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Currently, the mechanism of Ce**—Eu?" ET is frequently used to obtain color adjustable or white
phosphors. Correspondingly, the ET efficiency from Ce3* to Eu?* becomes an important indication of
the luminescent properties of phosphors. However, the ET efficiency calculated using the formula

Ner =1— I—S does not always match the emission spectra; the transmission efficiency of Cce’*is high,
sO

but the emission efficiency of Eu?* is low, depending on our investigation results. In addition to this
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Accepted 20th July 2021 problem, here we mainly review, on the basis of substantial examples, how to boost the actual ET

efficiency of Ce®*-to-Eu* and thus to improve the luminescent properties of phosphors through the

DOI: 10.1039/d1ra04700k rational design of layered crystal structure and the way of selective occupation of activator ions.
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1. Introduction

In recent years, a broad spectrum of new lighting materials has
emerged, and white LED (WLED) materials have gradually
replaced the traditional fluorescent lamps and incandescent
lamps because of their energy-saving, environmental protec-
tion, high efficiency, long life and small size." Due to these
advantages, LEDs can be used in a wide range of areas, not only
in solid state lighting, but also in other electronic devices such
as displays. At present, researchers prefer to obtain color
adjustable phosphors or white light phosphors by rational
design of ET through rare earth (RE) ions co-doping such as
Cee‘*—EuZ*, Ce3+—Mn2+, Eu2+—Mn2+, Ces+_Euz+_Mn2+, Ce**—Th3" -
Mn*" and Ce’"-Tb**-Eu** systems, and so forth.>* Among
these systems, both Ce®* and Eu** can emit 4f-5d transitions.
Because their exposed 5d orbitals are susceptible to the crystal
field environment, the luminescence range of Ce** can vary
from the violet to red, and the spectral coverage of Eu>" can even
range from the ultraviolet to near-infrared, such as that in
K;LuSi,0,.% Therefore, rational design of Ce**-to-Eu®* ET has
become a popular way to obtain white light phosphors.

Over the past decades, many phosphors emitting adjustable
color have been prepared by doping RE ions, and we could draw
a conclusion that there are two main factors affecting the
luminescent properties of phosphors: the kind of activator ions
and the type of hosts. Both are indispensable for phosphors to
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Moreover, the possible physical mechanisms are proposed.

achieve good luminescent properties. First, even for the same
host, different kinds of activator ions will show different
phenomena.'*™ For example, solid state synthesis and tunable
luminescence of Li,SrSiO,:Eu”*/Ce®" phosphors have been re-
ported by Wei et al. Under excitation at 365 nm, the Ce**
exhibits a broad blue emission ranging from 380 to 500 nm
centered at 425 nm, while the Eu** exhibits a broad green
emission in the range of 480-680 nm with center at 556 nm.*
Synthesis, luminescence and ET of Ce**-to-Eu®" of SrSc,04:Ce*"/
Eu®" phosphors have been reported by Zhao et al. Under exci-
tation at 440 nm, SrSc,0,:Ce*" shows a green emission peaking
at ~535 nm, and the spectral coverage ranges from 475 to
675 nm. Under excitation at 523 nm, SrSc,04:Eu>* shows a red
emission ranging from 650 to 775 nm with center at ~702 nm.**
Photoluminescence, ET and tunable color of Ce*'/Tb*"/Eu*
activated oxynitride phosphor with high brightness has been
reported by Lv et al. CazAlgSi,0,,N,:Ce*" shows a blue emission
centering at 420 nm in the range of 340-525 nm, under exci-
tation at 330 nm. And Ca;AlgSi,0,,N,:Eu** shows a blue emis-
sion in the range of 400-550 nm with center at 450 nm under
excitation at 350 nm.?*> It can be seen that in the same host,
different kinds of activator ions lead to different luminescence
phenomenon.

In addition to the type of activator ions, the choice of host
also has an impact on the luminescent properties of phos-
phors.?* Eu®" is a significant activator for luminescent
materials because of its unique emission properties, so it has
been researched in many hosts, as proved by the abundant
examples such as K;LuSi,O,:Eu®*, NaAlSiO,:Eu®*, Ca,Al;06-
F:Eu®", K,BaCa(PO,),:Eu**, SroMg; 5(PO,),:Eu*", etc.15,41-44
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First of all, with the variation of hosts, the emission wave-
length of Eu”" can change from the near-ultraviolet to near-
infrared. Secondly, the thermal stability of phosphor mate-
rials is different in different hosts, which can be proved by the
phosphors of KBa,(PO3)s (ref. 45) and Ca,Al;O4F (ref. 42) re-
ported by Zhao and Xia, respectively. According to these two
papers, the PL intensity of Ca,Al;O¢F:Eu”" at 150 °C is only
about 39% of its initial value (25 °C), but the PL intensity of
KBa,(PO;)s:Eu®" at 150 °C retains 97% of its initial value.*>*3
In addition to the luminous color and the temperature
stability of phosphors, host will also affect the quantum
efficiency of phosphors. For example, in host CaAlSiNj3, the
quantum efficiency of Eu** is as high as 95%, but in host
Ca,Mg(Si0,)s, the quantum efficiency of Eu”" is only 30%.%*%°
Therefore, the effect of crystal field environment on the
luminescence properties of Eu®" is significant, including the
position and half-peak width of luminescence, as well as the
temperature stability and quantum efficiency of phosphors.
From the above discussion, we can conclude that host
composition and crystal structure have a great effect on the
luminescence properties of Eu*"-singly doped phosphors, and
in fact, for Ce**-Eu** co-doped phosphors, these factors also
play a key role. The luminescence properties and ET mechanism
of Ce**-to-Eu”* have been analyzed by some research groups.***
For instance, the ET processes of Ce*"-to-Eu*" in Ca,P0O,Cl,*
BazCa,(PO,);F" and BazY(PO,); (ref. 93) were once studied by
our group. The overlaps between the emission spectra of Ce**
and the excitation spectra of Eu*", the luminescence intensity
and fluorescence lifetime of Ce** with changing the Eu®>" doping
concentration were investigated in detail. After years of study in
this field, we have a deeper understanding of the luminescence
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performance and ET mechanism of many Ce**-Eu”" co-doped
systems, and therefore putting forward the guiding ideology
of improving the application of WLED. Despite the progress,
there are still some problems to be further explored. Generally,
the ET efficiency of Ce*"-to-Eu®" is calculated based on the
luminescence intensity of Ce®* together with the formula

I . . .
Ner =1 — I—s Sometimes, this calculated result is in accord
s0

with the emission spectra of Ce*" and Eu®". For example, in the
hosts Ba,MgSi,0,%* BazSig01,N, (ref. 49) and BaMg,(PO,),,*
their ET efficiency was calculated to be 90%, corresponding well
to the emission spectra that the luminous intensity of Ce**
decreased significantly and the luminous intensity of Eu**
increased obviously. However, in the hosts such as LiSr,(-
BO3)3,”? BazY(PO,)3,”* NasCaAl(PO,)4,*® although the ET effi-
ciency of Ce**-to-Eu®" was calculated to be 80% according to the

I, . . ..
formula 7z =1 — —, it does not agree with the emission
I

s0
spectra of Eu®** which did not increase correspondingly.

Therefore, it is worth considering and exploring whether this
phenomenon is related to the crystal structure and composition
of host. If this problem can be solved, it may provide some clues
and ideas when designing and selecting new Ce**-Eu*" and
even other RE ions co-doped materials.

2. Subject source

So far, there have some useful reviews summarizing on the
Ce*"~Eu*" doped pc-WLED phosphors for solid-state lighting
and displays such as those by Li,** Terraschke & Wickleder,**
Xia,”**” Qiao,”*** Qin,'*® Wang,'** Lin,'** Li'® et al. Especially,
several recent reviews and articles have systematically

Table 1 Layer spacing, crystal structure, space group, and photoluminescence properties of Ce3*—Eu®* co-doped layered structured lumi-

nescent materials

Layered structure

Mechanism

Compound L(A) Crystal structure  Space group  Aem (Ce®)  Aem (Bu?*) X, (Eu*") R.(A)  of ET Ref.
BaMg,(PO,), 9.691 Trigonal P1 412 nm 447 nm 0.05 30.7 d-d 87
Ba,; ,Ca( gSi0, 7.352 Trigonal P3m2 385 nm 450 nm 0.02 17.11 80
SrSi,O,N, 7.231 Trigonal P1 395 nm 530 nm 0.02 26.05 d-d 17
Ba;Sig01,N, 6.784 Trigonal P3 393 nm 526 nm 0.01 25.11 d-d 49
Li,SrSiO, 5.522 Trigonal pP3 420 nm 570 nm 0.01 27.62 20
Ba;Sis0oN, 6.784  Trigonal P3 420 nm 520 nm 0.005 24.86  d-d 59
Ba,MgSi, 0, 5.406 Tetragonal P421m 560 nm 0.04 63
Sr,Al,Si0, 5.264 Tetragonal P421m 415 nm 510 nm 0.03 18.3 d-d 57
Ca,Mgy 254l 551 2507 5.05 Tetragonal P421m 409 nm 520 nm 0.025 d-d 46
Ca,Mgy 5AlSi; 505 5.036 Tetragonal P421m 410 nm 525 nm 0.015 26.71 d-d 4
CagMg;Al,Si,0,¢ 5.029 Tetragonal P4a21m 535 nm 0.01 40
BaSi,O,N, 7.592 Orthorhombic Pbcn 390 nm 495 nm 0.05 24.87 d-d 79
Ba,Si0, 7.513 Orthorhombic Pmcn 505 nm 0.03 39
Sr,Si0, 6.148 Orthorhombic Pmnb 406 nm 469 nm 0.01 24
CaAlSiN, 5.636 Orthorhombic Cmc24 580 nm 650 nm 0.008 22.75 d-d 85
Ba,ZnS; 4.21 Orthorhombic Pnam 498 nm 660 nm 0.008 32.7 d-d 77
Ba,Sig06 6.983 Monoclinic P1241 442 nm 497 nm =0.025 66
LiBaBO; 6.416 Monoclinic P124/cy 430 nm 530 nm 0.02 25.06 70
Ca,SisNg 6.991 Monoclinic Clcl 465 nm 595 nm 0.0035 22.27 d-d 50
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introduced the design, the optical properties and the applica-
tion of pc-WLED phosphors with the emphasis on the depen-
dence of luminescence properties on the crystal structure and
composition of host.'**** Different from these work, here we
provide a new perspective to review the recent reports. In order
to find out the reason why the ET efficiency calculated according
to the formula 7z = 1 — == does not match the Eu®>"'s emission
spectra, we have careful{ifo investigated the crystal structure,
luminescence location, quenching concentration and other
related information of many hosts, as exhibited in Tables 1 and
2. As the hosts with similar crystal structure and composition
have similar luminescent phenomenon, so we focus on the
crystal structure of these hosts. Moreover, it was found that the
actual ET efficiency of Ce*-to-Eu”* in the hosts with layered
crystal structure is higher than those with non-layered crystal
structure. Based on these results, the crystal structures of all
hosts involved in this paper are then divided into two cate-
gories: layered structure and non-layered structure, in the
following discussion.

As shown in Fig. 1, for the hosts with layered crystal struc-
ture, high, medium and low actual ET efficiency of Ce**-to-Eu**
separately make up 65%, 20% and 15% of the whole cases. In
contrast, high, medium and low actual ET efficiency of Ce**-to-
Eu®" make up 31%, 24% and 45% of all the hosts with non-
layered crystal structure, respectively. It is obvious that the
actual ET efficiency of Ce*'-to-Eu®" in the hosts with layered
crystal structure is significantly higher than that with non-
layered crystal structure.

According to previous reports, in the host with layered crystal
structure, the quenching concentration is relatively large, which

Table 2 Crystal structure, space group, and photoluminescence properties of Ce

materials
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indicates that this structure can inhibit the quenching effect of
activated ions to a certain extent. For the hosts with layered
crystal structure, the cation layer is separated by other anion
groups or other cationic polyhedrons, thus widening the
distance between the same cationic sites. According to the
diagram of concentration quenching process (Fig. 2), we found
that when the doping concentration of activator ions is rela-
tively low, the average distance of activators is relatively large.
Under such conditions, it is hardly any interaction between
activators, so less ions forms one luminescence center that is
shown in the left part of Fig. 2. With the increase of activator
ions concentration, the distance between activator ions is
shortened, which thus increases the probability of ET, causing
the energy loss of activator ions through ET step by step, thus
multiple ions will form one equivalent luminescence center that
is shown in the right part of Fig. 2.° Due to the particularity of
crystal structure, the distance between the same cations in the

Layered structure

Non-layered structure

Low n<30%

e 45%
I Medium  n>50%

—

n>80% [

M High

Fig. 1 The proportion of the host with high, medium and low ET
efficiency in the hosts with layered and non-layered crystal structure.

3*_Eu?* co-doped non-layered structured luminescent

Non-layered structure

Mechanism
Compound Crystal structure ~ Space group  Aem (Ce*)  Jem (EU™) X, (Eu>) R.(A) ofET Lattice site of Eu**  Ref.
Ca,P0O,Cl Orthorhombic Pbcm 370 nm 460 nm 0.07 14.7 d-d Cal 92
SrSc,0, Orthorhombic Pnam 535 nm 702 nm 0.04 14.498 d-d Sr 21
BaSiO; Orthorhombic P2,2,2, 404 nm 570 nm 0.02 Ba 48
SrB,Si,0g Orthorhombic Pnma 373 nm 440 nm 0.01 25.82 d-d Sr 51
Cay 6597035510,  Orthorhombic P2.cn 465 nm 538 nm 17 d-d Sr1 to Sr6 88
Ca;MgSi,0g Monoclinic P24/a 400 nm 470 nm 0.03 18.64 d-d Ca 60
Ca;Si, 05 Monoclinic P12,/a, 490 nm 625 nm 0.0125 13.7 d-d Cal to Ca3 75
Ca,(P0,),0 Monoclinic P112, 460 nm 356 nm 0.01 23.8 d-d Cal to Ca8 83
Sr,LiSiO4F Monoclinic P2,/m11 400 nm 465/520 nm  0.0075 Sr1 and Sr2 74
Ca,BO;Cl Monoclinic P2,/c 410 nm 573 nm 0.015 d-d Cal and Ca2 55
Ca3Si0,Cl, Monoclinic P24/c 400 nm 505 nm 0.006 Ca 67
Sr5(PO,);5Cl Hexagonal P6;/m 370 nm 443 nm 0.1 21 d-d Sr2 65
LasSi,BO; 3 Hexagonal P6;/m 380 nm 519 nm 0.05 10.66 Lal and La2 54
BazCay(POs3):F Hexagonal P63/m 387 nm 508 nm 0.05 17.506 d-d M1 and M2 10
Ca,Y0(Si0,)s Hexagonal P6;/m 426 nm 527 nm 0.1 18.7 d-d — 69
CagAl(PO,); Trigonal R3c 356 nm 445 nm 0.01 12.64 d-d Ca 78
Sr3B,0¢ Trigonal R3ch 434 nm 574 nm 0.002 30.7 d-d Sr1 and Sr2 53
CagY(PO,), Trigonal R3¢ 342 nm 493 nm 0.005 30.644 d-d Calto Ca3, Y 52
LiSr,(BO3)3 Cubic Ia3d 423 nm 612 nm 0.004 29.14 d-d Sr1 and Sr2 72
Sr;Gd(PO,); Cubic 143d 374 nm 518 nm 0.01 32.02  d-d Sr/Gd 62
BazY(PO,)3 Cubic 143d 398 nm 520 nm 0.01 19.5 d-d Ba/La 93
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Fig. 2 Diagram of concentration quenching process.

hosts with layered crystal structure is far, therefore reducing the
probability of ET of activator ions and make the emission effi-
ciency of Eu** is higher.

In order to find out the further explanation, the hosts with
layered crystal structure listed above are investigated in detail.
Owing to the special layered crystal structure, the same cations
are far apart from each other, which effectively inhibits the
concentration quenching effect of activator ions. So for the
layered structure, the larger the spacing between layers (L) is,
the more obvious the effect of inhibiting the concentration

View Article Online
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quenching of activator ions is. And then, the higher the doping
concentration of activator ions is, the greater the luminous
intensity is. Since the activator ion Eu®" is sensitive to the
changes of surrounding crystal field environment, the
quenching concentration (QC) of activator ion is expected to
change when changing the spacing between layers (L). The
hosts with layered crystal structure can be divided into three
categories according to crystal system: tetragonal, trigonal and
orthorhombic (Fig. 3a-c). All the hosts listed in Fig. 3a are
tetragonal with space group P421m, those listed in Fig. 3b are
trigonal with space group P3 or P1, and the hosts listed in Fig. 3¢
are all orthorhombic. The insets in Fig. 3a and b are the crystal
structure diagrams of hosts seen from different directions. In
Fig. 3c, although the hosts are all layered structures, they can be
divided into the layered structures with and without connecting
bonds due to different space groups. It can be seen from Fig. 3
that the QC of Eu®" increases with the increase of spacing
between layers (L) in the same crystal system. It is further proved
that with the increase of distance between the cationic sites
occupied by activator ions, the effect of inhibiting the concen-
tration quenching of activator ion becomes greater. Therefore,

() Tetragonal (b) Trigonal (©) Orthorhombic
Ba,MgSi,0_x 0.05 m BaMg,(PO,), ¢ — :: : ' : BaSi,0,N,
" s 4 0,0 - P B o3
R0.03 *Brasio, |Z 0 | 32 845 o4 - 04 )
o — A A «0.030] °? 08 - 9® Ba,SiO,
s A A 20.03 s
o 2,Mg, ,5A18i; 550, o . - |l
ooz / o [Conl PS5 o O 54
y - SrSi,0,N, A 0.015 .
7 Ca,Mg, ;AlSi, O, | A /’B/a:,SiﬁOlzzNz2 ? Q Cailifé/@ SrzSi04m
. . o 4 =
0.01{ *Ca,Mg,ALSi,0,, 0011 #1iisrsio, =l 0000 00, ) ¢ >4
50 51 52 53 54 5 6 7 8 9 10 5 6 7 8
L L

L

Fig. 3 The relationship between the spacing between layers (L) and the QC of Eu?* in (a) tetragonal, (b) trigonal and (c) orthorhombic host.
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Fig. 4 Effect of selective occupancy of activator ions on the QC of Eu?* in non-layered hosts.
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the doping concentration of activator ions becomes higher and
the luminescence property of phosphors becomes better.

It should be noticed, however, that the luminescence prop-
erties of some hosts with non-layered structure are also excel-
lent, which can be explained as follows. Some of the hosts with
non-layered structure are separated by the surrounding anionic
groups, while others have gaps between the same cations by
means of the selective occupancy of activator ions, which is
called the interstitial structure. This structure can also indi-
rectly increase the distance between the same cationic sites,
followed by the inhabitation of the quenching effect of activator
ions and the increase of doping concentration of activator ions.
As shown in Fig. 4, the 21 hosts listed can be divided into five
categories according to their crystal systems: orthorhombic,
hexagonal, cubic, monoclinic and trigonal. And the proportions
of these five crystal systems are 23.81%, 19.05%, 14.29%,
28.57% and 14.29%, respectively. In Fig. 4, different colors
represent different crystal systems. For the hosts within the
same crystal system, the unshadowed portion represents the
host with interstitial structure, while the shadowed portion
represents the host whose crystal lattice is occupied by activator
ions that is tightly connected (we call it the cluster structure). It
can be seen from the diagram that the QC of activator ions in
the interstitial structure is higher than that in the cluster
structure for all crystal systems. This further demonstrates that
the larger the distance between the cationic sites occupied by
the activator ions is, the greater the effect of inhibiting the
concentration quenching of activator ions is. And then, the
greater the doping concentration of activator ions is, the better
the luminescence property of phosphors is.

As is well known, the emitting intensity of activator ions will
be weak if the doping concentration is quite small. