# **RSC Advances**



## **PAPER**

View Article Online
View Journal | View Issue



Cite this: RSC Adv., 2021, 11, 26336

# Tuning the microstructural and magnetic properties of CoFe<sub>2</sub>O<sub>4</sub>/SiO<sub>2</sub> nanocomposites by Cu<sup>2+</sup> doping

Jie Hua, ab Zeyuan Cheng, b Zihang Chen, b He Dong, ab Peiding Li b and Jin Wang b \*ab

Co–Cu ferrite is a promising functional material in many practical applications, and its physical properties can be tailored by changing its composition. In this work,  $Co_{1-x}Cu_xFe_2O_4$  ( $0 \le x \le 0.3$ ) nanoparticles (NPs) embedded in a SiO<sub>2</sub> matrix were prepared by a sol–gel method. The effect of a small  $Cu^{2+}$  doping content on their microstructure and magnetic properties was studied using XRD, TEM, Mössbauer spectroscopy, and VSM. It was found that single cubic  $Co_{1-x}Cu_xFe_2O_4$  ferrite was formed in amorphous SiO<sub>2</sub> matrix. The average crystallite size of  $Co_{1-x}Cu_xFe_2O_4$  increased from 18 to 36 nm as  $Cu^{2+}$  doping content x increased from 0 to 0.3. Mössbauer spectroscopy indicated that the occupancy of  $Cu^{2+}$  ions at the octahedral B sites led to a slight deformation of octahedral symmetry, and  $Cu^{2+}$ doping resulted in cation migration between octahedral A and tetrahedral B sites. With  $Cu^{2+}$  content increasing, the saturation magnetization ( $M_s$ ) first increased, then tended to decrease, while the coercivity ( $H_c$ ) decreased continuously, which was associated with the cation migration. The results suggest that the  $Cu^{2+}$  doping content in  $Co_{1-x}Cu_xFe_2O_4$  NPs plays an important role in its magnetic properties.

Received 20th June 2021 Accepted 26th July 2021

DOI: 10.1039/d1ra04763a

rsc.li/rsc-advances

## 1. Introduction

Cobalt ferrite (CoFe<sub>2</sub>O<sub>4</sub>) with moderate saturation magnetization, high coercivity and Curie temperature, as well as excellent chemical stability has gained increasing attention in technological applications, such as magnetic recording, catalysis, biotargeted drug delivery, magnetic resonance imaging, and spintronics.1-7 In general, CoFe2O4 possesses a cubic inverse spinel structure with the  $Fd\bar{3}m$  space group,in which  $Co^{2+}$  ions predominantly occupy octahedral B sites and Fe3+ ions are almost equally distributed between tetrahedral A and octahedral B sites. However, cation distribution between the A and B sites varies with the chemical composition and synthesis procedure. Designing the composition through the incorporation of divalent metal ions (such as Zn<sup>2+</sup>, Mn<sup>2+</sup>, Cu<sup>2+</sup>, and Ni<sup>2+</sup>) serves as a flexible strategy to tune the cation distribution of CoFe<sub>2</sub>O<sub>4</sub> nanoparticles (NPs), which may be beneficial to further modify their physical properties or introduce novel functionalities.8-10

Recently Co–Cu ferrite, prepared through doping Cu<sup>2+</sup> in CoFe<sub>2</sub>O<sub>4</sub> NPs has been widely exploited for a variety of technological applications. Venkateshwarlu *et al.*<sup>8</sup> reported that the increasing Seebeck coefficient was observed in CoFe<sub>2</sub>O<sub>4</sub> after doping with Cu<sup>2+</sup> ions. The enhanced effect of Cu<sup>2+</sup> doping on

photocatalytic degradation efficiency of CoFe<sub>2</sub>O<sub>4</sub> was reported by Sundararajan et al.4 They also found that with Cu<sup>2+</sup> content increasing, the saturation magnetization  $(M_s)$  decreased monotonously while the coercivity  $(H_c)$  first increased then decreased. Sanpo et al. 11 demonstrated the substitution of Cu<sup>2+</sup> ions into CoFe2O4 could improve the antibacterial property on against multidrug-resistant E. coli and Staphyloc occus aureus. These experimental results suggest that Cu<sup>2+</sup> doping content in CoFe<sub>2</sub>O<sub>4</sub> significantly influences their physical property. However, it is well known that copper ferrite (CuFe<sub>2</sub>O<sub>4</sub>) can exist in face-centered cubic and face-centered tetragonal phases due to obvious Jahn-Teller distortion of Cu2+ ions.13 Thus, when larger content of Cu2+ ions was doped in CoFe2O4 lattice, the crystal structure can transfer from cubic to tetragonal phase. 12-14 Balavijayalakshmi et al. have reported that as the Cu<sup>2+</sup> doping content x was >0.6, tetragonal CuFe<sub>2</sub>O<sub>4</sub> can be observed in cubic Co<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> NPs prepared by co-precipitation method.<sup>12</sup> With small content of Cu<sup>2+</sup> ions doping in CoFe<sub>2</sub>O<sub>4</sub> NPs, the crystal microstructure and physical properties can be tailored and investigated without undesired phase transformation. To date, a limited extent of work has been found in the literature on the microstructural investigation of Co-Cu ferrites with small Cu<sup>2+</sup> doping content.

Magnetic CoFe<sub>2</sub>O<sub>4</sub> NPs prepared by chemical method are prone to agglomerate, which makes it quite difficult to exploit their unique physical properties for practical applications. Two strategies have been developed to stabilize and reduce nanoparticle agglomeration, obtaining single phase ferrite. One is

<sup>&</sup>lt;sup>a</sup>Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, China. E-mail: jwang@jlnu.edu.cn <sup>b</sup>College of Information Technology, Jilin Normal University, Siping 136000, China

coating CoFe<sub>2</sub>O<sub>4</sub> NPs with a uniform and stable ultrathin layer to form core-shell NPs. Since the thickness of the coating layer (such as ultrathin phosphate layer<sup>15</sup> and silicon carbide layer<sup>16</sup>) is only of a few nanometers, the magnetic properties of the CoFe<sub>2</sub>O<sub>4</sub> core are not compromised after capping. The other is dispersing CoFe<sub>2</sub>O<sub>4</sub> NPs in non-magnetic matrix to form nanocomposites, for example, dispersing CoFe<sub>2</sub>O<sub>4</sub> in amorphous SiO<sub>2</sub>, i.e. CoFe<sub>2</sub>O<sub>4</sub>/SiO<sub>2</sub> nanocomposites. <sup>17-20</sup> For SiO<sub>2</sub>based nanocomposites, SiO2 network can not only provide spatial nucleation sites for CoFe<sub>2</sub>O<sub>4</sub> NPs, promote the formation of single-phase spinel, but also minimize the surface roughness and spin disorder, thereby enhance the magnetic properties of nanocomposites.21,22

