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Qing Lu

Molecular structure recognition is fundamental in computational chemistry. Themost common approach is

to calculate the root mean square deviation (RMSD) between two sets of molecular coordinates. However,

this method does not performwell for largemolecules. In this work, a newmethod is proposed for structure

comparison. Blob detection is used for recognizing structural features. Fragmentation of molecules is

proposed as the pre-treatment. Mapping between blobs and atoms is developed as the post-treatment.

A set of key parameters important for blob detections are determined. The dissimilarity is quantified by

calculating the Euclidean metric of the blob vectors. The overall algorithm is found to be accurate to

distinguish structural dissimilarity. The method has potential to be combined with other pattern

recognition techniques for new chemistry discoveries.
Introduction

The identication of molecular structures is important in
chemistry and biology. It is almost inevitable in elds such as
conformer exploration, molecular assembly, molecular
descriptor denition, etc. With the increasing complexity of
research problems, it becomes more and more difficult to nd
a rule governing the multivariate input data and the target
output data. Therefore, the design of experiments approach
becomes important to narrow down the number of variables.1

Such approach has been used to solve different problems such
as solar cell preparation,2–5 nutrients analysis,6 and sparse-
sensor-selection problem.7 The chemometrics takes advan-
tages of mathematical, statistical and other methods to explore
new chemical insights. In particular, the pattern recognition
techniques have been developed to extract features from a large
amount of input data.8 The major applications involve
discriminant analysis for food quality,9 quality assessment of
herbal medicine,10 design of chemical sensor,11 and recognizing
ligands,12 etc.

Comparing similarities between different chemical struc-
tures is one of the most important steps in computational
chemistry. It is oen the starting point for sophisticated multi-
step computational studies,13–15 since a convincing computation
relies on a good agreement between optimized structures and
crystalized structures. In addition, comparing structures is also
important in the prediction of structures of proteins,16

comparing trajectories from molecular dynamic simulations,17

database searching or analysis,18,19 and benchmark studies
testing new methods or basis sets.20
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Among all approaches to comparing structural similarities,
the root-mean-square-deviation (RMSD) is the most widely used
one. It calculates the square sum of distances between corre-
sponding atoms (di) in two structures and takes the division by
the total number of atoms (N), followed by a square root
operation.

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiP

di
2

N

s

Despite its wide use, the RMSD measurement suffers a few
limitations such as difficult of interpretation, lack of normali-
zation and diminishing ability to distinguish conformers with
increasing system size.17,21,22 To remedy these problems, some
improvements upon RMSD have been proposed, such as
introducing weighting functions into the calculation of RMSD,17

taking advantage of the graph theory23 or symmetry.24 Other
alternatives include conguration ngerprint vector,25 global
and local descriptors,26 geometric hashing algorithm27 and
several different score functions.21,28–33

On another aspect, the pattern recognition has received
considerate success in recent years. It is the frontier in the eld
of deep learning, and it is fast, accurate and visually straight-
forward. In biology or chemistry, the applications taking
advantages of pattern recognition techniques dominantly rely
on principle component analysis, cluster analysis, classication
methods and regression methods.8 In term of image processing
techniques, the blob analysis has been used to identify ligands
in electron density maps,12 identify cells,34 analyze the Leukemic
blood image,35 or detect trees from satellite images.36

There is a great advance in the image understanding, which
could be used in the analysis for molecular structures. However,
molecules are much more complicated in shape and it is there-
fore not trivial to transplant pattern recognition and machine
RSC Adv., 2021, 11, 35879–35886 | 35879
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learning technique to recognize molecules. Besides, molecules
usually have tertiary structures (like proteins). As a result, even if
outlook or prole of molecules are recognized identical, the core
structures may still vary. Lastly the structural difference could be
small, so recognition technique should be sensitive and accurate
to avoid over-detection or under-detection.

