Recent progress of effect of crystal structure on luminescence properties of Ce$^{3+}$–Eu$^{2+}$ Co-doped phosphors

Mingjie Zheng, Zhijun Wang, Xuejiao Wang, Jia Cui, Yao Yao, Mengya Zhang, Zhibin Yang, Lingwei Cao and Panlai Li*

Currently, the mechanism of Ce$^{3+}$–Eu$^{2+}$ ET is frequently used to obtain color adjustable or white phosphors. Correspondingly, the ET efficiency from Ce$^{3+}$ to Eu$^{2+}$ becomes an important indication of the luminescent properties of phosphors. However, the ET efficiency calculated using the formula

$$\eta_{\text{ET}} = 1 - \frac{I_s}{I_0}$$

does not always match the emission spectra; the transmission efficiency of Ce$^{3+}$ is high, but the emission efficiency of Eu$^{2+}$ is low, depending on our investigation results. In addition to this problem, here we mainly review, on the basis of substantial examples, how to boost the actual ET efficiency of Ce$^{3+}$-to-Eu$^{2+}$ and thus to improve the luminescent properties of phosphors through the rational design of layered crystal structure and the way of selective occupation of activator ions. Moreover, the possible physical mechanisms are proposed.

1. Introduction

In recent years, a broad spectrum of new lighting materials has emerged, and white LED (WLED) materials have gradually replaced the traditional fluorescent lamps and incandescent lamps because of their energy-saving, environmental protection, high efficiency, long life and small size.1 Due to these advantages, LEDs can be used in a wide range of areas, not only in solid state lighting, but also in other electronic devices such as displays. At present, researchers prefer to obtain color adjustable phosphors or white light phosphors by rational design of ET through rare earth (RE) ions co-doping such as Ce$^{3+}$–Eu$^{2+}$, Ce$^{3+}$–Mn$^{2+}$, Eu$^{2+}$–Mn$^{2+}$, Ce$^{3+}$–Eu$^{2+}$–Mn$^{2+}$, Ce$^{3+}$–Tb$^{3+}$–Mn$^{2+}$ and Ce$^{3+}$–Tb$^{3+}$–Eu$^{2+}$ systems, and so forth.2–4 Among these systems, both Ce$^{3+}$ and Eu$^{2+}$ can emit 4f–5d transitions. Because their exposed 5d orbitals are susceptible to the crystal field environment, the luminescence range of Ce$^{3+}$ can vary from the violet to red, and the spectral coverage of Eu$^{2+}$ can even range from the ultraviolet to near-infrared, such as that in K$_3$LuSi$_2$O$_7$.5 Therefore, rational design of Ce$^{3+}$-to-Eu$^{2+}$ ET has become a popular way to obtain white light phosphors.

Over the past decades, many phosphors emitting adjustable color have been prepared by doping RE ions, and we could draw a conclusion that there are two main factors affecting the luminescent properties of phosphors: the kind of activator ions and the type of hosts. Both are indispensable for phosphors to achieve good luminescent properties. First, even for the same host, different kinds of activator ions will show different phenomena.6–9 For example, solid state synthesis and tunable luminescence of Li$_2$SrSiO$_4$:Eu$^{2+}$/Ce$^{3+}$ phosphors have been reported by Wei et al. Under excitation at 365 nm, the Ce$^{3+}$ exhibits a broad blue emission ranging from 380 to 500 nm centered at 425 nm, while the Eu$^{2+}$ exhibits a broad green emission in the range of 480–680 nm with center at 556 nm.10 Synthesis, luminescence and ET of Ce$^{3+}$-to-Eu$^{2+}$ of SrSc$_2$O$_4$:Ce$^{3+}$/ Eu$^{2+}$ phosphors have been reported by Zhao et al. Under excitation at 440 nm, SrSc$_2$O$_4$:Ce$^{3+}$ shows a green emission peaking at ~535 nm, and the spectral coverage ranges from 475 to 675 nm. Under excitation at 523 nm, SrSc$_2$O$_4$:Eu$^{2+}$ shows a red emission ranging from 650 to 775 nm with center at ~702 nm.21 Photoluminescence, ET and tunable color of Ce$^{3+}$/Tb$^{3+}$/Eu$^{2+}$ activated oxynitride phosphor with high brightness has been reported by Lv et al. Ca$_3$Al$_5$Si$_4$O$_{12}$N$_4$:Ce$^{3+}$ shows a blue emission centering at 420 nm in the range of 340–525 nm, under excitation at 330 nm. And Ca$_3$Al$_5$Si$_4$O$_{12}$N$_4$:Eu$^{2+}$ shows a blue emission in the range of 400–550 nm with center at 450 nm under excitation at 350 nm.22 It can be seen that in the same host, different kinds of activator ions lead to different luminescence phenomenon.

In addition to the type of activator ions, the choice of host also has an impact on the luminescent properties of phosphors.21–40 Eu$^{2+}$ is a significant activator for luminescent materials because of its unique emission properties, so it has been researched in many hosts, as proved by the abundant examples such as K$_3$LuSi$_2$O$_7$:Eu$^{2+}$, NaAlSiO$_4$:Eu$^{2+}$, Ca$_3$Al$_5$O$_{15}$F:Eu$^{2+}$, K$_3$BaCa(PO$_4$)$_2$:Eu$^{2+}$, Sr$_2$Mg$_{1.5}$(PO$_4$)$_3$:Eu$^{2+}$, etc.15,41–44

College of Physics Science & Technology, Hebei Key Lab of Optic-Electronic Information and Materials, Hebei University, Baoding 071002, China. E-mail: wangj1998@126.com; li_panlai@126.com; Tel: +86 312 5977068

DOI: 10.1039/d1ra04700k

Accepted 20th July 2021
Received 17th June 2021
Cite this: RSC Adv., 2021, 11, 26354
First of all, with the variation of hosts, the emission wavelength of Eu$^{2+}$ can change from the near-ultraviolet to near-infrared. Secondly, the thermal stability of phosphor materials is different in different hosts, which can be proved by the phosphors of KBa$_3$(PO$_4$)$_3$ (ref. 45) and Ca$_2$Al$_3$O$_6$F (ref. 42) reported by Zhao and Xia, respectively. According to these two papers, the PL intensity of Ca$_2$Al$_3$O$_6$F:Eu$^{2+}$ at 150 °C is only about 39% of its initial value (25 °C), but the PL intensity of KBa$_3$(PO$_4$)$_3$:Eu$^{2+}$ at 150 °C retains 97% of its initial value.\cite{44,45}

In addition to the luminous color and the temperature stability of phosphors, host will also affect the quantum efficiency of phosphors. For example, in host CaAlSi$_3$N$_4$, the quantum efficiency of Eu$^{2+}$ is as high as 95%, but in host Ca$_3$Mg(SiO$_4$)$_4$, the quantum efficiency of Eu$^{2+}$ is only 30%.\cite{23,29}

Therefore, the effect of crystal field environment on the luminescence properties of Eu$^{2+}$ is significant, including the position and half-peak width of luminescence, as well as the temperature stability and quantum efficiency of phosphors.