In this work, we prepared Co<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>/SiO<sub>2</sub> nanocomposites ( $0 \le x \le 0.3$ ) using sol-gel method, in which SiO<sub>2</sub> was used to obtain monophasic Co-Cu ferrites. With small amount Cu<sup>2+</sup> ion doping, the crystal microstructure and physical properties were tailored without phase transformation. The goal of the present work is to study the effect of the small amount of Cu<sup>2+</sup> doping on the microstructure, the hyperfine interaction, and magnetic properties of Co<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> by using X-ray diffractometer (XRD), Mössbauer spectroscopy, and vibrating sample magnetometer (VSM) at room temperature. The result shows that the crystallite size of Co<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> increases with Cu<sup>2+</sup> content. The Cu<sup>2+</sup> doping in CoFe<sub>2</sub>O<sub>4</sub> induces a slight deformation of octahedral symmetry and change in cation distribution, which in turn modifies the values of  $M_s$  and  $H_c$ .

#### 2. **Experiments**

#### Synthesis of Co<sub>1-r</sub>Cu<sub>r</sub>Fe<sub>2</sub>O<sub>4</sub>/SiO<sub>2</sub> nanocomposites 2.1

synthesis diagram for Co<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>/SiO<sub>2</sub> composites (70% wt. ferrite/30% wt. SiO<sub>2</sub>) is presented in Fig. 1. Using cobalt nitrate hexahydrate (Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O), ferric nitrate nonahydrate (Fe(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O), copper(II) nitrate trihydrate (Cu(NO<sub>3</sub>)<sub>2</sub>·3H<sub>2</sub>O) as iron, cobalt, and copper sources, and tetraethyl orthosilicate (TEOS) as precursor of SiO2, a series of  $Co_{1-x}Cu_xFe_2O_4/SiO_2$  nanocomposites (x = 0, 0.1, 0.2, and 0.3) were synthesized by sol-gel method. Firstly, the metal nitrates were weighted by the designed molar ratio and thoroughly dissolved in ethanol with magnetic stirring. Then, 1.5 mL ethylene glycol and 9.6 mL TEOS ethanol solution (volume ratio of 1:1) was injected into the solution, followed by adding 1 mL HNO<sub>3</sub> and continuously stirring for 5 h. Secondly, the solution

was evaporated on a 60 °C water bath to form black brown sol. After that, the sol was dried at 100 °C for at least 24 h to form xerogel. Finally, the obtained gel was calcined at 1000 °C for 2 h in air and cooled to room temperature. The final collected product was taken for further investigation.

### 2.2 Characterization

The crystal structure, morphology, and magnetic properties of the as-prepared Co<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>/SiO<sub>2</sub> were investigated by Rigaku D/max-2500 X-ray diffractometer (XRD,  $\lambda = 1.5406 \text{ Å}$ ), JEM-2100HR transmission electron microscope (TEM), and LakeShore7407 vibrating sample magnetometer (VSM, B = 1.5T), respectively. The crystallite size of Co<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> was estimated by using Scherrer's formula. The room temperature Mössbauer spectra were collected on a FAST Comtec Mössbauer system in transmission mode, using a 57Co(Pd) source and a conventional constant acceleration mode. The Mössbauer spectra of the samples were fitted using Lorentzian lines via the least square method.

#### 3. Results and discussion

#### Structure and morphology analysis

XRD patterns of the as-prepared Co<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>/SiO<sub>2</sub> samples are shown in Fig. 2. The diffraction peaks from (111), (220), (311), (222), (321), (400), (422) and (511) are consistent with the standard spectrum of cubic spinel CoFe<sub>2</sub>O<sub>4</sub> (JCPDS no. 22-1086), which demonstrates the formation of Co-Cu ferrite with no detectable impurity phases. No reflection from SiO2 can be

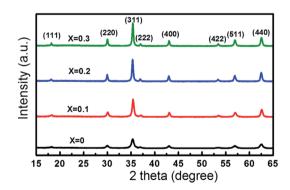



Fig. 2 XRD patterns of the as-synthesized Co<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>/SiO<sub>2</sub> with different Cu2+ content.

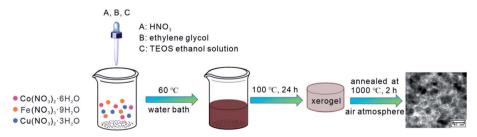



Fig. 1 Schematic diagram of the synthesis method for Co<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>/SiO<sub>2</sub> nanocomposites.

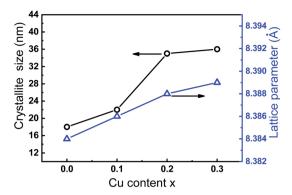



Fig. 3 Plot of lattice parameter and crystallite size of  $Co_{1-x}Cu_xFe_2O_4/SiO_2$  as a function of  $Cu^{2+}$  content.

detected in XRD patterns due to the low content of amorphous SiO<sub>2</sub>. With increasing Cu<sup>2+</sup> content, the diffraction peak (311) shifts from 35.455° to 35.374° with a small  $\Delta\theta$  (0.081°) accompanied by increasing peak intensity and the narrower peak width.

