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catalyst for esterification of fatty acidst
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This work reports the one-pot solvothermal synthesis of a Keggin heteropolyacid (phosphomolybdic acid,
tungstophosphoric acid, or silicotungstic acid) immobilized on Ni-MOF composite catalysts for
esterification of fatty acids, and the composites were further analyzed by XRD, FTIR, NH3-TPD, SEM,
TEM, N, adsorption/desorption, and XPS. Among the contrastive syntheses (i.e., HPW/Ni-MOF, HSiW/Ni-
MOF, and HPMo/Ni-MOF), HPMo/Ni-MOF exhibits the most active catalyst toward fatty acids
esterification, and the characterization results also revealed that HPMo/Ni-MOF has a strong acidity,
large specific surface area, and appropriate average pore size. More significantly, this catalyst exhibits
a good catalytic performance (86.1% conversion) during esterification under the optimized reaction
conditions, and the HPMo/Ni-MOF catalyst can remain stable after the tenth cycle with a conversion of
73.5%. Intriguingly, the esterification reaction kinetics was studied, and the activation energy was found
to be 64.6 kJ mol™ . The results indicated that the esterification of fatty acids using the HPMo/Ni-MOF
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1. Introduction

Over the past few decades, the rapid development of the global
economy and the use of fossil fuels has resulted in many
problems, such as global warming and climate change, smog,
and acid rain.»” Seeking more renewables to meet the sustain-
able development of the global economy, including biofuels,
and wind and solar energy, can reduce the dependence on fossil
fuels.®* Amongst the biofuels, biodiesel, or fatty acid methyl
esters, has great potential as an alternative owing to the
advantages of biodegradability, low sulfur content, high
combustion efficiency and flash point, as well as lowering
pollutant emission.* Typically, biodiesel is derived from the
transesterification of edible oils® and inedible oils (Jatropha oil,*
waste cooking oil’, etc.) or esterification of free fatty acids
(FFAs)® with short-chain alcohols with the help of base/acid
catalysts. Generally, inedible oils are more feasible as raw oils
due to their reduced cost in biodiesel processing, but they
contain lots of FFAs or water which cause saponification in the
presence of base catalysts.” Then, the conversion of FFAs into
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catalyst is a chemically controlled reaction.

esters via esterification in the presence of acidic catalysts is
needed for inedible oils.

In the actual production processes, liquid acid catalyst
usually can get a high reaction rate and high conversion.'
Unfortunately, the liquid acid catalytic system is suffering from
separation difficulty, equipment corrosion, and production of
large quantities of wastewater.* Compared to liquid acid cata-
lyst, solid acid catalyst, such as heteropolyacid,** resins,*® ionic
liquid,* carbon-based solid acid catalyst," etc., could provide
more advantages, such as eco-friendly, easy separation, great
reusability and sustainability for esterification process.
However, these solid acid catalysts also have some drawbacks:
complex preparation process, high-cost synthesis, active
component leaching, and low catalytic activity.*®

Among solid acid catalysts, the Keggin heteropolyacid (such
as phosphomolybdic acid, tungstophosphoric acid, silico-
tungstic acid) have been received widely considerable attention
as acid catalyst owning to its strong Bregnsted acidity and
versatility of modifications.”” However, heteropolyacid can be
easily dissolved in polar solvents (e.g. water, alcohols, ketones,
etc.) led to homogeneous catalytic, and the surface area of het-
eropolyacid is too low, which limited the use for catalysis." One
feasible way to solve above-mentioned limitations is immobi-
lized heteropolyacid on a supporter (e.g. metal-organic frame-
work (MOF),"*2° SBA-15,** zeolites,* Al,03,> etc.), and it could
be easily separated from reaction system at a low cost, and it
also had a large specific surface area for providing more active
sites and improving the economic feasibility. Among them,
MOF can be as a new class of porous carrier materials for

© 2021 The Author(s). Published by the Royal Society of Chemistry
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applications in various fields owning to its permanent porosity,
high specific surface area, and diverse functionality struc-
ture.>**” Masoumi et al. had prepared the PTA/MIL-53 (Fe)
composite through the encapsulation method, and it can be as
a good adsorbent for tetracycline hydrochloride removal.*®
Wang et al. developed a composite material (HPMo@UiO-66)
for oxidative desulfurization, and it exhibited excellent cata-
lytic performance.*

Inspired by the above study, herein, we present a one-pot
solvothermal approach to prepare a series of Keggin
heteropolyacid/Ni-MOF catalysts for the direct esterification of
fatty acids. These catalysts are characterized using various
techniques to reveal their compositions, morphology, struc-
tures, and acidic properties. Additionally, the reaction kinetics,
recyclability, and comparison studies of fatty acids esterifica-
tion reactions are also examined.