From the above discussion, we can conclude that host composition and crystal structure have a great effect on the luminescence properties of Eu$^{2+}$-singly doped phosphors, and in fact, for Ce$^{3+}$-Eu$^{2+}$ co-doped phosphors, these factors also play a key role. The luminescence properties and ET mechanism of Ce$^{3+}$-to-Eu$^{2+}$ have been analyzed by some research groups.\cite{46–93}

For instance, the ET processes of Ce$^{3+}$-to-Eu$^{2+}$ in Ca$_2$PO$_4$Cl,\cite{92} Ba$_3$Ca$_2$(PO$_4$)$_3$F and Ba$_2$Y(PO$_4$)$_3$ (ref. 93) were once studied by our group. The overlaps between the emission spectra of Ce$^{3+}$ and the excitation spectra of Eu$^{2+}$, the luminescence intensity and fluorescence lifetime of Ce$^{3+}$ with changing the Eu$^{2+}$ doping concentration were investigated in detail. After years of study in this field, we have a deeper understanding of the luminescence performance and ET mechanism of many Ce$^{3+}$–Eu$^{2+}$ co-doped systems, and therefore putting forward the guiding ideology of improving the application of WLED. Despite the progress, there are still some problems to be further explored. Generally, the ET efficiency of Ce$^{3+}$-to-Eu$^{2+}$ is calculated based on the luminescence intensity of Ce$^{3+}$ together with the formula \( \eta_{ET} = 1 - \frac{I_{Eu}}{I_{Ce}} \). Sometimes, this calculated result is in accord with the emission spectra of Ce$^{3+}$ and Eu$^{2+}$. For example, in the hosts Ba$_4$MgSi$_6$O$_{16}$,\cite{44} Ba$_2$Si$_5$N$_8$,\cite{45} and Ba$_2$Y(PO$_4$)$_3$,\cite{93} their ET efficiency was calculated to be 90%, corresponding well to the emission spectra that the luminous intensity of Ce$^{3+}$ decreased significantly and the luminous intensity of Eu$^{2+}$ increased obviously. However, in the hosts such as Li$_2$Sr$_2$(BO$_3$)$_3$,\cite{72} Ba$_2$Y(PO$_4$)$_3$,\cite{93} Na$_2$Ca$_3$(PO$_4$)$_5$,\cite{16} although the ET efficiency of Ce$^{3+}$-to-Eu$^{2+}$ was calculated to be 80% according to the formula \( \eta_{ET} = 1 - \frac{I_{Eu}}{I_{Ce}} \), it does not agree with the emission spectra of Eu$^{2+}$ which did not increase correspondingly. Therefore, it is worth considering and exploring whether this phenomenon is related to the crystal structure and composition of host. If this problem can be solved, it may provide some clues and ideas when designing and selecting new Ce$^{3+}$–Eu$^{2+}$ and even other RE ions co-doped materials.

### Table 1: Layer spacing, crystal structure, space group, and photoluminescence properties of Ce$^{3+}$–Eu$^{2+}$ co-doped layered structured luminescent materials

<table>
<thead>
<tr>
<th>Compound</th>
<th>L (Å)</th>
<th>Crystal structure</th>
<th>Space group</th>
<th>( \lambda_{em}(\text{Ce}^{3+}) )</th>
<th>( \lambda_{em}(\text{Eu}^{2+}) )</th>
<th>( \chi_c(\text{Eu}^{2+}) )</th>
<th>( R_c(\text{Å}) )</th>
<th>Mechanism of ET</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaMg$_3$(PO$_4$)$_3$</td>
<td>9.691</td>
<td>Trigonal</td>
<td>P1</td>
<td>412 nm</td>
<td>447 nm</td>
<td>0.05</td>
<td>30.7</td>
<td>d-d</td>
<td>87</td>
</tr>
<tr>
<td>Ba$_3$Ca$_2$Si$_5$O$_4$</td>
<td>7.352</td>
<td>Trigonal</td>
<td>P3m2</td>
<td>385 nm</td>
<td>450 nm</td>
<td>0.02</td>
<td>17.11</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>SrSi$_2$O$_4$N$_2$</td>
<td>7.231</td>
<td>Trigonal</td>
<td>P1</td>
<td>395 nm</td>
<td>530 nm</td>
<td>0.02</td>
<td>26.05</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Ba$_3$Si$_5$O$_4$N$_2$</td>
<td>6.784</td>
<td>Trigonal</td>
<td>P3</td>
<td>393 nm</td>
<td>526 nm</td>
<td>0.01</td>
<td>25.11</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Li$_2$SrSi$_3$O$_6$</td>
<td>5.522</td>
<td>Trigonal</td>
<td>P3</td>
<td>420 nm</td>
<td>570 nm</td>
<td>0.01</td>
<td>27.62</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Ba$_3$Si$_5$O$_4$N$_4$</td>
<td>6.784</td>
<td>Trigonal</td>
<td>P3</td>
<td>420 nm</td>
<td>520 nm</td>
<td>0.005</td>
<td>24.86</td>
<td>59</td>
<td></td>
</tr>
</tbody>
</table>
| Ba$_2$Mg$_2$Si$_2$O$_7$
| 5.406 | Tetragonal        | P421m       | 560 nm                            | 740 nm                            | 0.04            | 63             |
| Sr$_2$Al$_2$Si$_2$O$_7$ | 5.264 | Tetragonal        | P421m       | 415 nm                            | 510 nm                            | 0.03            | 18.3           | 57             |
| Ca$_2$Mg$_{0.2}$Al$_{0.8}$Si$_{1.25}$O$_3$ | 5.05 | Tetragonal        | P421m       | 409 nm                            | 520 nm                            | 0.025           | 26.71          | 4              |
| Ca$_2$Mg$_{0.5}$Al$_{0.5}$Si$_{1.5}$O$_3$ | 5.036 | Tetragonal        | P421m       | 410 nm                            | 525 nm                            | 0.015           | 26.71          | 4              |
| Ca$_2$Mg$_{0.5}$Al$_{0.5}$Si$_{1.5}$O$_3$ | 5.029 | Tetragonal        | P421m       | 535 nm                            | 725 nm                            | 0.01            | 40             |
| Ba$_5$Si$_2$O$_4$N$_2$ | 7.592 | Orthorhombic      | Pbcn        | 390 nm                            | 495 nm                            | 0.05            | 24.87          | d-d            | 79  |
| Ba$_2$Si$_3$O$_4$    | 7.513 | Orthorhombic      | Pcmn        | 505 nm                            |                                    | 0.03            |                | 39             |
| Sr$_2$Si$_3$O$_4$    | 6.148 | Orthorhombic      | Pmmb        | 406 nm                            | 469 nm                            | 0.01            | 24             |
| CaAlSi$_3$N$_4$      | 5.636 | Orthorhombic      | Cmcm        | 580 nm                            | 650 nm                            | 0.008           | 22.75          | d-d            | 85             |
| BaZn$_5$S$_3$        | 4.21  | Orthorhombic      | Pnam        | 498 nm                            | 660 nm                            | 0.008           | 32.7           | d-d            | 77             |
| Ba$_2$Si$_5$O$_4$    | 6.983 | Monoclinic        | P12_1       | 442 nm                            | 497 nm                            | \( \geq 0.025 \) | 66             |
| LiBaBO$_3$           | 6.416 | Monoclinic        | P12_1/c     | 430 nm                            | 530 nm                            | 0.02            | 25.06          | 70             |
| Ca$_2$Si$_2$O$_6$    | 6.991 | Monoclinic        | C1c1        | 465 nm                            | 595 nm                            | 0.0035          | 22.27          | d-d            | 50             |
introduced the design, the optical properties and the application of pc-WLED phosphors with the emphasis on the dependence of luminescence properties on the crystal structure and composition of host.\textsuperscript{104-115} Different from these work, here we provide a new perspective to review the recent reports. In order to find out the reason why the ET efficiency calculated according to the formula $\eta_{ET} = 1 - \frac{I_f}{I_0}$ does not match the Eu\textsuperscript{2+}'s emission spectra, we have carefully investigated the crystal structure, luminescence location, quenching concentration and other related information of many hosts, as exhibited in Tables 1 and 2. As the hosts with similar crystal structure and composition have similar luminescent phenomenon, so we focus on the crystal structure of these hosts. Moreover, it was found that the actual ET efficiency of Ce\textsuperscript{3+-to-Eu\textsuperscript{2+}} in the hosts with layered crystal structure is higher than those with non-layered crystal structure. Based on these results, the crystal structures of all hosts involved in this paper are then divided into two categories: layered structure and non-layered structure, in the following discussion.

