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ptical properties of two-
dimensional heterostructures based on Janus XSSe
(X ¼ Mo, W) and Mg(OH)2: a first principles
investigation

Junbin Lou,a Kai Ren, *b Zhaoming Huang,*c Wenyi Huo, b Zhengyang Zhuc

and Jin Yud

Two-dimensional (2D)materials have attracted numerous investigations after the discovery of graphene. 2D

van der Waals (vdW) heterostructures are a new generation of layered materials, which can provide more

desirable applications. In this study, the first principles calculation was implemented to study the

heterostructures based on Janus TMDs (MoSSe and WSSe) and Mg(OH)2 monolayers, which were

constructed by vdW interactions. Both MoSSe/Mg(OH)2 and WSSe/Mg(OH)2 vdW heterostructures have

thermal and dynamic stability. Besides, XSSe/Mg(OH)2 (X ¼ Mo, W) possesses a direct bandgap with

a type-I band alignment, which provides promising applications for light-emitting devices. The charge

density difference was investigated, and 0.003 (or 0.0042) jej were transferred from MoSSe (or WSSe)

layer to Mg(OH)2 layer, and the potential drops were calculated to be 11.59 and 11.44 eV across the

interface of the MoSSe/Mg(OH)2 and WSSe/Mg(OH)2 vdW heterostructures, respectively. Furthermore,

the MoSSe/Mg(OH)2 and WSSe/Mg(OH)2 vdW heterostructures have excellent optical absorption wave.

Our studies exhibit an effective method to construct new heterostructures based on Janus TMDs and

develop their applications for future light emitting devices.
1. Introduction

Nowadays, two-dimensional (2D) materials have attracted
numerous investigations since graphene was prepared by
a mechanical stripping method.1 Graphene was discovered to
have novel thermal and electronic properties resulting from the
linear band structure near the Dirac cone with zero bandgap.2–9

However, these characteristics of graphene also limit the
applications in some nano-devices, which ueged the studies on
2D semiconductors.10–17 Transitionmetal dichalcogenide (TMD)
materials are one of the common layered semiconductor
materials, which have excellent electronic,18 thermal,19 and
optical properties.20,21 For example, the n-doping of WSe2 was
performed by the chemical vapor deposition (CVD) method,
which can be used as an air-stable n-MOSFET possessing
a mobility of about 70 cm2 V�1 s�1.22 MoS2 has high interfacial
thermal conductance, about 2.0 � 108 W K�1 m�2 with Au by
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different interfacial angles, and the thermal ability of TMDs can
also be decided by layers.23 Similar to graphene nanoribbons,
the mobility of the MoS2 monolayer is 200 cm2 V�1 s�1 at room
temperature, indicating promising applications in tunnel FETs
and transistors.24 TMD materials are also reported to act as
substrates to prepare 2D germanene25 or nitrogen-doped gra-
phene, which are efficient catalysts for redox reactions.26 All
these excellent properties of 2D materials show the promising
applications for further nano-devices.27–31

In order to expand the application of these layered materials,
more interesting properties were developed by the prediction of
2D materials.32–36 For example, d-phosphorene was proposed to
be an auxetic material with a high negative Poisson's ratio (NPR)
of about �0.267 along relative direction.37 FeB2 monolayer
possesses a Dirac cone, which endows it with a Fermi velocity
larger than that of graphene.38 Using rst principles calcula-
tions, 2D TiC3 was reported by a remarkably novel storage
capacity of about 1278 mA h g�1 even with low barrier energy.39

The new generation of 2D materials are promising candidates
for the usages of photocatalytic, photovoltaic, and optical
devices.40 Besides, constructing a heterostructure by two
different layered materials is also a decent method to create
more applications for 2D materials.41–43 The novel electronic,44

interfacial45 and optical29 properties of heterostructures formed
by van der Waals (vdW) interactions have been exploited for
© 2021 The Author(s). Published by the Royal Society of Chemistry
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catalysis,46,47 electronics and optoelectronics.48 C2N/WS2 vdW
possesses a high carrier mobility of 2406.50 cm2 V�1 s�1 for
holes along some transportation directions.49 BCN/C2N vdW
can be used as a direct Z-Scheme photocatalyst for water split-
ting with the e–h recombination time of about 2 ps.50 Recently,
black/red phosphorus was investigated to possess type-I band
alignment and also could switch to a Z-scheme photocatalyst.51

A type-I heterostructure, MoTe2/WSe2, showed a novel photo-
luminescence performance from the MoTe2 layer (about 1.1
eV).52 The PbI2/WS2 heterostructure also possessed an intrinsic
type-I band structure with a decent narrower bandgap; inter-
estingly, the diffusion coefficients of PbI2 for electrons and
holes were similar to about 0.039 and 0.032 cm2 s�1, respec-
tively.53 All these studies demonstrate the promising applica-
tions for future light emitting devices54 and optoelectronic
applications.55–57 Recently, among tremendous 2D material
family, TMDs with the Janus structure have attracted wide
attention, which destroy the symmetry of the original crystal
structure inducing more novel properties10,58 aer the prepara-
tion of MoSSe.59,60 The Janus TMD materials have pronounced
carrier mobility ranging from 28 to 606 cm2 V�1 s�1.61,62 Besides,
a Janus chromium dichalcogenide was proved to have the
ability to separate the photogenerated electrons and holes, and
the excited carriers had a lifetime of about 2 ns calculated by the
time domain density functional theory.63 Interestingly, the
electronic property of the MoSSe monolayer can be tuned by
a tensile strain from direct to indirect bandgap, and the excel-
lent visible-light absorption performance promises its use as
a photocatalyst.64 The WSSe monolayer can be used as a prom-
ising HER catalyst because the basal plane can be easily acti-
vated and such Janus asymmetry can enhance the HER
activity.65 The dipole moment, vibrational frequency, and
Rashba parameters of WSSe were also induced by its asym-
metric Janus structure,66which have potential usage for efficient
photocatalysts. More recently, monolayered Mg(OH)2 sheets
were reported to be obtained by the hydrothermal crystal
growth technique with stable and classy chemical and vibra-
tional properties, which are potential candidates as exible
optoelectronics.67 2D Mg(OH)2 also showed unique structural
and electronic characteristics in the heterostructure.68,69 More-
over, some MoSSe- and WSSe-based heterostructures have been
reported, such as MoSSe/WSSe,70 Hf2NT2/MSSe (T¼ F, O, OH; M
¼Mo, W),71 MoSSe/WSe2,72 graphene/MoSSe,73 while reports on
MoSSe/Mg(OH)2 and WSSe/Mg(OH)2 heterostructures are still
rare. Therefore, considering such novel electronic and optical
properties of such synthesized MoSSe, WSSe and Mg(OH)2, it is
worth constructing the heterostructures by XSSe (X ¼ Mo, W)
and Mg(OH)2 to develop the charming characteristics and the
potential applications.

Therefore, in this study, we performed the rst principles
calculation, to investigate the heterostructures formed by Janus
TMDs (MoSSe and WSSe) and Mg(OH)2. Aer deciding the
structure of the heterostructures, the thermal and dynamic
stabilities were addressed. Then, the band alignment of those
layered materials was checked, and the interfacial characteris-
tics, charge density difference and potential drop were studied.
© 2021 The Author(s). Published by the Royal Society of Chemistry
The optical properties were also calculated from the optical
absorption spectrum.
2. Methods

Based on the density functional theory (DFT), in this simulation
work, the rst principles calculation was employed, which was
implemented by the Vienna ab initio simulation package
(VASP).74 We used the projector augmented wave potentials
(PAW) and generalized gradient approximation (GGA) to explain
the core electron and exchange correlation functional, respec-
tively,75–77 using the Perdew–Burke–Ernzerhof (PBE) functional.
To achieve more accurate results of the bandgap, the Heyd–
Scuseria–Ernzerhof (HSE06; screening parameter 0.2 Å�1, mix-
ing parameter 0.25) exchange–correlation functionals were
used.78 The cut-off energy was set as 550 eV, and the k-point
grids of the Monkhorste–Pack in the rst Brillouin zone was 15
� 15 � 1. Besides, the DFT-D3 method of Grimme was also
conducted for the corrections of the vdW and dipole.79 A
thickness of 25 Å was employed for the vacuum layer to prevent
the interactions of the layers. The energy of the calculated
system and Hellmanne–Feynman force were controlled with
a convergence within 1 � 10�5 eV and 0.01 eV$Å�1, respectively.
For the calculation of the phonon spectra, the density func-
tional perturbation theory (DFPT) within the PHONOPY code
was used.80,81

The binding energy (E) of the layered materials in this work
was calculated by the following equation:

E ¼ EH � EXSSe � EMg(OH)2
, (1)

where EH, EXSSe and EMg(OH)2 represent the total energy of the
XSSe/Mg(OH)2 heterostructure, XSSe and Mg(OH)2 monolayers,
respectively. The charge-density difference (Dr) of the XSSe/
Mg(OH)2 heterostructure was obtained from the following
equation:

Dr ¼ rH � rXSSe � rMg(OH)2
, (2)

where rH, rXSSe and rMg(OH)2 are used to explain the charge
density of the isolated XSSe/Mg(OH)2 heterostructure, XSSe and
Mg(OH)2 monolayers, respectively. The optical absorption of
the materials was obtained using the following formula:

aðuÞ ¼
ffiffiffi
2

p
u

c

n�
321ðuÞ þ 322ðuÞ

�1=2 � 31ðuÞ
o1=2

(3)

where u, a and c are utilized to express angular frequency,
absorption coefficient and the speed of light, respectively, and
31(u) and 32(u) are the dielectric constant for real and imaginary
parts.
3. Results and discussion

The structures of the monolayered MoSSe, WSSe and Mg(OH)2
were optimized rst, as shown in Fig. 1. The calculated lattice
parameters of MoSSe, WSSe and Mg(OH)2 were 3.228, 3.269 and
3.140 Å, respectively, showing the very small lattice mismatch
RSC Adv., 2021, 11, 29576–29584 | 29577
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Fig. 1 Schematic of the structures of pristine (a) MoSSe, (c) WSSe and (e) Mg(OH)2 monolayers; the blue, cyan, yellow, grey, orange, red and
white spheres represent Mo, Se, S, W, Mg, O and H atoms, respectively. The band structure of pristine (b) MoSSe, (d) WSSe and (f) Mg(OH)2
monolayers obtained by the HSE06 method; the Fermi level is set as 0 shown by dash line.

Fig. 2 Top and side views of the XSSe/Mg(OH)2 heterostructures (X ¼Mo, W) constructed as different stacking styles: (a) S-1, (b) S-2, (c) S-3, (d)
S-4, (e) S-5, (f) S-6, (g) S-7, (h) S-8, (i) S-9, (j) S-10, (k) S-11 and (l) S-12.

Table 1 The binding energy (E, meV Å�2), the distance of the interface (h, Å), and bond length (L, Å) of the XSSe/Mg(OH)2 heterostructures
constructed by different stacking styles

MoSSe/Mg(OH)2 WSSe/Mg(OH)2

E h LMo–S LMo–Se LMg–O E h LW–S LW–Se LMg–O

S-1 �76.610 2.54 2.41 2.53 2.12 �78.157 2.55 2.42 2.53 2.13
S-2 �79.617 2.21 2.41 2.53 2.12 �81.506 2.19 2.42 2.54 2.12
S-3 �79.719 2.22 2.41 2.53 2.12 �81.640 2.19 2.42 2.53 2.13
S-4 �79.628 2.22 2.41 2.53 2.13 �81.494 2.19 2.42 2.53 2.12
S-5 �76.588 2.55 2.41 2.53 2.12 �78.124 2.56 2.42 2.53 2.13
S-6 �79.752 2.20 2.41 2.53 2.12 �81.652 2.19 2.42 2.54 2.12
S-7 �75.259 2.47 2.41 2.53 2.12 �57.472 2.15 2.63 2.62 2.07
S-8 �77.134 2.25 2.41 2.53 2.12 �79.157 2.17 2.42 2.54 2.13
S-9 �77.635 2.21 2.41 2.53 2.13 �79.517 2.20 2.42 2.54 2.13
S-10 �77.500 2.18 2.41 2.53 2.13 �79.393 2.17 2.42 2.54 2.13
S-11 �75.248 2.49 2.41 2.53 2.13 �76.910 2.48 2.42 2.54 2.13
S-12 �77.410 2.21 2.41 2.53 2.12 �79.281 2.24 2.42 2.54 2.13

29578 | RSC Adv., 2021, 11, 29576–29584 © 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Projected band structures of the (a) MoSSe/Mg(OH)2 and (c)
WSSe/Mg(OH)2 vdW heterostructures; the red and grey marks repre-
sent the contributions of the XSSe and Mg(OH)2 layers, the Fermi level
is set as 0 shown by dash line. The partial charge densities of the (b)
MoSSe/Mg(OH)2 and (d) WSSe/Mg(OH)2 vdW heterostructures.
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(about 2.76% and 4.02%) for the MoSSe/Mg(OH)2 and WSSe/
Mg(OH)2 heterostructures. Besides, the bond length of Mo–S,
Mo–Se, W–S, W–Se in the optimized monolayered MoSSe and
WSSe were obtained as 2.414, 2.529, 2.428 and 2.542 Å,
respectively. Furthermore, the band structures of those layered
materials are also demonstrated in Fig. 1. It can be found that
MoSSe, WSSe and Mg(OH)2 had direct bandgaps of 2.100, 2.077
and 4.690 eV, respectively, which were in good agreement with
other reports.69,82

When the heterostructure is formed by XSSe and Mg(OH)2,
12 representative stacking structures should be taken into
consideration. Fig. 2 shows these 12 different stacking cong-
urations of XSSe/Mg(OH)2. The most stable stacking style of the
XSSe/Mg(OH)2 heterostructure was decided using the binding
energy (E), and the E of the XSSe/Mg(OH)2 heterostructure is
explained in Table 1, which shows that S-6 is the most stable
conguration with the E values of �79.752 and �81.652 meV
Å�2, respectively. The calculated binding energy of XSSe/
Mg(OH)2 demonstrated the vdW forces between the interface of
the MoSSe (or WSSe) and Mg(OH)2 monolayers.83,84 The ob-
tained bond length of Mo–S, Mo–Se, W–S and W–Se of MoSSe
and WSSe in their heterostructures, displayed in Table 1, sug-
gested a slight change compared to the pristine MoSSe and
WSSe monolayers, which can further prove the weak vdW forces
in the XSSe/Mg(OH)2 heterostructure. Besides, the distance of
the interface of the MoSSe/Mg(OH)2 and WSSe/Mg(OH)2 vdW
heterostructures were obtained to be 2.20 and 2.19 Å, respec-
tively, which were also smaller than that of graphite (3.336 Å).83

Furthermore, the following investigations of the XSSe/Mg(OH)2
vdW heterostructures are all based on the S-6 stacking
conguration.

Then, we also used the AIMD method to further investigate
the thermal stability of the XSSe/Mg(OH)2 vdW heterostructures
Fig. 3 The snapshot of the (a) MoSSe/Mg(OH)2 and (d) WSSe/Mg(OH)2
fluctuations of the temperature and total energy of the (b) MoSSe/Mg(
phonon dispersions of (c) the MoSSe/Mg(OH)2 and (f) WSSe/Mg(OH)2 vd

© 2021 The Author(s). Published by the Royal Society of Chemistry
with a Nosé–Hoover heat bath scheme.85 To consider the
constraints of lattice translational, we constructed a 6 � 6 � 1
supercell for the MoSSe/Mg(OH)2 and WSSe/Mg(OH)2 vdW
vdW heterostructures under the temperature of 300 K after 5 ps; the
OH)2 and (e) WSSe/Mg(OH)2 system during the AIMD simulation; the
W heterostructures.

RSC Adv., 2021, 11, 29576–29584 | 29579
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Fig. 5 The band alignment schematic for the migration of free elec-
trons and holes at the interface of the XSSe/Mg(OH)2 vdW
heterostructure.
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heterostructures in the AIMD simulation, which contained 288
atoms totally. The ambient temperature of the simulation was
set as 300 K, and the structures of the MoSSe/Mg(OH)2 and
WSSe/Mg(OH)2 vdW heterostructures aer relaxation for 5 ps
are shown in Fig. 3(a) and (d), respectively. It can be found that
the structures of the MoSSe/Mg(OH)2 and WSSe/Mg(OH)2 vdW
heterostructures still remained intact aer 5 ps under 300 K,
revealing the robust thermal stability of the heterostructures. In
addition, the change of temperature and total energy during the
AIMD calculation of both layered systems are shown in Fig. 3(b)
and (e), respectively. The temperature and total energy
Fig. 6 The isosurfaces of charge density difference of the (a) MoSSe/Mg
the losing of electrons are demonstrated by cyan and violet marks, respe
calculated potential drop across interface of the (b) MoSSe/Mg(OH)2 and

29580 | RSC Adv., 2021, 11, 29576–29584
exhibited a convergence with the simulation step, guaranteeing
the reliability of the results. The phonon dispersions were
calculated (Fig. 3(c) and (d)) to further evaluate the stability of
the MoSSe/Mg(OH)2 and WSSe/Mg(OH)2 vdW heterostructures.
It is worth noting that no imaginary frequency existed in their
phonon spectra, suggesting a dynamic stability.

The projected band structure of the XSSe/Mg(OH)2 vdW
heterostructures shown in Fig. 4 obtained by the HSE06
method. Both MoSSe/Mg(OH)2 and WSSe/Mg(OH)2 vdW heter-
ostructures possess direct bandgaps of 1.996 and 2.233 eV,
respectively. The grey and red marks represent the donation of
the band from MoSSe (or WSSe) and Mg(OH)2 layers, respec-
tively; thus, the CBM and VBM of the XSSe/Mg(OH)2 vdW het-
erostructures were contributed by the MoSSe (or WSSe) layer,
showing a type-I band structure for the heterostructures. The
calculated partial density of states of the XSSe/Mg(OH)2 vdW
heterostructures is also shown in Fig. 4(b) and (d), which
further explains the type-I band alignment that the CBM and
VBM of the MoSSe/Mg(OH)2 and WSSe/Mg(OH)2 vdW hetero-
structures resulted from Mo and W atoms, respectively.

In the XSSe/Mg(OH)2 vdW heterostructure, the CBM and
VBM were both xed in the layered materials with a narrower
bandgap, MoSSe (or WSSe), as shown in Fig. 5. When the elec-
trons in the wide-gap layer, Mg(OH)2, were excited to the CBM,
the holes were also induced at the VBM. By the assistance of the
conduction band offset (CBO) and valence band offset (VBO),
the excited electrons and holes of the Mg(OH)2 layer both
(OH)2 and (c) WSSe/Mg(OH)2 vdW heterostructures, the obtaining and
ctively; the isosurface level of charge difference is set as 0.015 jej; the
(d) WSSe/Mg(OH)2 vdW heterostructures.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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migrated to the CBM and VBM of the XSSe layer, respectively, as
shown in Fig. 5(a). The CBO and VBO of the MoSSe/Mg(OH)2 (or
MoSSe/Mg(OH)2) vdW heterostructure were obtained as
2.937 eV (or 2.260) eV and 0.199 eV (or 0.597 eV), respectively.
Besides, the radiative recombination of the electrons and holes
was promoted by the quantum connement in the XSSe layer,
suggesting the potential candidate as light-emitting device.86

Furthermore, the electron–hole pairs excited in the narrow-gap
XSSe layer were prevented to transfer to the Mg(OH)2 layer
because of the lower energies.54

Fig. 6(a) and (c) demonstrate the charge density difference
between the interface of the XSSe and Mg(OH)2 layers, which
shows that the MoSSe (or WSSe) layer acts as an electron-donor,
while Mg(OH)2 layer receives the electrons. Furthermore, the
Bader-charge analysis method87 was employed to quantitatively
calculate the electron transfer, and the Mg(OH)2 layer obtained
0.003 (or 0.0042) jej from the MoSSe (or WSSe) layer in their
heterostructure. Such small electron transfers also explain the
weak vdW forces between the interface of the XSSe/Mg(OH)2
vdW heterostructures. Besides, aer the Janus TMDs contact
with the Mg(OH)2 layer and reach an equilibrium, the potential
differences between the interface of the heterostructure are
addressed, as shown in Fig. 6(b) and (d). There is a potential
drop between the interface calculated to be 11.59 and 11.44 eV
for MoSSe/Mg(OH)2 and WSSe/Mg(OH)2 vdW heterostructures,
respectively, which can also act as an effective driving force to
promote the carrier in Fig. 5(a).

The light absorption capacity of the XSSe, Mg(OH)2 and the
XSSe/Mg(OH)2 vdW heterostructure were investigated, as shown
in Fig. 7. It is obvious that near the wavelength range of visible
light (about 380–700 nm) the MoSSe, WSSe and XSSe/Mg(OH)2
vdW heterostructures exhibited an excellent optical absorption
spectrum. In detail, the MoSSe/Mg(OH)2 and WSSe/Mg(OH)2
vdW heterostructures possessed pronounced absorption peaks
of 5.496 � 105 cm�1 and 4.295 � 105 cm�1 at 352 nm and
367 nm, respectively. The XSSe/Mg(OH)2 vdW heterostructures
displayed the ability to absorb sunlight absorption over a wide
Fig. 7 The optical absorption spectrum of the monolayered XSSe,
Mg(OH)2 and XSSe/Mg(OH)2 vdW heterostructures calculated by the
HSE06 functional.

© 2021 The Author(s). Published by the Royal Society of Chemistry
range in the visible and NIR regions, which considerably over-
lap the wavelength range of the solar spectrum. Besides, high
absorption peaks appeared in the visible region approximately
at the wavelengths of 562 and 495 nm for the MoSSe/Mg(OH)2
and WSSe/Mg(OH)2 vdW heterostructures by 1.432 � 105 cm�1

and 1.656 � 105 cm�1, respectively, which were higher than
those of other TMD-based heterostructures, such as WS2/BSe
(14.09 � 104 cm�1),88 g-GaN/BSe (1.470 � 105 cm�1)89 and g-
GaN/BlueP (0.48 � 105 cm�1).45 The novel optical absorption
characteristic of the XSSe/Mg(OH)2 vdW heterostructures also
revealed their potential uses as optoelectronic devices.
4. Conclusions

DFT calculations were explored systematically to study 2D het-
erostructures based on Janus TMDs and Mg(OH)2. The hetero-
structures of MoSSe/Mg(OH)2 and WSSe/Mg(OH)2 were formed
by vdW forces with thermal and dynamic stability. Importantly,
both XSSe/Mg(OH)2 vdW heterostructures possessed a semi-
conductor performance with direct bandgap values of 1.996 and
2.233 eV, respectively. The band alignment of the XSSe/Mg(OH)2
vdW heterostructure showed a type-I band structure for both
heterostructures, which indicates that they are desirable
candidates for light-emitting devices. Besides, the charge
density difference analysis demonstrated that the MoSSe and
WSSe layers donated 0.003 and 0.0042 jej to the Mg(OH)2 layer
in their heterostructures, respectively. Furthermore, both het-
erostructure had fantastic visible light absorptivity. The work
provides a theoretical guidance to design new heterostructures
based on Janus TMD materials for future nano-devices.
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