Fig. 3 presents the variation of lattice parameter and crystallite size of  $Co_{1-x}Cu_xFe_2O_4$  with  $Cu^{2+}$  doping content. The lattice parameter was determined from the X-ray data with MDI Jade 6.5 software using the high-purity silicon powders as

a standard sample. It can be seen that the lattice parameter  $a_0$  of 8.383 Å for the sample with x=0 is in agreement with the reported value of pure  $\text{CoFe}_2\text{O}_4$ .<sup>23</sup> As  $\text{Cu}^{2+}$  content increases from 0 to 0.3, the lattice parameter  $a_0$  slightly increases from 8.383 to 8.389 Å. The increase in lattice parameter can be attributed to the difference in ionic radius of  $\text{Co}^{2+}$  (0.74 Å) and  $\text{Cu}^{2+}$  (0.76 Å).<sup>4,24</sup> Furthermore, the average crystallite size, calculated with Scherrer equation is found to increase with increasing  $\text{Cu}^{2+}$  content (18, 26, 35 and 36 nm for  $\text{Co}_{1-x}\text{Cu}_x\text{Fe}_2\text{O}_4$  with x=0, 0.1, 0.2, and 0.3, respectively). This indicates that the  $\text{Cu}^{2+}$  doping in  $\text{CoFe}_2\text{O}_4$  NPs favors the grain growth rate during sol–gel preparation process. Similar phenomenon in crystallite size has been also observed by Ashour  $et\ al.$  and Dippong  $et\ al.^{25,26}$ 

TEM images of  $\text{Co}_{1-x}\text{Cu}_x\text{Fe}_2\text{O}_4/\text{SiO}_2$  samples with x=0 (Fig. 4a) and x=0.2 (Fig. 4b) are shown in Fig. 4. It can be seen that near-spherical Co–Cu ferrites are environed by amorphous  $\text{SiO}_2$  without obvious agglomerate. The average sizes are estimated to be  $19\pm 5$  nm (x=0) and  $39\pm 9$  nm (x=0.2), respectively, which are consistent with the results determined by XRD. Fig. 4c presents the selective area electron diffraction (SAED) pattern for the x=0.2 sample. The diffraction rings are indexed as lattice plane (111), (220), (311), (400), (511), and (440) for spinel  $\text{Co}_{0.8}\text{Cu}_{0.2}\text{Fe}_2\text{O}_4$ , which is in agreement with the XRD

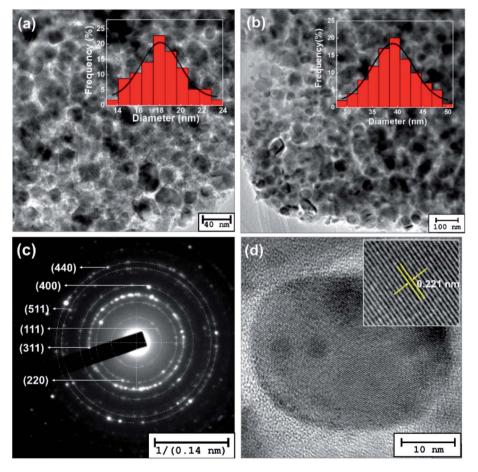



Fig. 4 TEM images of the as-synthesized  $Co_{1-x}C_uFe_2O_4/SiO_2$  with (a) x=0 and (b) x=0.2. (c) SAED pattern and (d) HRTEM image for x=0.2 sample. Insets in panel (a) and (b) show the average particle size distribution obtained by approximate 50 nanoparticles, respectively.

Paper RSC Advances

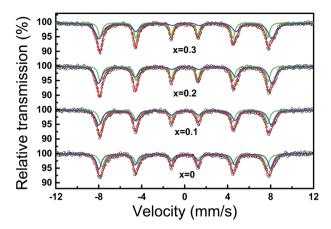



Fig. 5 Mössbauer spectra of  $Co_{1-x}Cu_xFe_2O_4/SiO_2$  samples. Symbols represent the experimental data and the continuous line corresponds to the fitting data.

result. The high resolution TEM (HRTEM) image of  $Co_{0.8}$ - $Cu_{0.2}Fe_2O_4$  in Fig. 4d confirms that the sample is of good crystalline quality, and the clear space fringe with an interplanar spacing of 0.221 nm agrees with the (400) planes of  $CoFe_2O_4NPs$ .

## 3.2 Mössbauer spectroscopy

Mössbauer technique serves as one of the most powerful tools for probing the atomic and electronic configuration of Fe atoms, thus, the hyperfine interaction of Co<sub>1-x</sub>C<sub>11</sub>Fe<sub>2</sub>O<sub>4</sub> was investigated through Mössbauer spectra. Fig. 5 shows the experimental Mössbauer spectra and fitting lines of Co<sub>1-x</sub>C<sub>u</sub>-Fe<sub>2</sub>O<sub>4</sub>/SiO<sub>2</sub> with different Cu<sup>2+</sup> doping contents, and Table 1 presents the correspondingly fitting parameters. These spectra are decomposed into two Zeeman sextets, demonstrating that Co<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> NPs in the obtained samples are ferromagnetically ordered. The values of isomer shifts (IS) are in the range of 0.26-0.40 mm s<sup>-1</sup>, suggesting that Fe ions in the present Co<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> NPs are in high spin Fe<sup>3+</sup> charge state. Among two sextets, one with smaller IS and hyperfine field  $(H_{in})$  arises from the tetrahedral Fe3+ ions, and the other with larger IS and  $H_{\rm in}$  can be ascribed to the octahedral Fe<sup>3+</sup> ions. It is well known that the value of IS is dependent on s-electron density of Fe<sup>3+</sup> nucleus. Owing to the larger bond length of Fe<sup>3+</sup>-O<sup>2-</sup> at

octahedral B sites, the orbital overlapping of  $\mathrm{Fe^{3^+}}$  and  $\mathrm{O^{2^-}}$  is smaller, hence the IS at octahedral B sites is larger than that of tetrahedral A sites. With increasing  $\mathrm{Cu^{2^+}}$  doping content, the  $\mathrm{IS_A}$  value decreases while the  $\mathrm{IS_B}$  increases, suggesting that the  $\mathrm{Cu^{2^+}}$  doping behavior can affect the s-electron distribution of  $\mathrm{Fe^{3^+}}$  ions at tetrahedral A and octahedral B sites due to Jahn–Teller effect of  $\mathrm{Cu^{2^+}}$  ions.  $^{27}$ 

Among Mössbauer parameters, quadrupole splitting (QS) is related to the crystal symmetry. As seen from Table 1, the value of QS<sub>B</sub> gradually increases with Cu<sup>2+</sup> content, while the values of QS<sub>A</sub> do not exhibit a specific tendency. This phenomenon reveals that the local symmetry of octahedral B site Fe<sup>3+</sup> ions is modified during Cu<sup>2+</sup> doping process, suggesting that the Cu<sup>2+</sup> ions preferentially occupied octahedral B sites in the asprepared Co–Cu ferrites. Owing to Jahn–Teller effect of Cu<sup>2+</sup> ions at octahedral B sites, they form dsp<sup>2</sup> orbital hybridization and produce strain in Co<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> crystals, inducing the octahedral symmetry to deform slightly without disrupting the lattice symmetry.<sup>28</sup>