As shown in Fig. 1, for the hosts with layered crystal structure, high, medium and low actual ET efficiency of Ce\textsuperscript{3+-to-Eu\textsuperscript{2+}} separately make up 65%, 20% and 15% of the whole cases. In contrast, high, medium and low actual ET efficiency of Ce\textsuperscript{3+-to-Eu\textsuperscript{2+}} make up 31%, 24% and 45% of all the hosts with non-layered crystal structure, respectively. It is obvious that the actual ET efficiency of Ce\textsuperscript{3+-to-Eu\textsuperscript{2+}} in the hosts with layered crystal structure is significantly higher than that with non-layered crystal structure.

According to previous reports, in the host with layered crystal structure, the quenching concentration is relatively large, which indicates that this structure can inhibit the quenching effect of activated ions to a certain extent. For the hosts with layered crystal structure, the cation layer is separated by other anion groups or other cationic polyhedrons, thus widening the distance between the same cationic sites. According to the diagram of concentration quenching process (Fig. 2), we found that when the doping concentration of activator ions is relatively low, the average distance of activators is relatively large. Under such conditions, it is hardly any interaction between activators, so less ions forms one luminescence center that is shown in the left part of Fig. 2. With the increase of activator ions concentration, the distance between activator ions is shortened, which thus increases the probability of ET, causing the energy loss of activator ions through ET step by step, thus multiple ions will form one equivalent luminescence center that is shown in the right part of Fig. 2.\textsuperscript{4} Due to the particularity of crystal structure, the distance between the same cations in the

![Fig. 1. The proportion of the host with high, medium and low ET efficiency in the hosts with layered and non-layered crystal structure.](image)

### Table 2 Crystal structure, space group, and photoluminescence properties of Ce\textsuperscript{3+-to-Eu\textsuperscript{2+}} co-doped non-layered structured luminescent materials

