. 1 Illustration of the formation of NCDs derived from PU sponge.
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microscopy (TEM) analyses. The X-ray diffraction (XRD) pattern
of the NCDs-1 (Fig. 2a) shows two typical characteristic peaks
located at about 15� and 42�, which can be indexed to the (002)
and (100) planes of graphite. As shown in Fig. 2b, it was found
that ultrasmall NCDs-1 were spherical-like nanoparticles with
excellent dispersion. The particle size distribution of NCDs-1
was relatively uniform with an average particle size of 2 nm
(Fig. S2†). The high-resolution TEM (HRTEM) image of NCDs-1
demonstrated that obvious lattice fringes (110) with a spacing of
0.203 nm can be attributed to the d-spacing of sp2 graphitic
carbon,22 indicating the formation of carbon structural
materials.

Similar to previously reported CDs, the solvothermal treat-
ment of PU sponge leads to a yellow dispersion. Fig. 3a shows an
absorption band at ca. 290 nm, owing to the p–p* transition of
aromatic sp2 domains. It was noted that the as-prepared NCDs-1
was nearly unchanged and remained homogeneous, even if the
preservation time was over several months, indicating their
excellent photostability. In addition, it was found that the
intense blue uorescence of NCDs-1 could be observed by
naked eyes obviously in ultraviolet light. The NCDs-1 possessed
remarkable uorescence properties which was related to the
wavelength of incident light. Similar with other CDs, the as-
prepared sample showed excellent excitation-wavelength
dependent emission spectrum which allowed NCDs-1 for
multicolor imaging applications by simply varying excitation
light wavelength.20 The PL curves of the sample were measured
at different excitation wavelengths, as shown in Fig. 3b. The
Fig. 2 Structure characterization diagrams of NCDs-1. (a) and (b) XRD
pattern and TEM images of the NCDs-1; the inset in (b) is the corre-
sponding high-resolution TEM image.

34176 | RSC Adv., 2021, 11, 34174–34180
spectra analysis showed that the PL peak relatively shi from
460 (blue) to 520 nm (red), resulting from the excitation wave-
length changed from 370 to 440 nm accompanied with the
intensity decreased gradually. The strongest emission wave-
length of NCDs-1 was about 480 nm with the excitation wave-
length of 370 nm by ultraviolet analysis. The excitation
wavelength of the NCDs-1 mainly relied on the different emis-
sive trap sites and the size distribution of the NCDs-1, and in
turn affected their uorescence.21 The possible luminescence
mechanism of NCDs-1 can be attributed to the surface state.23,24

And the main mechanism had been put forward to explain the
PL of as-prepared sample. The creation of trap states in the
bandgap result from doping heteroatoms and the surface
functionalization.

To evaluate the composition of the as-produced NCDs-1, XPS
analyses were further conducted. It was showed three clear
peaks of C 1s, N 1s, and O 1s of synthesized NCDs-1. Moreover,
the high-resolution XPS spectra revealed that the carbon
element in the NCDs-1 is present in the form of C–C (284.8 eV),
C–N (286.1 eV), C–O (286.7 eV), and C]N/C]O (288.7 eV)
(Fig. 3c), whereas the nitrogen element exists as C–N–C
(398.7 eV), and N–C3 (399.2 eV) (Fig. 3d).25 The high-resolution O
1s spectrum reveals the presence of O]C–O (531.3 eV) and
C]O (532.6 eV) (Fig. S3†).25 Based on the discussion above, the
characteristics of results identied that synthesizing produc-
tion was NCDs-1. A broad peak at 3430 cm�1 was also observed
obviously, and it might be assigned to O–H or N–H vibrations.
These results were consistent with the XPS results that the
amounts of N and O of the NCDs account for 5.68% and 21.71%,
respectively. What is more, Raman spectrum indicated that AD/
AG was about 1.21 (Fig. S4†), further suggesting a low graphitic
level for the N-CDs. The Fourier transform infrared spectra of
NCDs-1 exhibited three strong peaks at 1106 cm�1, 1384 cm�1,
1636 cm�1 was attributed to C–NH–C, N-related bonds, C]O
vibrations (Fig. S5†). Based on the discussion mentioned, the
surface of the as-synthesized NCDs is functionalized by
multiple oxygen- and nitrogen-containing groups by the reac-
tion between polyurethane and DMF. The above results indi-
cated that the NCDs-1 were mainly rich in oxygen and nitrogen,
among of them, oxygen derived from hydroxyl, carbonyl, or
carboxylic acid groups and nitrogen, and nitrogen containing
functional groups originated from dehydration and polymeri-
zation of PU sponge and dimethyl fumarate solvent.
Evolution mechanism