Although it is challenging, it is attractive to apply pattern
recognition techniques to recognize molecules. Such an approach
is potential to benet database analysis, molecule docking analysis
or quantitative structure–activity relationship analysis. It is even
potential to be extended to combine with other machine learning
techniques. Accordingly, one can better understand molecular
structures, intra- or inter-molecular interactions. Expecting on
these, we initiate this project to explore pattern recognition tech-
niques for the structure recognition. The outcome of this work
borrows the advantages of the pattern recognition technique and
avoids the problems met by the RMSD calculations. In addition, I
further propose a pre-treatment and a post-treatment for recog-
nizing structural dissimilarities. The outcome shows that the
proposed method is accurate, intuitive and visually straightfor-
ward in structure recognition.
Methods

As discussed above, it does not work to directly borrow facial
recognition techniques to recognize molecules, unless the
molecular structure is very simple. Yet as a starting point, we
initiate the study by recognizing simple molecular systems. For
recognizing molecules, one may consider to compare the molec-
ular shape, for example the convex hull for molecule recognition.
However, this method cannot be extended to complicated struc-
tures and it cannot recognize the concave part of the molecule,
thus leading to an under-detection problem. Another widely used
method in the eld of pattern recognition is to compare the
histogram of color distribution of the molecular image. This
method, however, is not appropriate since it cannot correctly
differentiate conformational structure differences. The most
brute-force method is to directly compare the image matrices of
two structures. However, thismethod does not workwell either, as
it suffers numerical noise when converting 3D molecular struc-
ture to images, thus leading to over-detection problem.

To circumvent this rst problem, we remove the chemical
bonds from images, as the molecular structures are determined
by the atom positions. Therefore, the problem of recognizing
molecules is converted to recognize a set of scattered atoms/
dots. The blob detection can be used to recognize these
atoms. For complicated molecules, however, there will be blob
overlap during the detection. Therefore, before the blob detec-
tion, I propose a pre-treatment for molecules as well as images
to help the successful detection. Also, it is oen of interest to
tell which atoms cause the dissimilarity. Therefore, a post-
treatment is also proposed to fulll this goal.
(1) Pre-treatment of images and parameter determination

The molecular image is the basis for the following analysis.
Providing the atoms have been well aligned,37 the molecular 3D
35880 | RSC Adv., 2021, 11, 35879–35886
image is generated from its XYZ coordinates (Fig. 1a). Since the
atoms are those that determine the molecular structure, we
eliminate the chemical bonds from the 3D image (Fig. 1b).
Beneting from this, the molecule is now represented by a set of
dots or blobs, and therefore the blob detection is used to
recognize molecules. For easier visualization and easier treat-
ment in the latter stage, the azimuthal angle and the elevation
angle was set as 90� for exhibiting the image (Fig. 1c) (the
projection angle is along the Z-axis). Unless explicitly stated, the
following discussion is based on this projection angle.

As any other pattern recognition application, the quality of
the picture is important. Aer a modest number of tests, I set
the picture height and width of 100 � 100 inches with 80 dots
per inch (dpi). Accordingly, the nal resolution of the gure is
800 � 800 pixel. The resolution of an image is mathematically
represented as the matrix size. An image of resolution being 800
� 800 indicates that the matrix size is 800 � 800. Setting the
resolution too high would lead to a slowdown of the image
processing, while setting the resolution to low would lead to an
incapability of distinguishing different blobs. The size of the
blobs is also important. If the radius is too large, there will be
overlaps of blobs, so that it will not detect the correct number of
blobs. On the other hand, if the blob radius is too small, it
would likely fail to detect all the blobs. As it will be shown later,
the Gaussian kernel is used in the blob detection. The Gaussian
kernel is a scalar function with a shape of a Gaussian normal
distribution curve. It is used to enhance the contrast between
blobs and backgrounds. Since the numerical difference is used,
theoretically, the blob size should be at least of 3 pixel. In
practice, it is found that the radius of blobs to be 35 pixel is
optimal in detecting the correct number of blobs with the given
image resolution.
(2) Pre-treatment of molecules

In this work, I chose ve different molecular systems to examine
the capability of pattern recognition upon distinguishing
molecular structures. Although the selected systems are rela-
tively simple, they are representative in terms of molecular
complexity, planarity, and symmetry. The complex 3D mole-
cules obtained from X-ray cryptograph could also be used as an
examination, but for easier visualization only the chosen
molecules are discussed.