<table>
<thead>
<tr>
<th>Compound</th>
<th>Crystal structure</th>
<th>Space group</th>
<th>$\lambda_{em}$ (Ce\textsuperscript{3+})</th>
<th>$\lambda_{em}$ (Eu\textsuperscript{2+})</th>
<th>$X_c$ (Eu\textsuperscript{2+})</th>
<th>$R_c$ (Å)</th>
<th>Mechanism of ET</th>
<th>Lattice site of Eu\textsuperscript{2+}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca\textsubscript{2}PO\textsubscript{4}Cl</td>
<td>Orthorhombic</td>
<td>Pbcm</td>
<td>370 nm</td>
<td>460 nm</td>
<td>0.07</td>
<td>14.7</td>
<td>d-d</td>
<td>Ca1</td>
</tr>
<tr>
<td>Sr\textsubscript{5}Ca\textsubscript{5}O\textsubscript{4}</td>
<td>Orthorhombic</td>
<td>Pnam</td>
<td>535 nm</td>
<td>702 nm</td>
<td>0.04</td>
<td>14.498</td>
<td>d-d</td>
<td>Sr</td>
</tr>
<tr>
<td>BaSiO\textsubscript{3}</td>
<td>Orthorhombic</td>
<td>Pnam</td>
<td>404 nm</td>
<td>570 nm</td>
<td>0.02</td>
<td>14.7</td>
<td>d-d</td>
<td>Ba</td>
</tr>
<tr>
<td>Sr\textsubscript{2}Si\textsubscript{2}O\textsubscript{4}</td>
<td>Orthorhombic</td>
<td>Pnam</td>
<td>373 nm</td>
<td>440 nm</td>
<td>0.01</td>
<td>25.82</td>
<td>d-d</td>
<td>Sr</td>
</tr>
<tr>
<td>Ca\textsubscript{3}MgSi\textsubscript{2}O\textsubscript{4}</td>
<td>Orthorhombic</td>
<td>Pnam</td>
<td>465 nm</td>
<td>538 nm</td>
<td>17</td>
<td>d-d</td>
<td>Sr1 to Sr6</td>
<td>Ca1, Sr1 and Sr2</td>
</tr>
<tr>
<td>Ca\textsubscript{2}Al\textsubscript{5}O\textsubscript{4}</td>
<td>Monoclinic</td>
<td>Pnma</td>
<td>400 nm</td>
<td>470 nm</td>
<td>0.03</td>
<td>18.64</td>
<td>d-d</td>
<td>Ca</td>
</tr>
<tr>
<td>Sr\textsubscript{2}Si\textsubscript{2}O\textsubscript{4}</td>
<td>Orthorhombic</td>
<td>Pnam</td>
<td>490 nm</td>
<td>625 nm</td>
<td>0.0125</td>
<td>13.7</td>
<td>d-d</td>
<td>Ca1 to Ca3</td>
</tr>
<tr>
<td>Sr\textsubscript{2}PO\textsubscript{4}</td>
<td>Monoclinic</td>
<td>Pnma</td>
<td>460 nm</td>
<td>356 nm</td>
<td>0.01</td>
<td>23.8</td>
<td>d-d</td>
<td>Ca1 to Ca8</td>
</tr>
<tr>
<td>Sr\textsubscript{2}Si\textsubscript{2}O\textsubscript{4}</td>
<td>Orthorhombic</td>
<td>Pnam</td>
<td>400 nm</td>
<td>465/520 nm</td>
<td>0.0075</td>
<td>d-d</td>
<td>Sr1 and Sr2</td>
<td>Sr1 and Sr2</td>
</tr>
<tr>
<td>Ca\textsubscript{2}Si\textsubscript{2}O\textsubscript{4}</td>
<td>Monoclinic</td>
<td>Pnma</td>
<td>410 nm</td>
<td>573 nm</td>
<td>0.015</td>
<td>d-d</td>
<td>Ca1 and Ca2</td>
<td>Ca1 and Ca2</td>
</tr>
<tr>
<td>Ca\textsubscript{3}Al\textsubscript{6}O\textsubscript{4}</td>
<td>Monoclinic</td>
<td>Pnma</td>
<td>400 nm</td>
<td>505 nm</td>
<td>0.006</td>
<td>d-d</td>
<td>Ca2</td>
<td>Ca</td>
</tr>
<tr>
<td>Sr\textsubscript{2}PO\textsubscript{4}</td>
<td>Hexagonal</td>
<td>Pnma</td>
<td>370 nm</td>
<td>443 nm</td>
<td>0.1</td>
<td>21</td>
<td>d-d</td>
<td>Sr2</td>
</tr>
<tr>
<td>La\textsubscript{2}Si\textsubscript{6}O\textsubscript{13}</td>
<td>Hexagonal</td>
<td>Pnma</td>
<td>380 nm</td>
<td>519 nm</td>
<td>0.05</td>
<td>10.66</td>
<td>d-d</td>
<td>M1 and M2</td>
</tr>
<tr>
<td>Ba\textsubscript{2}Al\textsubscript{2}O\textsubscript{4}</td>
<td>Hexagonal</td>
<td>Pnma</td>
<td>387 nm</td>
<td>508 nm</td>
<td>0.05</td>
<td>17.506</td>
<td>d-d</td>
<td>Sr1 and Sr2</td>
</tr>
<tr>
<td>Ca\textsubscript{2}Si\textsubscript{2}O\textsubscript{4}</td>
<td>Monoclinic</td>
<td>Pnma</td>
<td>426 nm</td>
<td>527 nm</td>
<td>0.1</td>
<td>18.7</td>
<td>d-d</td>
<td>Sr1 and Sr2</td>
</tr>
<tr>
<td>Ca\textsubscript{3}Al\textsubscript{6}O\textsubscript{4}</td>
<td>Trigonal</td>
<td>R3c</td>
<td>356 nm</td>
<td>445 nm</td>
<td>0.01</td>
<td>12.64</td>
<td>d-d</td>
<td>Ca</td>
</tr>
<tr>
<td>Sr\textsubscript{2}PO\textsubscript{4}</td>
<td>Trigonal</td>
<td>R3c</td>
<td>434 nm</td>
<td>574 nm</td>
<td>0.002</td>
<td>30.7</td>
<td>d-d</td>
<td>Sr1 and Sr2</td>
</tr>
<tr>
<td>Ca\textsubscript{2}Si\textsubscript{2}O\textsubscript{4}</td>
<td>Monoclinic</td>
<td>Pnma</td>
<td>342 nm</td>
<td>493 nm</td>
<td>0.005</td>
<td>30.64</td>
<td>d-d</td>
<td>Sr1 and Sr2</td>
</tr>
<tr>
<td>Sr\textsubscript{2}PO\textsubscript{4}</td>
<td>Cubic</td>
<td>I43d</td>
<td>423 nm</td>
<td>612 nm</td>
<td>0.004</td>
<td>29.14</td>
<td>d-d</td>
<td>Sr1 and Sr2</td>
</tr>
<tr>
<td>Ba\textsubscript{2}Si\textsubscript{2}O\textsubscript{4}</td>
<td>Cubic</td>
<td>I43d</td>
<td>374 nm</td>
<td>518 nm</td>
<td>0.01</td>
<td>32.02</td>
<td>d-d</td>
<td>Sr/Gd</td>
</tr>
<tr>
<td>Ba\textsubscript{2}Si\textsubscript{2}O\textsubscript{4}</td>
<td>Cubic</td>
<td>I43d</td>
<td>398 nm</td>
<td>520 nm</td>
<td>0.01</td>
<td>19.5</td>
<td>d-d</td>
<td>Ba/La</td>
</tr>
</tbody>
</table>

© 2021 The Author(s). Published by the Royal Society of Chemistry.
hosts with layered crystal structure is far, therefore reducing the probability of ET of activator ions and make the emission efficiency of Eu$^{2+}$ is higher.