2. Experimental section

2.1 Chemicals and materials

The chemicals of nickel(n) nitrate hexahydrate (Ni(NOs),-6H,O0,
AR), phosphomolybdic acid (H3PMo0,,04,-7nH,0, HPMo, AR),
tungstophosphoric acid (H;PW;,040-nH,0, HPW, AR), silico-
tungstic acid (HSiW, H,SiW;,0,0-1nH,0, HSiW, AR), and ter-
ephthalic acid (H,-BDC, AR) are purchased from Shanghai
Aladdin Biochemical Technology Co., Ltd, Shanghai, China.
Absolute ethanol (AR), oleic acid (C18:1, AR), anhydrous meth-
anol (AR), and N,N-dimethylformamide (DMF, AR) are
purchased from Sinopharm Chemical Reagent Co., Ltd,
Shanghai, China. These chemicals are directly used without
further purification.

2.2 Synthesis of Keggin heteropolyacid/Ni-MOF catalyst

The synthesis of a series of Keggin heteropolyacid/Ni-MOF
catalysts was carried out via a typical solvothermal method
with some modifications.* Firstly, 2 mmol Ni(NOj3),-6H,0 was
dissolved into the mixture solvent consisting of 32 mL DMEF,
2 mL absolute ethanol, and 2 mL distilled water, and ultra-
sonized at room temperature for 10 min. Secondly, 1 mmol H,-
BDC and 0.5 g Keggin heteropolyacid (HPMo, HPW, HSiW) were
slowly added into above mixed solution, and the mixture solu-
tion was stirred at room temperature for another hour to obtain
a green mixed solution. Then, transferred to a Teflon autoclave
(50 mL), and kept in the oven at 150 °C for 6 h. Finally, the
reaction mixture was cooled to room temperature and was
collected by centrifugation, washed with DMF and distilled
water three times, and dried at 90 °C for 12 h under vacuum to
gain the Keggin heteropolyacid/Ni-MOF catalyst and named as
HPMo/Ni-MOF, HPW/Ni-MOF, HSiW/Ni-MOF, respectively.

2.3 Characterization

The Fourier transform infrared (FTIR) spectra were recorded on
the infrared spectrometer (PerkinElmer spectrum100). The
catalysts were manifested in the test range of 5°-70° by wide-
angle X-ray diffraction (XRD, D8 ADVANCE, equipped with
CuK] (1.5406 A) radiation). The morphological images of the
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Fig. 1 XRD patterns of the Ni-MOF, HPMo/Ni-MOF, HPW/Ni-MOF,
and HSiW/Ni-MOF composites.

catalysts were studied by the scanning electron microscope
(SEM, Hitachi S4800) and transmission electron microscope
(TEM, FEI Tecnai G2 20). The microstructure parameters of the
catalyst were performed on the nitrogen adsorption-desorption
analysis (Quantachrome Instruments). The acidic of catalyst is
measured via temperature programmed desorption of NHj;
(NH3-TPD, Micromeritics, AutoChem II 2920 instrument). The
analysis of elements was measured by X-ray photoelectron
spectroscopy (XPS, Thermo ESCALAB 250XI).

2.4 General procedure for esterification

The Keggin heteropolyacid/Ni-MOF catalyst was previously
activated at 90 °C for 2 h. Then, a mixture of oleic acid (3.0 g),
the proper amounts of methanol, and various amounts of
Keggin heteropolyacid/Ni-MOF was taken in a 50 mL high-
pressure autoclave, and then heated at 160 °C in an oil bath
for the appropriate time. After the reaction, the catalyst was
separated through centrifugation, and the excess methanol and
water were vaporized from liquid product and analyzed via the
acid value according to the method described in ISO 660-2009
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Fig. 2 FTIR spectra of the Ni-MOF, HPMo/Ni-MOF, HPW/Ni-MOF,
and HSIW/Ni-MOF composites.
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Fig.3 TPD-NHs analysis of HPMo/Ni-MOF, HPW/Ni-MOF, and HSiW/
Ni-MOF composites.

standard, and the obtain acid value before reaction and after
reaction to get the conversion.