As a consequence, hypothesizing that all  $\text{Cu}^{2+}$  ions locate at octahedral B sites, it is possible to give an estimate of cation distribution for  $\text{Co}_{1-x}\text{Cu}_x\text{Fe}_2\text{O}_4$  NPs as  $(\text{Cu}_\sigma\text{Fe}_{1-\sigma})_A[\text{Co}_{1-x-\sigma}\text{Cu}_x\text{Fe}_{1+\sigma}]_B$ , where x is  $\text{Cu}^{2+}$  content and the value of  $\sigma$  can be determined by:

$$\frac{S_{\rm A}}{S_{\rm B}} = \frac{{\rm Fe_A}^{3+}}{{\rm Fe_B}^{3+}} = \frac{(1-\sigma)f_{\rm A}}{(1+\sigma)f_{\rm B}} \tag{1}$$

Here, assuming the recoilless fraction  $f_A$  and  $f_B$  to be same, the relative area ratio  $S_A/S_B$  thus directly corresponds to the ratio of the number of Fe3+ ions at tetrahedral A and octahedral B sites.<sup>27</sup> Based on the Mössbauer fitting data, the ratio  $S_A/S_B$  for the x = 0 sample is 0.876, thus the cation distribution can be written as  $(Co_{0.066}Fe_{0.934})_A [Co_{0.934}Fe_{1.066}]_B$ , that is to say, 93.4% of Co2+ ions resides at octahedral B sites. Sawatzky et al.29 reported that the ratio of octahedral Co2+ ions in CoFe2O4 depended on the heat treatment. They estimated that 96% and 79% of Co<sup>2+</sup> ions presented in the slowly cooled and quenched CoFe<sub>2</sub>O<sub>4</sub> NPs, respectively. When Cu<sup>2+</sup> ions is doped in  $CoFe_2O_4$ , the ratio of  $S_A/S_B$  for x = 0.1 sample becomes 0.792. The cation distribution is represented as (Co<sub>0.116</sub>Fe<sub>0.884</sub>)<sub>A</sub>[-Co<sub>0.784</sub>Cu<sub>0.1</sub>Fe<sub>1.116</sub>]<sub>B</sub>, demonstrating that Cu<sup>2+</sup> doping results in the relocation of small amount of Co2+ from B to A sites concomitantly with some Fe3+ ions migrated from A to B sites, although Cu2+ ions locate at the octahedral B sites. Further

Table 1 Mössbauer parameters of Co<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>/SiO<sub>2</sub> samples<sup>a</sup>

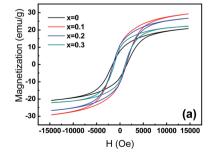
| Sample  | Component  | IS $(mm s^{-1})$                    | QS (mm s $^{-1}$ )                  | $H_{\rm in}$ (T) | $FWHM \ (mm \ s^{-1})$ | S (%) | $S_{ m A}/S_{ m B}$ |
|---------|------------|-------------------------------------|-------------------------------------|------------------|------------------------|-------|---------------------|
| x = 0   | Sextet (A) | $0.300 \pm 0.004$                   | $0.027 \pm 0.008$                   | 47.6 ± 1.1       | $0.296 \pm 0.012$      | 46.7  | 0.876               |
|         | Sextet (B) | $0.324 \pm 0.003$                   | $0.007 \pm 0.002$                   | $49.6 \pm 0.9$   | $0.279 \pm 0.011$      | 53.3  | *****               |
| x = 0.1 | Sextet (A) | $0.292 \pm 0.003$                   | $0.022\pm0.004$                     | $48.0\pm0.8$     | $0.248\pm0.010$        | 44.2  | 0.792               |
|         | Sextet (B) | $0.346 \pm 0.007$                   | $0.014 \pm 0.003$                   | $49.8\pm0.8$     | $0.326 \pm 0.021$      | 55.8  |                     |
| x = 0.2 | Sextet (A) | $0.280\pm0.005$                     | $\textbf{0.037} \pm \textbf{0.001}$ | $48.4\pm0.7$     | $0.222 \pm 0.007$      | 43.8  | 0.779               |
|         | Sextet (B) | $0.369 \pm 0.010$                   | $0.023 \pm 0.003$                   | $50.0\pm0.8$     | $0.383 \pm 0.011$      | 56.2  |                     |
| x = 0.3 | Sextet (A) | $\textbf{0.269} \pm \textbf{0.006}$ | $0.039\pm0.002$                     | $48.4\pm0.6$     | $0.217 \pm 0.013$      | 43.7  | 0.776               |
|         | Sextet (B) | $0.399 \pm 0.011$                   | $0.039 \pm 0.003$                   | $49.8\pm0.9$     | $0.434\pm0.011$        | 56.3  |                     |

 $<sup>^</sup>a$  IS = isomer shift; QS = quadruple split,  $H_{in}$  = hyperfine field, S = relative absorption area, FWHM = the half width at half maximum.

increasing  $\mathrm{Cu}^{2^+}$  content to 0.2 and 0.3, it is found that the concentration of  $\mathrm{Fe}^{3^+}$  ion in A and B sites almost unchanged  $(S_A/S_B=0.779)$  for x=0.2 and 0.776 for x=0.3 sample), revealing that  $\mathrm{Cu}^{2^+}$  ions only replace octahedral  $\mathrm{Co}^{2^+}$  ions, and make no effect on  $\mathrm{Fe}^{3^+}$  distribution. The cation distribution can be written as  $(\mathrm{Co}_{0.124}\mathrm{Fe}_{0.876})_{\mathrm{A}}$   $[\mathrm{Co}_{0.676}\mathrm{Cu}_{0.2}\mathrm{Fe}_{1.124}]_{\mathrm{B}}$  for the sample with x=0.2, and  $(\mathrm{Co}_{0.126}\mathrm{Fe}_{0.874})_{\mathrm{A}}$   $[\mathrm{Co}_{0.574}\mathrm{Cu}_{0.3}\mathrm{Fe}_{1.126}]_{\mathrm{B}}$  for the sample with x=0.3.