In order to find out the further explanation, the hosts with layered crystal structure listed above are investigated in detail. Owing to the special layered crystal structure, the same cations are far apart from each other, which effectively inhibits the concentration quenching effect of activator ions. So for the layered structure, the larger the spacing between layers ($L$) is, the more obvious the effect of inhibiting the concentration quenching of activator ions is. And then, the higher the doping concentration of activator ions is, the greater the luminous intensity is. Since the activator ion Eu$^{2+}$ is sensitive to the changes of surrounding crystal field environment, the quenching concentration (QC) of activator ion is expected to change when changing the spacing between layers ($L$). The hosts with layered crystal structure can be divided into three categories according to crystal system: tetragonal, trigonal and orthorhombic (Fig. 3a–c). All the hosts listed in Fig. 3a are tetragonal with space group $P421m$, those listed in Fig. 3b are trigonal with space group $P3$ or $P1$, and the hosts listed in Fig. 3c are all orthorhombic. The insets in Fig. 3a and b are the crystal structure diagrams of hosts seen from different directions. In Fig. 3c, although the hosts are all layered structures, they can be divided into the layered structures with and without connecting bonds due to different space groups. It can be seen from Fig. 3 that the QC of Eu$^{2+}$ increases with the increase of spacing between layers ($L$) in the same crystal system. It is further proved that with the increase of distance between the cationic sites occupied by activator ions, the effect of inhibiting the concentration quenching of activator ion becomes greater. Therefore,

![Diagram of concentration quenching process.](image1)

![The relationship between the spacing between layers ($L$) and the QC of Eu$^{2+}$ in (a) tetragonal, (b) trigonal and (c) orthorhombic host.](image2)

![Effect of selective occupancy of activator ions on the QC of Eu$^{2+}$ in non-layered hosts.](image3)
the doping concentration of activator ions becomes higher and the luminescence property of phosphors becomes better.

It should be noticed, however, that the luminescence properties of some hosts with non-layered structure are also excellent, which can be explained as follows. Some of the hosts with non-layered structure are separated by the surrounding anionic groups, while others have gaps between the same cations by means of the selective occupancy of activator ions, which is called the interstitial structure. This structure can also indirectly increase the distance between the same cationic sites, followed by the inhabitation of the quenching effect of activator ions and the increase of doping concentration of activator ions. As shown in Fig. 4, the 21 hosts listed can be divided into five categories according to their crystal systems: orthorhombic, hexagonal, cubic, monoclinic and trigonal. And the proportions of these five crystal systems are 23.81%, 19.05%, 14.29%, 28.57% and 14.29%, respectively. In Fig. 4, different colors represent different crystal systems. For the hosts within the same crystal system, the unshadowed portion represents the host with interstitial structure, while the shadowed portion represents the host whose crystal lattice is occupied by activator ions that is tightly connected (we call it the cluster structure). It can be seen from the diagram that the QC of activator ions in the interstitial structure is higher than that in the cluster structure for all crystal systems. This further demonstrates that the larger the distance between the cationic sites occupied by the activator ions is, the greater the effect of inhibiting the concentration quenching of activator ions is. And then, the greater the doping concentration of activator ions is, the better the luminescence property of phosphors is.

As is well known, the emitting intensity of activator ions will be weak if the doping concentration is quite small. Therefore, inhibiting the concentration quenching of activator ions can increase the doping concentration of activator ions, thus enhancing the intensity of luminescence. Based on this conclusion, we found that the design of layered crystal structure and the selective occupation of activator ions can inhibit the concentration quenching of activator ions and improve the luminescent properties of Ce3+–Eu2+ co-doped phosphors to some extent. Next, we will take some reported hosts as an example for specific analysis.

3. Effects of crystal structure on luminescence properties of Ce3+–Eu2+ co-doped phosphors

3.1 Improving luminescence performance of Ce3+–Eu2+ co-doped phosphors by designing selective occupancy of activator ions

A large amount of Ce3+, Eu2+ singly-doped and Ce3+–Eu2+ co-doped phosphors have been reported. According to these reports, Ce3+ and Eu2+ are sensitive to the changes of surrounding crystal field environment. Specifically, their luminescence location, spectral range, quenching concentration and thermal stability will be different with the variations of crystal field environment. Therefore, it is a common way to adjust the luminescent properties of phosphors by changing the crystal field environment around activator ions. In particular, the method of improving the luminescent properties of phosphors by designing the occupation sites of activator ions has been intensively studied.137–145

Since the luminescent properties of Ce3+ or Eu2+ singly doped phosphors can be improved by the method of activator ion selective occupation, the luminescence properties of Ce3+–Eu2+ co-doped phosphors is also expected to be improved using the same way. Currently, a large number of Ce3+–Eu2+ co-activated halogenated phosphate hosts have been found. Ba3Ca2(PO4)3F and Sr3(PO4)2Cl are two representatives, and both of them belong to the apatite structure system. As shown in Fig. 5a and d, the crystal structure of them belongs to the hexagonal system with P63/m space group. There are two kinds of cationic sites in Ba3Ca2(PO4)3F, which are signed as M1(Ca1/ Ba1) and M2(Ca2/Ba2) to facilitate the following discussion. The M1 sites are surrounded by nine oxygen anions with local symmetry Ca, forming a tricapped trigonal prism. The M2 sites are seven-fold coordinate surrounded by six oxygen anions and one fluorine anion with C6 point group symmetry. While in Sr3(PO4)2Cl, the cationic sites are signed as Sr1 and Sr2. From Fig. 5a and d we can see that each Sr1/M1 sites is surrounded by anionic polyhedron and Sr2/M2, every three Sr2/M2 polyhedrons form a cluster with F− ion through the vertex angle, and each cluster is separated by Sr1/M1 polyhedron and anionic polyhedron.

It can be seen from the structure diagram that if the doped RE ions occupy both lattice sites, the distance between activator ions is likely to be smaller, which increases the possibility of concentration quenching as discussed above. As shown in Fig. 5b and e, the emission spectrum of Ba3Ca2(PO4)3F:Eu2− contains asymmetrically broad green-emission band from 400 to 650 nm, which is ascribed to the two different sites of Eu2−.14 According to the previous analysis of crystal structure, this spectrum can be decomposed well into two Gaussian bands with peaks centering at 498 and 534 nm, respectively. The Eu2(M2) site will lead to a shorter wavelength band due to the presence of F− anion, so the 498 nm emission comes from the Eu2(M2) site and the 534 nm emission comes from the Eu1(M1) site.10 In contrast, in the host Sr3(PO4)2Cl, the emission spectrum of Eu2− shows a symmetrically narrow emission band from 400 to 500 nm, which indicates that Eu2+ is likely to enter only one of the cation sites and therefore indirectly pull the distance between the same lattices, making the same cationic lattices farther apart and reducing the probability of ET between activator ions.65