The H2O–MeNH2 system (Fig. 2a) serves as an introduction
system due to its simple composition. The trans-4,4-diethyl-
azobenzene and C60 systems (Fig. 2b and c) serve to illustrate
how the blob detection was carried out. The 18-crown-6 ether
and the virtual peptide of a-helix composed of Ala–Arg–Asn–
Asp–Cys–Glu–Gln–Gly, generated by Avogadro38 (Fig. 2d and e),
serve to exhibit the results of blob detection upon complex
systems, as well as quantifying the dissimilarity between
different structures.

For simple molecules, like H2O–MeNH2 in Fig. 2a, it is
possible to nd out a projection angle so that all atoms can be
projected on one plane without overlaps. For complicated
molecules, however, this becomes increasingly impossible. The
molecular structure is 3-dimensional, while the image is 2-
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (a) 3D structure of H2O–MeNH2 system. (b) 3D structure of H2O–MeNH2 system eliminating chemical bonds. (c) Projected view of H2O–
MeNH2 along Z direction.
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dimensional. This is equivalent to ask the question how to
convert a 3D problem to a 2D problem without losing infor-
mation. To solve this problem, I slice the whole molecule into
layers, and take the snapshot for each layer to run the blob
detection (Fig. 3). However, it is not trivial of slicing the mole-
cule, as the double counting of atoms may take place. Eventu-
ally, I slice the molecule along the projection angle, and set the
distance between layers to be 0.7 Å. This value is close to a H–H
bond distance. For any reasonably determined structure, it is
not possible to have two atoms with a distance smaller than 0.7
Å. Therefore, the layers separated by 0.7 Å can well slice the
whole molecule into different fragments, and it is accordingly
guaranteed that the layer-based blob detection can detect all
atoms/blobs.
(3) Feature extraction

To detect the blobs on each layer projected by atoms, the
determinant of Gaussian algorithm by Bay et al.39,40 is adopted.
There are other two widely-used detection algorithms, namely
the Laplacian of Gaussian algorithm and the difference of
Gaussian algorithm. In the current case, the Bay's determinant
of Hessian algorithm outperforms the other two (see ESI† for
details). Aer fragmenting the molecule, the blob gure of each
Fig. 2 The top view and side view of systems examined in this work: (a) H
(d) peptide, (e) C60. The side view of C60 is not shown due to its spher

© 2021 The Author(s). Published by the Royal Society of Chemistry
layer was rst converted to gray-scale. As a result, only one
matrix (I(x,y)) was enough to represent the image, instead of
three matrices (the three matrices represent red, blue, and
green colors, respectively). Such a grey image matrix was then
converted to the integral image (f(x,y)) to denoise:41

f ðx; yÞ ¼
Xx

i¼0

Xy

j¼0

Iði; jÞ (1)

For the integral image matrix f(x,y), a convolution product is
dened by multiplying a Gaussian kernel (g(x,y;s)) with the
integral image matrix:

L(x,y;s) ¼ g(x,y;s) � f(x,y) (2)

where the Gaussian kernel is dened as:

gðx;y;sÞ ¼ 1

2ps2
e�

x2þy2

2s2 (3)

at a certain scale s. The scale s can be approximated as the
radius of the detected blob.

The Hessian determinant H(x,y;s) is dened as:24

H(x,y;s) ¼ Lxx(x,y;s)Lyy(x,y;s) � 0.81Lxy(x,y;s)Lxy(x,y;s) (4)
2O–MeNH2, (b) trans-4,4-diethyl-azobenzene, (c) 18-crown-6-ether,
ical symmetry.

RSC Adv., 2021, 11, 35879–35886 | 35881
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Fig. 3 Illustration of the fragmented blob detection using the peptide as the model.
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The blobs (B(x,y;s)) are nally detected by locating the local
maxima of the H(x,y;s), depending on whether the background
color is black or white:

B(x,y;s) ¼ argmaxlocal(x,y;s)(H(x,y;s)) (5)
(4) Pattern recognition

Aer detecting the blobs, the arrays containing each blob
position (Bi(x,y)) and blob radius are obtained. The Euclidean
norm between corresponding blobs of two structures are
compared. The Euclidean norm between two blobs is calculated
as square sum of dx and dy, where dx and dy are the difference
in terms of blob coordinate (Bi(x,y)). If the norm differs by more
than 7.5 pixels, then the corresponding atoms are identied as
having different location. It is also possible to quantify the
difference (d) between the two structures by summing up all of
the blob norms:

d ¼ 1

N

X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � x

0
iÞ2 þ ðyi � y

0
iÞ2

q
(6)

where xi and yi are the indices of detected blob, while the prime
terms are their counterparts of the other structure. The
denominator N is the number of different blobs.
(5) Post-treatment