From the 7th column of Table 1, we find that the half width at half maximum (FWHM) of A and B lines varies with Cu2+ content. In cubic spinel lattice, each A-site Fe3+ ion is surrounded by 12 nearest B-site ions neighbors and each B-site Fe<sup>3+</sup> ion is surrounded by 6 nearest A-site ions neighbors, thus B-site Fe<sup>3+</sup> is more sensitive to the change in the surrounding cation distribution than the A-site Fe<sup>3+</sup> ions. According to the cation distribution, for the sample with x = 0, each Fe<sup>3+</sup> ion in A and B sites is surrounded by approximately 6 nearest Fe<sup>3+</sup> ions, therefore, the line width is comparable but relatively narrow. When Cu<sup>2+</sup> ions are doped in CoFe<sub>2</sub>O<sub>4</sub> lattice, some Fe<sup>3+</sup> ions migrate from A to B sites, hence the A site Fe<sup>3+</sup> ions get more nearest Fe<sub>B</sub><sup>3+</sup> neighbors. This leads to a reduction in the total super-exchange strength of B-site Fe<sup>3+</sup> ions while an increase in A-site Fe<sup>3+</sup> ions.<sup>30</sup> Consequently, broadened B line and narrowed A line are observed in Co-Cu ferrite. In addition, Table 1 also presents the same increasing trend of the hyperfine field  $(H_{in})$ for tetrahedral A and octahedral B sites with increasing Cu<sup>2+</sup> content. The weighted average values of  $H_{\rm in}$  are 48.7, 49.0, 49.3, and 49.2 T for the  $Co_{1-x}Cu_xFe_2O_4$  with x = 0, 0.1, 0.2, and 0.3,respectively. The increase in  $H_{in}$  can be attributed to the increasing crystallite size, since the fluctuation of magnetization vectors close to easy direction of magnetization can give rise to a size dependent magnetic hyperfine field.31

## 3.3 Magnetic properties analysis


Fig. 6a shows the magnetic hysteresis loops of  $\text{Co}_{1-x}\text{Cu}_x\text{Fe}_2\text{O}_4/\text{SiO}_2$  samples measured at room temperature. Clearly, these loops show the typical characteristics of ferromagnetic materials. At the applied field intensity (15 kOe), saturation state cannot be reached yet, thus the saturation magnetization  $M_s$  was estimated by fitting the high-field part of the magnetization curves using the relation  $M = M_s \times \left(1 - \frac{a}{H} - \frac{b}{H^2}\right)$ , here H is the field strength, a and b are constant determined by the fitting procedure. The fitted  $M_s$  and the measured coercivity  $H_c$  are

plotted as functions of  $Cu^{2+}$  content x in Fig. 6b. The  $M_s$  for the pure CoFe<sub>2</sub>O<sub>4</sub> is 24.7 emu g<sup>-1</sup>, which is close to the reported value for 10-15 nm CoFe<sub>2</sub>O<sub>4</sub>/SiO<sub>2</sub> (30-50% SiO<sub>2</sub>) prepared solgel method.<sup>19</sup> The low  $M_s$  for pure CoFe<sub>2</sub>O<sub>4</sub> sample can be attributed to the existence of amorphous SiO<sub>2</sub> matrix, which modifies the magnetic behavior through minimizing the particle interactions between ferrite particles. 33,34 The value of  $M_s$  first increases to 34.3 emu g<sup>-1</sup> when Cu<sup>2+</sup> content is 0.1, and then reduces to 27.1 emu g<sup>-1</sup> as Cu<sup>2+</sup> content further increases to 0.3. Two factors are possibly responsible for the higher  $M_s$ values for Cu-doping CoFe<sub>2</sub>O<sub>4</sub> comparing with pure CoFe<sub>2</sub>O<sub>4</sub>. For x = 0.1 sample, the Mössbauer analysis indicates that doping  $Cu^{2+}$  ions with magnetic moment 1  $\mu_B$  results in the migration of Fe<sup>3+</sup> ions from tetrahedral A to octahedral B sites. This behavior leads to the magnetization of the octahedral B sites and hence the  $M_s$  increases.<sup>35</sup> For the samples with x = 0.2and 0.3, more Cu2+ ions occupied B-sites decreases the Bsublattice magnetization, thereby the enhanced  $M_s$  can be attributed to the increasing crystallite sizes with Cu2+ content. Noted that the  $M_s$  of 34.3 emu  $g^{-1}$  for the x = 0.1 sample is about 38.9% larger than pure CoFe<sub>2</sub>O<sub>4</sub>.

Considering the Neel' two sub-lattice collinear model of ferrimagnetism, the magnetic moment  $\eta_{\rm B}^{\rm Neel}$  per unit formula in Bohr magneton can be estimated by  $\eta_{\rm B}^{\rm Neel}=M_{\rm B}(x)-M_{\rm A}(x).^{36}$ Assuming the magnetic moment of Fe<sup>3+</sup>, Co<sup>2+</sup> and Cu<sup>2+</sup> to be 5, 3 and 1  $\mu_{\rm B}$ , respectively, then using the obtained cation distribution from Mössbauer analysis, the magnetic moments  $\eta_{\rm R}^{\rm Neel}$  are calculated and summarized in Table 2. Meanwhile, Table 2 also provides the magnetic moment  $\eta_{\rm B}^{\rm obs}$  determined by the fitted  $M_s$  using the following formula:  $\eta_B^{\text{obs}} = (M_w \times M_s)/2$ 5585, where  $M_{\rm w}$  is the molecular weight of the ferrite. As Table 2 indicates, the calculated values of  $\eta_{\rm B}^{\rm obs}$  are smaller than that of  $\eta_{\rm B}^{\rm Neel}$ , which suggests Neel's collinear model is not suitable for the obtained samples. Moreover, there is a significant canted spin arrangement in B-sites, which enhances the B-B interaction and in turn decreases the A-B interaction. According to the Yafet and Kittel's three sublattice model, the spincanting angle  $\theta_{YK}$  (Yafet-Kittle angle) is calculated by:<sup>38</sup>

$$\cos \theta_{\rm YK} = \frac{\eta_{\rm B}^{\rm obs} + M_{\rm A}(x)}{M_{\rm B}(x)} \tag{2}$$

The results are given in Table 2. It should be noted that the values of  $\theta_{YK}$  is 38.6° for x = 0.1 sample, comparable to the