According to the above inference, the doping concentration of Eu2+ in Sr3(PO4)2Cl is higher than that in Ba3Ca2(PO4)3F. It can be seen from Fig. 5c and f that in Sr3(PO4)2Cl, with the increase of Eu2+ doping concentration, the luminescence intensity of Ce3+ decreases greatly, while the luminescence intensity of Eu2+ increases sharply. When the doping concentration of Eu2+ reaches x = 0.5, the emission intensity of Eu2+ still does not show a downward trend.65 In contrast, the emission intensity of Ce3+ in Ba3Ca2(PO4)3F decreases with the increase of Eu2+ doping concentration, and the emission intensity of Eu2+ increases.
The intensity of Eu$^{2+}$ increases first and then decreases with the maximum at $x = 0.05$. Therefore, no matter in terms of the QC of Eu$^{2+}$ or the actual ET efficiency of Ce$^{3+}$-to-Eu$^{2+}$, Sr$_5$(PO$_4$)$_3$Cl is superior to Ba$_3$Ca$_2$(PO$_4$)$_3$F. This result proves that the previous inference is correct. The distance between cation lattices does affect the quenching concentration of Eu$^{2+}$ and the ET efficiency of Ce$^{3+}$-to-Eu$^{2+}$. When the cation lattices are far apart, the ET efficiency of Ce$^{3+}$-to-Eu$^{2+}$ is relatively high. It is because the...
probability of ET between the same activator ions is reduced and the concentration quenching effect between activator ions is restricted to some degree.

The layered structure sometimes can be formed by selective occupation of activator ions in several hosts, which thus improves the luminescent properties of phosphors to a certain extent. It will be shown using the crystal structures of Ca$_2$PO$_4$:Cl$^{92}$ and Ca$_2$BO$_3$:Cl$^{55}$ as given in Fig. 6a and d. The Ca$_2$PO$_4$:Cl crystallizes in the orthorhombic system with space group of $Pbcm$, and the crystal structure of Ca$_2$BO$_3$:Cl belongs to the monoclinic system with space group of $P2_1/c$. There are two kinds of cationic sites (Ca1 and Ca2 sites) in Ca$_2$PO$_4$:Cl and Ca$_2$BO$_3$:Cl, as shown in Fig. 6a and d. The Ca1 and Ca2 sites of Ca$_2$PO$_4$:Cl are arranged in layers, while in Ca$_2$BO$_3$:Cl, the Ca1 and Ca2 sites are staggered. If the doped Eu$^{2+}$ enter only one of the lattice sites, the far distance between the lattice sites will lower the probability of ET between activator ions, so the concentration quenching of Eu$^{2+}$ does not occur easily when the doped concentration is low.

It can be seen from Fig. 6b that the emission spectrum of Ca$_2$PO$_4$:Cl:Eu$^{2+}$ ranges from 400 to 530 nm under excitation at 370 nm, and the spectral profile of this emission are symmetrical with a relatively narrow full width at half maximum.$^{92}$ Thus, it is very likely that Eu$^{2+}$ occupies only one of the cationic lattices after entering the host, and the luminescence intensity of Eu$^{2+}$ does not quench when the doping concentration is $y = 0.1$, as can be seen from Fig. 6c.$^{92}$ This further confirms that Ce$^{3+}$–Eu$^{2+}$ system has relatively high ET efficiency due to the relatively high QC of Eu$^{2+}$ caused by the large distance between cationic lattices. However, the emission spectrum of Ca$_3$BO$_5$:Cl:Eu$^{2+}$ contains asymmetrically broad emission band from 450 to 700 nm, which is ascribed to the two different sites of Eu$^{2+}$. It can be seen from the structure diagram (Fig. 6d) that if the doped RE ions occupy both lattice sites, the distance between activator ions will be closer when the concentration of activator ions doped becomes larger. The energy will gradually dissipate due to the ET between different lattice sites and the same lattice sites, so the activator ion quenches when the doping concentration is low. In Ca$_3$BO$_5$:Cl, the luminous intensity of Ce$^{3+}$ decreased with the increase of Eu$^{2+}$, and the luminous intensity of Eu$^{2+}$ increased first and then decreased with its maximum at $x = 0.015$. Therefore, no matter in terms of the QC of Eu$^{2+}$ or the actual ET efficiency from Ce$^{3+}$ to Eu$^{2+}$, Ca$_2$PO$_4$:Cl is superior to Ca$_2$BO$_3$:Cl. This further shows the luminescence properties of phosphors can be improved by selective occupancy of activator ions.

### 3.2 Improving the luminescence properties of Ce$^{3+}$–Eu$^{2+}$ co-doped phosphors by designing layered crystal structure

In addition to the above mentioned way of elective occupation of activator ions, choosing the host with layered crystal structure is also a method to improve the luminescence performance of phosphors. In recent years, many Ce$^{3+}$–Eu$^{2+}$ co-doped hosts with layered structure have been reported, among which BaMg$_2$(PO$_4$)$_2$ (ref. 87) and Ba$_2$Mg(BO$_3$)$_2$ (ref. 86) are two representatives. Although the two hosts are both layered structure,
the crystal structures, the composition of cationic layers, and the distances between layers are all different. As can be seen from Fig. 7c and d, the luminous intensity of Ce$^{3+}$ decreased with increasing Eu$^{2+}$ doping concentration, while the luminous intensity of Eu$^{2+}$ increased first and then decreased. Moreover, the actual ET efficiency from Ce$^{3+}$ to Eu$^{2+}$ in BaMg$_2$(PO$_4$)$_2$ is significantly higher than that in Ba$_2$Mg(BO$_3$)$_2$. Therefore, it is reasonable to speculate that different distances between cationic layers cause different inhibition effects on the quenching of activator ions and thus different actual ET efficiency from Ce$^{3+}$ to Eu$^{2+}$.

In fact, in addition to the above reasons, the critical distance between different hosts also affects QC effect. As shown in Fig. 7b, the distance between the cationic layers (Ba ions and Ba ions) in BaMg$_2$(PO$_4$)$_2$ is 9.691 Å, and the critical distance of ET from Ce$^{3+}$ to Eu$^{2+}$ system is 30.7 Å. When the doping concentration of Eu$^{2+}$ is $x = 0.05$, the luminescence intensity of Eu$^{2+}$ reaches its maximum. In contrast, the distance between the cationic layers (Ba ions and Ba ions) in Ba$_2$Mg(BO$_3$)$_2$ is 6.312 Å, and the critical distance between Ce$^{3+}$ and Eu$^{2+}$ is 27.5 Å. When the doping concentration of Eu$^{2+}$ is $x = 0.025$, the luminescence intensity of Eu$^{2+}$ reaches its maximum. It is obvious that BaMg$_2$(PO$_4$)$_2$ is better than Ba$_2$Mg(BO$_3$)$_2$ in terms of the distance between cationic layers, the critical distance between Ce$^{3+}$ and Eu$^{2+}$ and the QC of Eu$^{2+}$. In addition, the actual ET efficiency from Ce$^{3+}$ to Eu$^{2+}$ in BaMg$_2$(PO$_4$)$_2$ is significantly higher than that in Ba$_2$Mg(BO$_3$)$_2$. It further indicates that for the hosts with similar composition and crystal structure, a greater distance between layers can lower the ET probability caused by the close distance between the layers of the same activated ions, thus inhibiting the concentration quenching of activator ions and leading to higher doping concentration of activator ions. In addition, large critical distance between Ce$^{3+}$ and Eu$^{2+}$ ensures that the doping concentration of activator ions can be effectively increased in the range where the ET from Ce$^{3+}$ to Eu$^{2+}$ can happen, thus making the actual ET efficiency from Ce$^{3+}$ to Eu$^{2+}$ of BaMg$_2$(PO$_4$)$_2$ relatively high.