3. Results and discussion

3.1 Catalyst characterization

Fig. 1 shows the XRD figure of the Ni-MOF, HPMo/Ni-MOF,
HPW/Ni-MOF, and HSiW/Ni-MOF composites. The pure Ni-
MOF appears typical diffraction peaks at 8.3°, 15.0°, 15.9°,
17.0°, 25.8°, 28.1°, and 30.0° are corresponding to literature
reports.** For HPW/Ni-MOF, and HSiW/Ni-MOF composites, the
diffraction peaks perfectly match with the patterns of Ni-MOF,
but the main peak intensities decreased, confirming that the
structure of the Ni-MOF matrix almost kept intact after
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introduction of heteropolyacid.** Surprisingly, for HPMo/Ni-
MOF, the main diffraction peaks of Ni-MOF are partly dis-
appeared, but it can still observe characteristic peaks at 8.1°,
25.8°, and 28.3°, this result could be interpreted as the inter-
action between HPMo and Ni-MOF. In addition, it also reveals
that the existence of HPMo and Ni-MOF in the HPW/Ni-MOF
composites, which will be further showed by the following
FTIR, SEM, N, gas adsorption-desorption isotherms, and XPS
observations.

The FTIR spectra of Ni-MOF, HPMo/Ni-MOF, HPW/Ni-MOF,
and HSiW/Ni-MOF composites were recorded in the range 400-
4000 cm™ ' as presented in Fig. 2. The Ni-MOF spectrum of
peaks at 1500-1650 cm™ " and 1300-1460 cm ™' are associated
with the asymmetric and symmetric of the carboxyl groups
(-COOH), respectively.®® The peak at 1000-1200 cm ' is corre-
spond to the stretching vibration of C-O,** and peaks at
750 cm™ ' are attributed to Ni-O vibration.** After composite
heteropolyacid with Ni-MOF, HPMo/Ni-MOF, HPW/Ni-MOF,
and HSiW/Ni-MOF have similar spectra to Ni-MOF, demon-
strating that the Ni-MOF structure remained intact during the
preparation of the composites. Notably, the peaks correspond-
ing to HPMo/Ni-MOF at 1064 cm ™%, 930 cm ™', and 860 cm ™" are
associated with the Keggin structure of HPMo, but the charac-
teristic peaks of HPMo/Ni-MOF exhibit red-shifted, this may be
caused by the strong interaction between HPMo and Ni-MOF
matrix. This suggests that the presence of both HPMo and Ni-
MOF in the composites, which is consistent with the XRD
analysis.

The surface acidity of the Keggin heteropolyacid/Ni-MOF
catalysts are determined by the TPD-NH; technology, and the
results are presented in Fig. 3. From Fig. 3, all of the catalysts

$4800 5.0kV 8.5mm x20.0k SE(M) 2.00um

Fig. 4 SEM images of (a) Ni-MOF, (b) HPW/Ni-MOF, (c) HSiW/Ni-MOF, and (d) HPMo/Ni-MOF composites.
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exhibited medium acidic properties. However, values of
maximum peaks for HPMo/Ni-MOF in 417 °C are 11 °C and
17 °C higher than those of HPW/Ni-MOF and HSiW/Ni-MOF,
respectively, it reveals that HPMo/Ni-MOF composite has
a high acidity compare to HPW/Ni-MOF and HSiW/Ni-MOF.
Also, peak at 111 °C implies the existence of weak Lewis
acidic sites, which may be related to the hydroxyl groups on the
surface of HPMo/Ni-MOF composite. Surprisingly, the HPMo/
Ni-MOF sample displayed a maximum desorption peak at
506 °C due to the existence of strong Brensted acidic sites with
the introduction of HPMo, so it was not surprising for its
excellent activity in the esterification reaction.

The morphology of Ni-MOF, HPMo/Ni-MOF, HPW/Ni-MOF,
and HSiW/Ni-MOF composites were observed by SEM. In
Fig. 4a, Ni-MOF powders were composed of irregularly wrinkled
nanosheet structure, and the results also agree well with the
previous report.** When heteropolyacid loaded, the morphology
of the composites changed significantly. Among them, the
morphology of HPW/Ni-MOF looks like flowers (Fig. 4b) and the
morphology of HSiW/Ni-MOF exhibits an irregularly aggregate
bar of particles (Fig. 4c). In contrast, HPMo/Ni-MOF was mainly
composed of wrinkled nanosheets and flower structure
(Fig. 4d), and it is possibly related to the interaction between
subject and object. This analysis was consistent with the results
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of XRD and FTIR. Coincidently, some small particles with size
about 50-100 nm were observed on the surface of HPMo/Ni-
MOF composites, indicating that the HPMo was deposited on
the Ni-MOF nanosheets. Additionally, it could be observed that
the small HPMo particles were loaded onto the surface of Ni-
MOF by the TEM presented in Fig. 5, and the clear hole struc-
ture was also found. Therefore, the loading of HPMo active
component and unique structure can provide more active sites
and high contact area for the interaction between catalysts and
substrates.