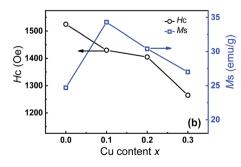



Fig. 6 (a) Hysteresis loops of  $Co_{1-x}Cu_xFe_2O_4/SiO_2$ , (b) plot of  $M_s$  and  $H_c$  of samples as a function of  $Cu^{2+}$  content.

| Table 2 Ma | ignetic parameters of Co <sub>1-3</sub> | Cu <sub>x</sub> re <sub>2</sub> O <sub>4</sub> /3IO <sub>2</sub> at room | temperature      |                                              |  |
|------------|-----------------------------------------|--------------------------------------------------------------------------|------------------|----------------------------------------------|--|
| Sample     | $M_{\rm s}$ (emu g <sup>-1</sup> )      | $M_{\rm r}$ (emu g <sup>-1</sup> )                                       | $H_{\rm c}$ (Oe) | $\eta_{ m B}^{ m obs}\left(\mu_{ m B} ight)$ |  |

| Sample  | $M_{\rm s}$ (emu g <sup>-1</sup> ) | $M_{\rm r}$ (emu g <sup>-1</sup> ) | $H_{\rm c}$ (Oe) | $\eta_{ m B}^{ m obs}\left(\mu_{ m B} ight)$ | $\eta_{ m B}^{ m Neel}\left(\mu_{ m B} ight)$ | $\theta_{ m YK}$ (degree) |
|---------|------------------------------------|------------------------------------|------------------|----------------------------------------------|-----------------------------------------------|---------------------------|
| x = 0   | 24.7                               | 7.6                                | 1525             | 1.48                                         | 3.26                                          | 38.6                      |
| x = 0.1 | 34.3                               | 11.1                               | 1430             | 2.06                                         | 3.37                                          | 33.6                      |
| X = 0.2 | 30.4                               | 10.8                               | 1405             | 1.83                                         | 3.10                                          | 33.1                      |
| X = 0.3 | 27.1                               | 9.35                               | 1265             | 1.63                                         | 2.91                                          | 33.4                      |
|         |                                    |                                    |                  |                                              |                                               |                           |

reported value for CoFe<sub>2</sub>O<sub>4</sub>/SiO<sub>2</sub> with 30% silica in ref. 39. However, the  $\theta_{YK}$  decreases to  $\sim 33^{\circ}$  for Cu-doping ferrites (Table 2), which indicates the presence of Cu<sup>2+</sup> ions at B sites reduces the degree of spin canting. Using high field Mössbauer spectra, Peddis et al. 39,40 confirmed that the spin canting mainly located in the octahedral B sites. Owing to the high anisotropy energy of Co<sup>2+</sup> ions,<sup>41</sup> the non-collinear canting spin mainly occurs in B-site Fe<sup>3+</sup> magnetic moment. The similar  $\theta_{YK}$ values observed in as-prepared Co<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> with 18-36 nm sizes indicate that the spin canting is not a surface phenomenon but an effect throughout the volume of the particles, including surface spin and core spin.41

On the other hand, the coercivity  $H_c$  decreases continuously from 1525 to 1265 Oe as Cu2+ doping content increases from 0 to 0.3. The change in  $H_c$  with  $Cu^{2+}$  content may be related to crystallite size, cation distribution, and magneto crystalline anisotropy constant. It is well known that the  $H_c$  of magnetic particle with single domain should increase with crystallite size in principle. In the present case, the average crystallite sizes of Co<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> NPs are lower than the single domain critical size (40 nm) of CoFe<sub>2</sub>O<sub>4</sub> NPs. Therefore, the decrease in H<sub>c</sub> should be attributed to the cation distribution and magnetocrystalline anisotropy constant. Since Co2+ ion at octahedral B site has larger anisotropy (+850 imes 10 $^{-24}$  J per ion) than that at tetrahedral A site  $(-79 \times 10^{-24} \text{ J per ion})^{44}$  the octahedral Co<sup>2+</sup> ions can be responsible for the high magneto-crystalline anisotropy of CoFe<sub>2</sub>O<sub>4</sub>. 45,46 The replacement of octahedral Co<sup>2+</sup> by Cu<sup>2+</sup> ion results in the reduction in the percentage of Co<sup>2+</sup> in B sites, and thus decreases the anisotropy constant.

## Conclusions

To summarize, we have studied the effect of Cu2+ doping content on the microstructural and magnetic properties of  $\text{Co}_{1-x}\text{Cu}_x\text{Fe}_2\text{O}_4/\text{SiO}_2$  ( $0 \le x \le 0.3$ ) nanocomposites. Although all the obtained Co<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> NPs have cubic spinel structure, the substitution of Cu<sup>2+</sup> for Co<sup>2+</sup> ions can bring change in the crystallite size, cation distribution, and magnetic properties. The crystallite size increases with Cu2+ doping content. The preferred occupancy of Cu<sup>2+</sup> ions at octahedral B sites results in slight deformation of octahedral symmetry and Fe<sup>3+</sup> ions migration from tetrahedral A to octahedral B sites. Moreover, the values of  $M_s$  and  $H_c$  are strongly dependent on  $Cu^{2+}$  doping content, which can be attributed to the cation migration between both sublattices (A and B). The relatively large spincanting angle  $\theta_{YK}$  reveals that the spin canting mainly occurs in the octahedral Fe3+ throughout the particles. The results

suggest that the Cu<sup>2+</sup> doping content in Co<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> NPs can play an important role in tuning their physical properties, which may be of great significance in to exploit novel applications in high density information storage, electronic devices and biomedicine.

## Conflicts of interest

There are no conflicts to declare.

# Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21371071), Foundation of Science and Technology of Jilin, China (Grant No. 201205075).