Although it has been mentioned above that the actual ET efficiency from Ce$^{3+}$ to Eu$^{2+}$ is relatively high in the hosts with layered crystal structure, it does not mean the hosts with layered structure always ensure a high actual ET efficiency of Ce$^{3+}$-to-Eu$^{2+}$. For example, the crystal structures of Ca$_2$Mg$_{0.25}$Al$_{1.5}$Si$_{1.25}$O$_7$ (ref. 46) and Ca$_2$Mg$_{0.5}$Al$_{1.5}$Si$_{1.5}$O$_7$ (ref. 4) as shown in Fig. 8a and b are all layered structures. It can be seen from the emission spectra presented in Fig. 8c and d that the luminous intensity of Ce$^{3+}$ decreased greatly with the increase of Eu$^{2+}$ doping concentration, whereas the Eu$^{2+}$ emission only showed a slight increase, and the total emission intensity decreased. Obviously, the ET efficiency calculated according to the formula $\eta_{ET} = 1 - \frac{I_2}{I_0}$ does not match the spectra.
In order to clarify this problem, we analyzed the crystal structure and the information obtained from the reported literatures, concluding that the crystal structure of these two hosts is a layered structure. Moreover, the distances between each two layers of Ca$_2$Mg$_{0.25}$Al$_{1.5}$Si$_{1.25}$O$_7$ (ref. 46) and Ca$_2$Mg$_{0.5}$Al$_{1.5}$Si$_{1.5}$O$_7$ (ref. 4) are separately 5.05 Å and 5.036 Å, the smallest distances of the layered structure host with connective bonds listed in this paper. Based on the previous discussion, this may be due to the fact that the distance between cationic layers is smaller and the distance between the same cation lattices is closer, thus increasing the probability of ET between activator ions. Therefore, the emission of Eu$^{2+}$ is quenched at low doping concentration. As shown in Fig. 8c and d, the luminescence layer and its actual ET is in the future.

layers are highly recommended when designing new phosphors with layered crystal structure and large spacing between the same cations will be closer, thus increasing the probability of ET of activator ions and makes the quenching concentration quenching of activator ions. Therefore, the hosts with layered crystal structure and large spacing between layers are highly recommended when designing new phosphors in the future.

4. Summary and outlook

To sum up, the effect of crystal structure on the luminescence properties of phosphors is reviewed in this paper. It is found that the actual ET efficiency from Ce$^{3+}$ to Eu$^{2+}$ in the hosts with layered structure is higher than that with non-layered structure. It is because in these hosts with layer structure, the same cation lattice is far apart due to the special crystal structure, thus reducing the probability of ET caused by the close distance between activator ions and making the quenching concentration of activator ions relatively high. Therefore, the actual ET efficiency from Ce$^{3+}$ to Eu$^{2+}$ in these hosts is relatively high. Although the luminescence performance of the hosts with layered crystal structure is excellent, the ET efficiency from Ce$^{3+}$ to Eu$^{2+}$ in some hosts such as Ca$_2$Mg$_{0.25}$Al$_{1.5}$Si$_{1.5}$O$_7$ (ref. 46) and Ca$_2$Mg$_{0.5}$Al$_{1.5}$Si$_{1.5}$O$_7$ (ref. 4) is, however, not so ideal. It is because the spacing between layers is small, and the distance between the cation sites is close, which increases the probability of ET of activator ions and leads to concentration quenching when the doping concentration is small. In addition, it is also found that for some non-layered matrices, the luminescent properties can also be improved by the method of selective occupation of activator ions. By using this method, the crystal structure of hosts can be changed from cluster structure to layered or interstitial structure, which indirectly increases the distance between the same cation sites, restrains the activator ion concentration quenching, and make the emission efficiency of Eu$^{2+}$ is higher, the luminous performance of phosphor material is better.

Over the past decades, great progress has been made in the field of WLED, especially the single-phase WLED excited by the near-ultraviolet radiation. Since the positions of the excited 4f$^5$5d$^1$ state relative to the ground state are strongly influenced by host lattice, the position of emission band depends strongly on the environmental conditions of Eu$^{2+}$ and Ce$^{3+}$ such as coordination number, bond length, crystal field splitting, the nephelauxetic effect, the Stokes shift, the distortion of host lattice and so forth. It thus varies between the near ultraviolet and near infrared spectral range. These works have been reviewed a lot, but there is no general rule applicable to all phosphor systems at present. Exploring the structure-related luminescence mechanism is still the focus of future research.

Although a particular emphasis is placed on Ce$^{3+}$–Eu$^{2+}$ co-doped systems, we believe these theoretical approaches should be readily expandable to other lanthanide-doped systems with the characteristics of 4f–5d optical transitions, such as Ce$^{3+}$–Mn$^{2+}$ and Eu$^{2+}$–Mn$^{2+}$ co-doped systems. In addition, in some Ce$^{3+}$–Eu$^{2+}$ co-doped phosphor, the crystal structure of host not only affects the QC of activator ions and the ET efficiency from Ce$^{3+}$ to Eu$^{2+}$, but also affects the luminous color, thermal stability and quantum efficiency of phosphors. Therefore, these issues are also worthy of exploration, in order to meet different market demand for different performance LED.

It is worth noting that although the design of layered crystal structure and the selective occupation of activator ions can improve the luminescent properties of Ce$^{3+}$–Eu$^{2+}$ co-doped phosphors, these rules do not apply to all Ce$^{3+}$–Eu$^{2+}$ co-doped materials. The luminescence properties of phosphors are related not only to the crystal structure of host, but also to the overlapping degree of excitation spectrum of activator and emission spectra of sensitizer, synthesizing environment of materials, doping concentration of sensitizer and the critical distance between Ce$^{3+}$ and Eu$^{2+}$. In conclusion, despite the many contributions to the development of Ce$^{3+}$–Eu$^{2+}$ co-doped phosphors in recent years, there are still some open questions that need to make further study in the future.