In addition to recognize the dissimilarity between the two
structures, it is oen of interest to tell which part of the mole-
cule leads the difference. To fulll this purpose, the molecule is
rst projected along the Z direction:

P̂ZG(x,y,z) ¼ g(x,y) (7)

where P̂Z is the projection operator along the Z direction,
G(x,y,z) is the molecular coordinate and g(x,y) is the image
matrix element of the projected atoms.

The image matrices for each layer are then converted to gray-
scale as above mentioned. Next, the local maxima or minima
35882 | RSC Adv., 2021, 11, 35879–35886
were obtained for each gray-scale image matrix, depending
whether the background color is white or black:

bðx;yÞ ¼ argmaxlocalðx;yÞðgðx;yÞÞ
or bðx;yÞ ¼ argminlocalðx;yÞðgðx;yÞÞ (8)

Such local maxima or minima usually have a good overlap
with the detected blobs (the pixel difference is lower than 3).
Accordingly, the correlation between atom and blobs can be
established by any sorting algorithm. However, such a method
is not satisfactory if the two blobs are spatially close. In that
case, for each atom, a blob detection is performed. The problem
can be circumvented at the expense of slower processing speed.
Results and discussion

To start with, the H2O–MeNH2 system was rst studied as the
testing case. Fig. 4a shows the 3D structure for H2O–MeNH2

system. Fig. 4b shows the projection view along the Z axis for
only atoms. Since all the atoms can be projected on the same
plane without overlaps, so the fragmentation of the molecule is
not necessary. Fig. 4c shows the detected blobs marked with red
circles. It is evident that all atoms are properly detected.

To test the sensitivity of the method to distinguish the
dissimilarity, the X or Y coordinate of one of the CH3 hydrogen
is gradually displaced by 0.1 Å from its equilibrium position.
For the H2O–MeNH2 case, a difference of 0.1 Å is sensitive
enough for the blob detection, as shown in Fig. 4d, where the
original and displaced hydrogen are marked with red and blue
color, respectively. However, for complicated systems like the
peptide system, such a difference cannot guarantee a successful
detection for the displaced atom. Eventually, it is found that 0.3
Å is a good threshold for the detection of displaced atoms. To
further test the reliability of this threshold, a random
displacement (dx and dy) between �0.3 and 0.3 Å was added on
the X and Y coordinates of the rst 10 atoms of the peptide. A
constraint was introduced to the displacements that dx2 + dy2 is
no lower than 0.09. The displaced atoms can be correctly
detected. Therefore, 0.3 Å is chosen as the sensitivity threshold
for the blob detection. As a further examination, the random
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (a) 3D structure for H2O–MeNH2 system. (b) Projection view along the Z axis for atoms. (c) Detected blobs of all atoms marked with red
circle. (d) 3D structure of atoms for H2O–MeNH2 system. The geometrically perturbed hydrogen atom and non-perturbed hydrogen atom are
highlighted with blue and red color, respectively.

Fig. 5 The fragmentation of trans-4,4-diethyl-azobenzene and cor-
responding atoms on each layer.
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displacement was generated 100 times, and the successful
detection was achieved 100 times.

For complicated molecules, it is oen necessary to fragment
the molecule into several layers to avoid blob overlaps. Fig. 5a
and b show the top view and side view of the trans-4,4-diethyl-
azobenzene, respectively. Especially, in Fig. 5b the molecule
was fragmented into 7 layers. The projection angle is perpen-
dicular to the planes. The blob detection is performed for each
layer picture and each layer is shown in Fig. 5c. It can be seen
that layer 1 contains 1 blob, which is identied as the methyl
proton aer the post-treatment of mapping atoms and blobs.
The layer 2 contains 3 blobs, which correspond to the CH2

atoms of that methyl group. Layer 3 contains 1 blob corre-
sponding to the methylene proton on the other ring side. Layer
4 contains the azobenzene skeleton. Layer 5, 6, 7 are “mirror”
layers to the layer 3, 2, 1, respectively.