To understand the decomposition of sponge materials,
controlled experiments were made to study the decomposing of
PU sponge during solvothermal treatment. As shown in Fig. 4a,
the PU sponges with typical three-dimensional networks. Aer
solvothermal treatment, such three-dimensional structure
collapsed obviously at 180 �C for 0.5 h (Fig. 4b). Aer reacting
for 1 h, the surface becomes rough and the 3-D structure of PU
sponge was completely changed (Fig. 4c and d), indicating
ongoing decomposition and polymerization reactions. It was
proposed that PU sponge degrades into monomers through
a top-down process during the solvothermal treatment.
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) UV-vis absorption of the NCDs-1; the inset in (a) represents photographs of the aqueous solution of the NCDs-1 excited by daylight and
UV irradiation; (b) photoluminescence emission spectra of the NCDs-1 excited at different excitation wavelengths; (c) and (d) high-resolution
spectra XPS of C 1s and N 1s of the NCDs-1.
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Interesting, it was found that the synthesis method was versatile
and it was also suitable for other PU sponge materials. Other
two types of PU sponge as carbon precursor were found that
similar CDs can be obtained, as shown in Fig. 5. Based on TEM
images in Fig. 5b and e, the NCDs-2 and NCDs-3 were spherical
in shape with similar diameters of 2 nm. In addition, the as-
obtained NCDs-2 and NCDs-3 also showed the similar
Fig. 4 SEM images of the samples with different reaction time (a) 0 h; (

© 2021 The Author(s). Published by the Royal Society of Chemistry
uorescence properties and PL emission spectra (Fig. S6†).
Therefore, it was assumed that this is a genetic carbonization
route for PU sponge via a solvothermal treatment.

Photoluminescence and cellular imaging

The uorescence properties of NCDs were closely related to the
selected preparation methods and raw materials. Fluorescence
b) 0.5 h; (c) 1 h; (d) 4 h.

RSC Adv., 2021, 11, 34174–34180 | 34177
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Fig. 5 (a) SEM image of polyurethane sponge (PU-2); (b) TEM image of as-obtained NCDs-2; (c) photoluminescence emission spectra of the
NCDs-1 excited at different excitation wavelengths (NCDs-2); (d) SEM image of polyurethane sponge (PU-3); (e) TEM images of as-obtained
NCDs-3; (f) photoluminescence emission spectra of the NCDs-1 excited at different excitation wavelengths (NCDs-3).

Fig. 6 (a)–(c) Anti-proliferation activities of NCDs (NCDs-1, NCDs-2, NCDs-3) on HeLa andMC3T3-E1 cells at 0–160 mgmL�1 (from left to right).
(d) Bright (upper) and fluorescence (lower) images of HeLa incubated with NCDs (NCDs-1, NCDs-2, NCDs-3) obtained using laser scanning
confocal microscopy (LSCM) (from left to right). Scale bars: 50 mm.

34178 | RSC Adv., 2021, 11, 34174–34180 © 2021 The Author(s). Published by the Royal Society of Chemistry

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
O

ct
ob

er
 2

02
1.

 D
ow

nl
oa

de
d 

on
 1

0/
16

/2
02

5 
3:

16
:1

0 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ra06334k


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
O

ct
ob

er
 2

02
1.