To investigate the porosity of the pure Ni-MOF and HPMo/
Ni-MOF, N, gas adsorption-desorption isotherms were per-
formed, as shown in Fig. 6. In Fig. 6, the N, adsorption isotherm
of pure Ni-MOF and HPMo/Ni-MOF showed a type IV charac-
teristic curve signify the presence of mesoporous structure.’” In
addition, the BET surface areas of Ni-MOF and HPMo/Ni-MOF
are measured to be 30.6 m? g ' and 203.5 m* g~ !, the average
pore diameters are 12.3 nm and 6.5 nm for Ni-MOF and HPMo/
Ni-MOF. After composite HPMo with Ni-MOF, the BET surface
areas appreciable increase could be related to HPMo loaded
onto the Ni-MOF nanosheet, which in consistent with SEM
observations and previous literature.*® Additionally, the average
pore diameters decrease is mainly caused by the introduction of
HPMo occupied the surface of Ni-MOF. The above results

Fig. 5 Typical TEM images of the HPMo/Ni-MOF composite.
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demonstrate that the HPMo active guest was successfully
loaded onto the surface of the Ni-MOF nanosheet. Thus, the
introduction of HPMo/Ni-MOF composite may offer large BET
surface areas, more catalytic sites and promote the esterifica-
tion process.

XPS analysis was employed to probe the elements and
surface chemical state of the HPMo/Ni-MOF composite. As
demonstrated in Fig. 7a, the fully scanned spectra proved the
presence of Ni, C, O, and Mo elements in HPMo/Ni-MOF. In the
C 1s XPS spectra (Fig. 7b), the peaks at 284.7 eV and 288.5 eV,
which can be assigned to C-C/C=C of phenyl and C=0 of
carboxyl, respectively.®® Moreover, four peaks are observed at
855.6 eV, 861.5 eV are confirmed to Ni 2p3/, and 873.5, 879.7 eV

View Article Online
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to biodiesel. The esterification reactions were carried out at
160 °C, 0.09 g of catalyst, 1 : 20 of oleic acid to methanol molar
ratio, and are as shown in Fig. 8. From Fig. 8 it can be observed
that, the construction of HPW/Ni-MOF and HSiW/Ni-MOF
catalysts had little catalytic activity, similar to that of pure Ni-
MOF sample. To our delight, the HPMo/Ni-MOF catalyst
exhibited excellent catalytic activity and the conversion of oleic
acid was about 86.1%, which outperformed from the other
catalyst. This may have been because of the HPMo/Ni-MOF has
a high acidity, large specific surface area, and a good synergistic

100
are ascribed to Ni 2p,,, indicating the valence state of Ni is +2 00 E:I;“‘“f \oF
-1 TIN1-]
(Fig. 7¢).*® Meanwhile, their satellite peaks at 861.5 eV and [ HSiVW/Ni-MOF {_ |
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3ds/, and Mo 3dj;), of are observed, revealing the interactions S 40+
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MOF composites, which is consistent with the XRD, FTIR, and
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Fig. 7 XPS survey spectrum of (a) wide scan, (b) O 1s, (c) Ni 2p, and (d) Mo 3d for HPMo/Ni-MOF composite.

33420 | RSC Adv, 2021, 11, 33416-33424

© 2021 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1ra06023f

Open Access Article. Published on 13 October 2021. Downloaded on 2/8/2026 5:24:57 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

100
—&— 140C

150C

80 —¥—160C

"

Conversion (%)

0 T T T T

-
o -

3
Time (h)

Fig.9 Oleic acid conversion as a function of time in esterification over
HPMo/Ni-MOF with different reaction temperature. Reaction condi-
tions: 0.09 g of catalyst, 1 : 20 of oleic acid to methanol molar ratio.

effect existed between HPMo and Ni-MOF, leading to an excel-
lent esterification activity. Then, HPMo/Ni-MOF composite was
selected as target catalyst in the subsequent study.

3.3 Kinetic investigation

The kinetic behavior of the esterification process from oleic acid
was studied by using HPMo/Ni-MOF composite catalyst, and the
esterification experiments were performed at the reaction time
range of 1-5 h and reaction temperature of 140-160 °C as shown
in Fig. 9. From Fig. 9, the conversion of oleic acid increases from
50.4% to 82.4% at 4 h, as the reaction temperature increases
from 140 °C to 160 °C.