For another showcase, the upper panel of Fig. 6 shows the
C60 molecule and its detected blobs, while the lower panel
shows the counterpart of the distorted C60 molecule. The dis-
torted C60 molecule was obtained by adding a random number
between �0.3 and 0.3 on the X,Y,Z coordinates of the rst 10
atoms. As before, the dx and dy is constrained by dx2 + dy2 $

0.09. For the normal C60 molecule, it is visually convenient to
nd out that the detected blobs show an expected circular
distribution (Fig. 6B). What is not expected (to some degree), on
the other hand, it is that it is not necessary to slice the C60
molecule into layers. All 60 carbons can be projected on one
plane without overlap. The radial spacing for each lap of blobs
© 2021 The Author(s). Published by the Royal Society of Chemistry
is not evenly distributed. Thus, the pattern recognition tech-
nique could provide a new perspective to understand molecular
structures.

Nonetheless, I still slice the C60 molecule into layers. For
normal C60 molecule, different layers show an expected
RSC Adv., 2021, 11, 35879–35886 | 35883
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Fig. 6 3D structures and detected blobs of regular C60 (A) and perturbed C60 (a). Labels (B) and (b) show all detected blobs. Labels (C) and (c)
show the blobs of non-perturbed atoms. Labels (D) and (d) show perturbed atoms.

Table 1 The Euclidean norm of blob vectors for perturbed and non-
perturbed systems of H2O–MeNH2, 18-crown-6-ether and peptide.
The perturbation is adding random numbers to X,Y,Z coordinates of
the first 10 atoms of the systems. The random numbers are between
�0.3,�0.5, or�1 Å respectively with a constraint that dx2 + dy2$ 0.09.
The Euclidean norm is in the unit of pixel

dR
¼ �0.3 Å

dR
¼ �0.5 Å

dR
¼
�1 Å

H2O–MeNH2 31.6 62.2 82.6
18-Crown-6-ether 24.1 32.3 62.2
Peptide 10.6 12.6 21.4
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symmetric blob pattern (Fig. 6C and D). As a comparison,
Fig. 6d shows an asymmetric blob distribution, since those
atoms are displaced. On the other hand, Fig. 6c shows a blob
pattern identical to its counterpart of the original C60 molecule
(Fig. 6C), since the atoms corresponding to these blobs belong
to the remaining unperturbed 50 atoms.

Lastly, one may quantify the dissimilarity between two
images. In this work, the quantication of the dissimilarity is
expressed by the Euclidean norm between two blob vectors. The
calculation of the Euclidean norm is similar to the RMSD
calculation. The variable is the blob position, instead of the
atom coordinate.

Table 1 shows the Euclidean norm between blob vectors of
unperturbed systems and perturbed systems. For the perturbed
systems, the rst 10 atoms are randomly displaced (dR) at X,Y,Z
direction by 0.3, 0.5 and 1 Å, respectively, with the constraint
that dx2 + dy2 $ 0.09. It can be seen that the Euclidean norm
increases as the displacement becomes larger. Therefore, the
dissimilarity between two structures can be quantied.
Conclusions

In this work, the pattern recognition technique is developed for
molecular structure recognition. This method provides a new
35884 | RSC Adv., 2021, 11, 35879–35886
approach to distinguish the similarity of two structures, and it is
potential to be further developed with other machine learning
techniques in understanding molecular structures, inter- or
intra-molecular interactions. The blob detection is used to
recognize molecules and the determinant of Hessian algorithm
is found performing well for the blob detection. For compli-
cated molecules, it is necessary to fragment molecules in
different layers. Thus, a pre-treatment of molecules and images
is proposed. Five different systems were examined for the reli-
ability of the proposed method. It is found that the newmethod
can accurately detect the atomic geometry difference as small as
0.3 Å. A post-treatment is proposed to map the blobs and atoms.
The new method is visually straightforward to compare struc-
tural differences and can provide a new perspective to under-
stand molecular structures. The dissimilarity can be quantied
by calculating the Euclidean norm of blob vectors. Overall, the
proposed method provides a new approach to recognize mole-
cules and it is potential to be further developed with other
machine learning techniques to study molecular interaction.
The relevant study is undergoing in this lab.
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