 D
ow

nl
oa

de
d 

on
 1

0/
16

/2
02

5 
3:

16
:1

0 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
tunability was one of the important properties of NCDs.
Different excitation and emission wavelengths could be selected
for different application including biological imaging and
optical labeling.26,27 Meanwhile, another attractive PL property
about NCDs-1 was that they showed high photostability,
resisting to photobleaching, which was very important for
applications requiring long-term bioimaging.25 The uores-
cence intensity of traditional organic dyes generally decayed
rapidly under continuous illumination. However, the uores-
cence intensity of gained NCDs-1 had no decay aer several
hours of UV irradiation, which had strong photobleaching
resistance. At the same time, the uorescence intensity of
NCDs-1 unchanged obviously when it was placed at room
temperature for several months.28,29 Therefore, it is more suit-
able for applicating in vivo labeling and detection.

The CDs with excellent uorescence property, as labels for
biological tagging performance, have been used widely in the
research of biomedicine nowadays.30,31 As a carbon-based
material, the as-prepared NCDs-1 showed less toxic compared
to their semiconductor-based quantum dots.32 In order to
ensure the safety of the gained NCDs-1 in biomedical eld, it is
necessary to investigate their toxicity and biocompatibility. The
cytotoxic activity of the NCDs-1 was determined by MTT assay.
As shown in Fig. 6a, based on the concentration screening tests,
the test concentrations of the NCDs-1 were set as 10, 20, 40, 80,
160 mg mL�1 for HeLa and MC3T3-E1 cells. The cellular survival
rate of two types of cells still maintained over 80%, even the
concentration of NCDs-1 was high up to 160 mg mL�1, indi-
cating that the NCDs-1 have low toxicity. Furthermore, the other
two samples NCDs-2 and NCDs-3 also exhibited low toxicity
(Fig. 6b and c). Therefore, the NCDs synthesized by this method
usually have very low biological toxicity. Indeed, comprehensive
investigations of the cytotoxicity of the samples in vitro have
shown non-toxic performance.

Confocal microscopy imaging was further used to qualita-
tively analyze the effects of NCDs-1 labeled cells on their intra-
cellular uorescence. The results revealed that, obvious blue
uorescence was observed in cultured HeLa cells, but not in the
control group under the excitation of 405 nm light (Fig. 6d). It
was found that HeLa cells showed different color uorescence
at different excitation wavelengths. The as-prepared NCDs-1
could easily penetrate membranes and get into the cytoplasm
of cells. Meanwhile, the uorescence distributed on cell
membrane mostly and the cell outline could be observed, sug-
gesting that NCDs-1 was hard to enter the inner nuclei. The
same phenomenon could be observed in MC3T3-E1 cells
(Fig. S7†), indicating excellent cell imaging function. As shown
in Fig. 6d, similar results can be seen. It was speculated that, in
xed cells and living cells, NCDs-1 enter cells through diffusion
and endocytosis, respectively, and uorescence almost exists in
epicyte and cytoplasma. Compared with other CDs reported
previously,33–36 the present work indicated that the as-prepared
NCDs derived from PU sponge can be used as a biological
imaging material with low toxicity. On the one hand, this
strategy serves as an eco-friendly strategy to utilize PU sponge.
On the other hand, the presence of oxygen-rich groups and
amino group allow to further modication.37–41 In addition,
© 2021 The Author(s). Published by the Royal Society of Chemistry
nitrogen doping could adjust the relative position of conduction
band and valence band, so as to signicantly improve their
optical properties. Therefore, the as-prepared NCDs can be used
as an excellent candidate for the design and development of
theragnostic owing to their exceptional physicochemical
properties.
Conclusion

In summary, a green and facile method to fabricate NCDs
derived from PU sponge was developed by a solvothermal
method. Besides, the NCDs-1 with oxygen and nitrogen groups
were favorable to increase their water solubility and uores-
cence. As a result, the as-prepared sample had excellent PL
performances such as bright luminescence, excitation wave-
length dependent emission and high photostability. The
samples were potentially capable of substituting for traditional
quantum dots considering their exciting PL property as well as
low toxicity. Moreover, the gained NCDs with high uorescence
were also applied in cell imaging as a promising multicolor
uorescent probe in biological imaging. These uorescent
NCDs are explored to be applied in nano-drug carriers for
intracellular imaging, therapeutic applications, clinical disease
diagnosis and real-time tracing.
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