Conflicts of interest

The authors declare no competing financial interest.

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Nos 51672066, 51902080), the Funds for Distinguished Young Scientists of Hebei Province, China (No. A2018201101), and the Natural Science Foundation of Hebei Province, China (No. E2019201223), the personnel training project of Hebei Province, China (No. A201902005).

References


3. S. Liang, P. Dang, G. Li, M. S. Molokeev, Y. Wei, Y. Wei, H. Lian, M. Shang, A. A. Al Kheraif and J. Lin, Controllable two-dimensional luminescence tuning in Eu2+, Mn2+ doped (Ca,Sr)Sc(PO4)3: based on crystal field regulation and energy transfer, J. Mater. Chem. C, 2018, 6, 6714–6725.


13 G. Li, M. Li, L. Li, H. Yu, H. Zou, L. Zou, S. Gan and X. Xu, Luminescent properties of Sr5Al2Si2O7:Ce3+, Eu2+ phosphors...


62 J. Sun, J. Zeng, Y. Sun and H. Du, Photoluminescence properties and energy transfer of Ce³⁺, Eu²⁺ co-doped Sr,Gd(PO₄)₃ phosphor, J. Alloys Compd., 2012, 540, 81–84.


78 X. Meng, X. Jie, Y. Zhang, D. Wang, Y. Wang, P. Li and Z. Wang, Luminescence and energy transfer of Ce³⁺/Eu²⁺ in Ca₅Al(PO₄)₃, Optoelectronics Letters, 2015, 11(1), 45–48.


80 X. Tong, J. Han, Z. Cheng, P. Wu and X. Zhang, Efficient energy transfer induced tunable emission in Ce³⁺ and Eu²⁺ co-doped Ba₁₃Ca₉o₃SiO₄ phosphor, J. Lumin., 2019, 215, 116670.


84 Y. Wang, J. Ding, Y. Wang, X. Zhou, Y. Cao, B. Ma, J. Li, X. Wang, T. Seto and Z. Zhao, Structural design of new Ce³⁺/Eu²⁺-doped or co-doped phosphors with excellent thermal stabilities for WLEDs, J. Mater. Chem. C, 2019, 7, 1792–1820.


86 Z. Pan, J. Xu, C. Zhu, W. Liu and L. Wang, Ba₅Mg(BO₃)₂:Ce³⁺, Eu²⁺,Na⁺: a potential single-phased two...
colour borate phosphor for white light-emitting diodes, *J. Rare Earths*, 2012, 30(11), 1088–1091.

87 Z. Wang, X. Teng, P. Li, J. S. Lee, S. Unithrattil, W. B. Im, S. Ye, F. Xiao, Y. X. Pan and Y. Y. Ma, Luminescence and energy transfer of Ce$^{3+}$–Eu$^{2+}$ in BaMg$_2$(PO$_4$)$_3$, *J. Alloys Compd.*, 2014, 589, 549–552.


90 Z. Zhang and W. Tang, Tunable luminescence and energy transfer of Ce$^{3+}$/Eu$^{2+}$/Mn$^{2+}$-tridoped Sr$_3$MgLa(Po$_4$)$_2$ phosphor for white light LEDs, *J. Alloys Compd.*, 2016, 663, 731–737.

91 H. He, R. Fu a, Y. Cao, X. Song, Z. Pan, X. Zhao, Q. Xiao and R. Li, Ce$^{3+}$, Eu$^{2+}$ energy transfer mechanism in the Li$_2$SrSiO$_4$: Eu$^{2+}$, Ce$^{3+}$ phosphor, *Opt. Mater.*, 2010, 32, 632–636.


94 G. Li, Y. Tian, Y. Zhao and J. Lin, Recent progress in luminescence tuning of Ce$^{3+}$ and Eu$^{2+}$ activated phosphors for pc-WLEDs, *Chem. Soc. Rev.*, 2015, 44(23), 8688–8713.


117 Q. Bai, P. Li, Z. Wang, S. Xu, T. Li and Z. Yang, Tuning of luminescence properties by controlling an aid-sintering additive and composition in Na(Ba/Sr/Ca)PO$_4$: Eu$^{2+}$ for white LEDs, *RSC Adv.*, 2017, 7, 22301–22310.


120 Q. Wu, X. Wang, Z. Zhao, C. Wang, Y. Li, A. Miao and Y. Wang, Synthesis and luminescence characteristics of nitride Ca$_{1-x}$Al$_{2x}$Si$_{12}$N$_{16}$: Ce$^{3+}$, Li$^+$ for light-emitting devices and field emission displays, *J. Mater. Chem. C*, 2014, 2, 7731–7738.


124 Z. Li, Z. Wang, P. Li, J. Cheng, M. Tian, C. Wang and Z. Yang, Improvement of thermal stability and photoluminescence in Sr$_{0.8}$Ca$_{0.2}$Al$_2$Si$_2$O$_8$: Eu$^{2+}$ by the substitution of Si–Na # Al–Sr and Ca # Sr for structural modifications, *Dalton Trans.*, 2017, 46, 14310–14317.


127 H. Zhang, D. Yuan, X. Mi, X. Liu and J. Lin, Color tuning in Ca$_{3-x}$M$_x$(PO$_4$)$_3$: Eu$^{2+}$ (M = Sr, Ba) phosphors via cation substitution, *Dalton Trans.*, 2020, 49, 8949–8958.


129 Z. Wang, Z. Xia, M. S. Molokeev, V. V. Atuchin and Q. Liu, Blue-shift of Eu$^{2+}$ emission in (Ba,Sr)$_5$Lu(PO$_4$)$_3$: Eu$^{2+}$ eutylite solid-solution phosphors resulting from release of neighbouring-cation-induced stress, *Dalton Trans.*, 2014, 43(44), 16800–16804.


134 W. Ji, Z. Xia, K. Liu, S. Alikhan, L. Hao, X. Xu, L. Yin, M. S. Molokeev, S. Agathopoulos, W. Yang, X. Ma, K. Sun and I. Silva, Crystal structure and luminescence properties of a novel green-yellow emitting Ca$_{1.5}$Mg$_{0.5}$Si$_1$-$\text{Li}_x$-$\text{O}_{3x}$: Ce$^{3+}$ phosphor with high quantum efficiency and thermal stability, *Dalton Trans.*, 2018, 47.