According to previous literature, the rate of oleic acid ester-
ification reaction is expected to obey the pseudo first-order
reaction due to the presence of excess methanol.** Then, the
kinetics equation as depicted following: —In(1 — n) = kt, and n
is the conversion at time ‘¢’. The linear relationship of —In(1 —
n) against time (h) was plotted at the temperatures range of 140-
160 °C to study the rate constant k as drawn in Fig. 10a. From
Fig. 10a, it is clear that the kinetic model gave high correlation
coefficient (R*) values above 0.9. Meanwhile, the & value
increases with the increase in reaction temperature, which
suggests the reaction temperature of 160 °C is optimum. Also,
the activation energy of oleic acid esterification was calculated
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through Arrhenius equation (In k = —E,/RT + In A), and as
displayed in Fig. 10b. According to this figure, the activation
energy was determined as 64.6 k] mol ', indicating that the
esterification is not mass or diffusion controlled, but chemically
controlled reaction.** Moreover, the activation energy was
similar to previous literatures.*”*®

3.4 Recycle test

To display the good recycling nature of HPMo/Ni-MOF
composite, a recycle test was performed. After the reaction,
catalyst was collected by centrifugation, and directly used in the
next run, and the results are given in Fig. 11. It can be seen from
Fig. 11 that the oleic acid conversion after the first reaction run
was 82.4% and 73.5% after tenth cycle, and there was only 8.9%
conversion drop in the activity of HPMo/Ni-MOF composite was
observed after the reaction. These results indicate that the
recycled HPMo/Ni-MOF can maintain a high conversion. To
explain the excellent reusability of catalyst, FTIR spectra were
used to study the structure of HPMo/Ni-MOF (Fig. S17), and the
results indicate that the FTIR spectra of fresh and used HPMo/
Ni-MOF catalyst was similar, and the acid catalyst was relatively
stable throughout the esterification reactions. In addition, the
reduction catalytic of HPMo/Ni-MOF is probably due to the

100
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T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11

Reaction cycles

Fig. 11 Recycle performance of HPMo/Ni-MOF composite. Reaction
conditions: 160 °C, 0.09 g of catalyst, 1 : 20 of oleic acid to methanol
molar ratio, 4 h.
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Fig. 10 (a) Plot of —In(1 — 7) vs. reaction time (h); (b) plot of In k vs. 1/T (K™Y).
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Table 1 Comparative of this study with other catalysts used in the esterification

Esterification
Conversion

Catalyst Feedstock Catalyst (Wt%) M/O  Time (h) Temp. (°C) Reusability cycles (%) Ref.
WO,/USY Oleic acid 10 6 2 200 4 74 51
H;PM04,0,40/AC Lauric acid 5 50 10 70 3 98 52
Zr0,/SiO, Stearic acid 10 120 3 120 5 69.2 53
2.6SZA900 Oleic acid 10 5 6 70 — 71.4 54
La*'-HZSM-5 Oleic acid 10 20 7 100 3 80 55
ZSM-5 Oleic acid 5 20 8 190 5 97 56
HPMOo/Ni-MOF Oleic acid 3 20 5 160 10 86.1 Current study
leaching of a small amount of HPMo and pore blockage of Ni- References

MOF, and a similar phenomenon has been reported for some
other catalytic materials.*>*°

3.5 Comparative study

The activity of the HPMo/Ni-MOF catalyst toward esterification
has been compared with other catalysts used in the esterifica-
tion of FFAs as represented in Table 1. According to Table 1, it
can be concluded that the catalyst activity of HPMo/Ni-MOF in
the current study has the combination of low catalyst amount
and time of reaction along with excellent conversion and good
reusability in comparison to other researches. Hence, the
HPMOo/Ni-MOF composite is an excellent catalyst for esterifica-
tion with good activity, stability, and cost-effective properties.

4. Conclusion

To sum up, the Keggin heteropolyacid/Ni-MOF catalysts were
successfully synthesized via one-pot solvothermal route and
applied to esterification of oleic acid with methanol. All the
composite catalysts were characterized and the catalytic activity
was tested. Among them, the HPMo/Ni-MOF composite exhibits
a better catalytic activity than that of HPW/Ni-MOF and HSiw/
Ni-MOF, and the catalyst was found suitable up to tenth
cycles with only 8.9% conversion drop. Moreover, this esterifi-
cation reaction obeys first-order kinetics and the activation
energy was determined as 64.6 k] mol™'. This study provides
a deep insight into heteropolyacids immobilization and the
composite material design for biofuels synthesis.
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