## References

- 1 Z. T. Zhang, A. J. Rondinone, J. X. Ma, J. Shen and S. Dai, Morphologically Templated Growth of Aligned Spinel CoFe<sub>2</sub>O<sub>4</sub> Nanorods, Adv. Mater., 2005, 17(11), 1415–1419.
- 2 L. Demir, U. Perisanoglu and M. Sahin, Investigating XRF parameters and valance electronic structure of the Co, Ni, and Cu spinel ferrite, Ceram. Int., 2019, 45, 7748-7753.
- 3 M. Zhang, F. Z., Y. Yang, T. An, W. Ou, H. Li, J. Zhang and N. Li, Catalytic activity of ferrates (NiFe2O4, ZnFe2O4 and CoFe<sub>2</sub>O<sub>4</sub>) on the thermal decomposition of ammonium perchlorate, Propell., Explos., Pyrot., 2020, 45(3), 463-471.
- 4 M. Sundararajan and L. J. Kennedy, Photocatalytic removal of rhodamine B under irradiation of visible light using  $Co_{1-x}Cu_xFe_2O_4$  (0 $\leq x\leq 0.5$ ) nanoparticles, J. Environ. Chem. Eng., 2017, 5(4), 4075-4092.
- 5 B. Li, H. T. Fan, X. Xing, Y. Yang, C. C. Wang and D. F. Qiu, Triple functions nanocomposites of porous silica-CoFe<sub>2</sub>O<sub>4</sub>-MWCNTs as carrier for pH-sensitive anti-cancer drugs controlled delivery, Dalton Trans., 2017, 46, 14831-14838.
- 6 J. Yang, Y. Chen, Y. H. Li and X. B. Yin, Magnetic resonance imaging-guided multi-drug chemotherapy photothermal synergistic therapy with ph and nirstimulation release, ACS Appl. Mater. Interfaces, 2017, 9(27), 22278-22288.
- 7 T. Walther, U. Straube, R. Koferstein and S. G. Ebbinghaus, Hysteretic magnetoelectric behavior of CoFe<sub>2</sub>O<sub>4</sub>-BaTiO<sub>3</sub> composites prepared by reductive sintering reoxidation, J. Mater. Chem. C, 2016, 4, 4792-4799.
- 8 C. Venkateshwarlu and D. Ravinder, Thermoelectric power studies of Cu-Co ferrites, J. Alloy Compd., 2006, 426, 4-6.

- 9 T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B. Al-Najar and M. Pacia, Structural, optical, and magnetic properties of Zn-doped CoFe<sub>2</sub>O<sub>4</sub> nanoparticles, *Nanoscale Res. Lett.*, 2017, **12**(1–11),
- 10 G. Xi and Y. Xi, Effects on magnetic properties of different metal ions substitution cobalt ferrites synthesis by sol–gel auto-combustion route using used batteries, *Mater. Lett.*, 2016, **164**, 444–448.
- 11 N. Sanpo, C. C. Berndt, C. Wen and J. Wang, Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications, *Acta Biomater.*, 2013, 9(3), 5830–5837.
- 12 J. Balavijayalakshmi, N. Suriyanarayanan and R. Jayapraksah, Influence of copper on the magnetic properties of cobalt ferrite nanoparticles, *Mater. Lett.*, 2012, **81**, 52–54.
- 13 R. A. Mecurrie, Ferromagnetic material structure and properties, Academic Press, London, 1994.
- 14 M. Kucera and P. Brom, Magneto-optical properties of nanocrystalline cubic and tetragonal copper ferrite thin films, *J. Appl. Phys.*, 2018, **117**, 17B738.
- 15 T. Muthukumaran and J. Philip, Synthesis of water dispersible phosphate capped  $CoFe_2O_4$  nanoparticles and its applications in efficient organic dye removal, *Colloid. Surface. A*, 2021, **610**, 125755.
- 16 T. Muthukumaran and J. Philip, A facile approach to synthesis of cobalt ferrite nanoparticles with a uniform ultrathin layer of silicon carbide for organic dye removal, *J. Mol. Liq.*, 2020, 317(1–14), 114110.
- 17 M. Gharagozlou, B. Ramezanzadeh and Z. Baradaran, Synthesize and characterization of a novel anticorrosive cobalt ferrite nanoparticles dispersed in silica matrix (CoFe<sub>2</sub>O<sub>4</sub>-SiO<sub>2</sub>) to improve the corrosion protection performance of epoxy coating, *Appl. Surf. Sci.*, 2016, 377, 86–98.
- 18 Z. S. Piskuła, P. Skokowski, T. Tolinski, M. Zielinski, P. Kirszensztejn and W. Nowicki, Structure, magnetic and catalytic properties of SiO<sub>2</sub>-MFe<sub>2</sub>O<sub>4</sub> (M =Mn, Co, Ni, Cu) nanocomposites and their syntheses by a modified sol-gel method, *Mater. Chem. Phys.*, 2019, 235, 121731.
- 19 T. Dippong, O. Cadar, E. A. Levei, I. Bibicu, L. Diamandescu, C. Leostean, M. Lazar, G. Borodi and L. B. Tudoran, Structure and magnetic properties of CoFe<sub>2</sub>O<sub>4</sub>/SiO<sub>2</sub> nanocomposites obtained by sol–gel and post annealing pathways, *Ceram. Int.*, 2017, 43, 2113–2122.
- 20 J. Hua, Y. Liu, L. Wang, M. Feng, J. Zhao and H. Li, Mössbauer studies on Mn substituted CoFe<sub>2</sub>O<sub>4</sub>/SiO<sub>2</sub> nanocomposites synthesized by sol–gel method, *J. Magn. Magn. Mater.*, 2016, **402**, 166–171.
- 21 K. Nadeem, T. Traussnig, I. Letofsky-Papst, H. Krenn and U. Brossmann, Sol-gel synthesis and characterization of single-phase Ni ferrite nanoparticles dispersed in SiO<sub>2</sub> matrix, J. Alloy. Compd., 2010, 493, 385–390.
- 22 S. Rohilla, S. Kumar, P. Aghamkar, S. Sunder and A. Agarwal, Investigations on structural and magnetic properties of cobalt ferrite/silica nanocomposites prepared by the

- coprecipitation method, J. Magn. Magn. Mater., 2011, 323, 897–902.
- 23 Y. Tang, X. Wang, Q. Zhang, Y. Li and H. Wang, Solvothermal synthesis of Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> and its application in ammonia vapors detection Progress in natural science, *Mater. Inter.*, 2012, 22, 53–58.
- 24 C. C. Naik, S. K. Gaonkar, I. Furtado and A. V. Salker, Effect of Cu<sup>2+</sup> substitution on structural, magnetic and dielectric properties of cobalt ferrite with its enhanced antimicrobial property, *J. Mater. Sci-Mater. El.*, 2018, 29, 14746–14761.
- 25 A. H. Ashour, A. I. El-Batal, M. I. A. Abde Maksoud, G. S. El-Sayyad, S. Labib, E. Abdeltwab and M. M. El-Okr, Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique, *Particuology*, 2018, **40**, 141–151.
- 26 T. Dipponga, I. G. Deacb, O. Cadarc, E. A. Leveic and I. Peteand, Impact of Cu<sup>2+</sup> substitution by Co<sup>2+</sup> on the structural and magnetic properties of CuFe<sub>2</sub>O<sub>4</sub> synthesized by sol–gel route, *Mater. Charact.*, 2020, **163**, 110248.
- 27 B. K. Chatterjee, K. Bhattacharjee, A. Dey, C. K. Ghosha and K. K. Chattopadhyay, Influence of spherical assembly of copper ferrite nanoparticles on magnetic properties: orientation of magnetic easy axis, *Dalton Trans.*, 2014, 43, 7930–7944.
- 28 A. B. Naik, S. R. Sawant, S. A. Patil and J. I. Powar, On the variation of a.c. susceptibility with temperature for some Cu-Li ferrites, Bull, *Mater. Sci.*, 1988, 11(4), 315–318.
- 29 G. A. Sawatzky, F. V. D. Woude and A. H. Morrish, Cation distributions in octahedral and tetrahedral sites of the ferromagnetic spinel CoFe<sub>2</sub>O<sub>4</sub>, *J. Appl. Phys.*, 1968, **39**, 1204–1205.
- 30 G. A. Sawatzkyt, F. D. W. Van and A. H. Morrish, Mössbauer study of several ferrimagnetic spinels, *Phys. Rev.*, 1969, 187(2), 747–757.
- 31 K. M. Batoo, D. Salah, G. Kumar, A. Kumar, M. Singh, M. A. El-sadek, F. A. Mir, A. Imran and D. A. Jameel, Hyperfine interaction and tuning of magnetic anisotropy of Cu doped CoFe<sub>2</sub>O<sub>4</sub> ferrite nanoparticles, *J. Magn. Magn. Mater.*, 2016, **411**, 91–97.
- 32 A. H. Morrish, *The physical principles of magnetism*, Wiley, New York, 1965.
- 33 V. Blanco-Gutiérrez, M. Virumbrales, R. Saez-Puche and M. J. Torralvo-Fernández, Superparamagnetic Behavior of MFe<sub>2</sub>O<sub>4</sub> Nanoparticles and MFe<sub>2</sub>O<sub>4</sub>/SiO<sub>2</sub> Composites (M: Co, Ni), J. Phys. Chem. C, 2013, 117(40), 20927–20935.
- 34 M. Virumbrales, R. Saez-Puche, M. J. Torralvo and V. Blanco-Gutierrez, Mesoporous silica matrix as a tool for minimizing dipolar interactions in NiFe<sub>2</sub>O<sub>4</sub> and ZnFe<sub>2</sub>O<sub>4</sub> nanoparticles, *Nanomaterials*, 2017, 7, 151.
- 35 M. Hashim, Alimuddin, S. Kumar, B. H. Koo, S. E. Shirsath, E. M. Mohammed, J. Shah, R. K. Kotnala, H. K. Choi, H. Chung and R. Kumar, Structural, electric and magnetic properties of Co-Cu ferrite nanoparticles, *J. Alloy. Compd.*, 2012, 518, 11–18.
- 36 L. Néel, Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism, Ann. Phys. Paris., 1948, 137–198.

Paper

37 B. G. Toksha, S. E. Shirsath, M. L. Mane, S. M. Patange, S. S. Jadhav and K. M. Jadhav, Autocombustion high-temperature synthesis, structural, and magnetic properties of  $\text{CoCr}_x\text{Fe}_{2-x}\text{O}_4$  ( $0 \le x \le 1.0$ ), *J. Phys. Chem. C*, 2011, **115**, 20905–20912.

- 38 Y. Yafet and C. Kittel, Antiferromagnetic arrangements in ferrites, *Phys. Rev.*, 1952, **87**, 290.
- 39 D. Peddis, M. V. Mansilla, S. Morup, C. Cannas, A. Musinu, G. Piccaluga, F. Orazio, F. Lucari and D. Fiorani, Spincanting and magnetic anisotropy in ultrasmall CoFe<sub>2</sub>O<sub>4</sub> nanoparticles, *J. Phys. Chem. B*, 2008, **112**, 8507.
- 40 D. Peddis, C. Cannas, G. Piccaluga, E. Agostinelli and D. Fiorani, Spin-glass-like freezing and enhanced magnetization in ultra-small CoFe<sub>2</sub>O<sub>4</sub> nanoparticles, *Nanotechnology*, 2010, 21(1–10), 125705.
- 41 C. Cannas, A. Musinu, G. Piccaluga, D. Fiorani, D. Peddis, H. K. Rasmussen and S. Mørup, Magnetic properties of cobalt ferrite-silica nanocomposites prepared by a sol-gel autocombustion technique, *J. Chem. Phys.*, 2006, 125(535), 164714.

- 42 C. Bellitto, E. M. Bauer and G. Righini, On the crystalstructures and magnetism of some hybrid organic-inorganic metal organophosphonates, *Inorg. Chim. Acta*, 2008, **361**, 3785–3799.
- 43 D. Peddis, N. Yaacoub, M. Ferretti, A. Martinelli, G. Piccaluga, A. Musinu, C. Cannas, G. Navarra, J. M. Greneche and D. Fiorani, Cationic distribution and spin canting in CoFe<sub>2</sub>O<sub>4</sub> nanoparticles, *J. Phys.: Condens. Matter*, 2011, 23, 426004.
- 44 H. Y. Zhang, B. X. Gu, H. R. Zhai, Y. Z. Miao, S. Y. Zhang and H. B. Huang, Anisotropy and Faraday effect in Co spinel ferrite films, *J. Appl. Phys.*, 1994, 75, 7099–7101.
- 45 J. F. Hochepied, Ph. Sainctavit and M. P. Pileni, X-ray absorption spectra and X-ray magnetic circular dichroism studies at Fe and Co L<sub>2,3</sub> edges of mixed cobalt-zinc ferrite nanoparticles: cationic repartition, magnetic structure and hysteresis cycles, *J. Magn. Magn. Mater.*, 2001, 231, 315–322.
- 46 A. A. Ati, Z. Othaman and A. Samavati, Influence of cobalt on structural and magnetic properties of nickel ferrite nanoparticles, *J. Mol. Struct.*, 2013, **1052**, 177–182.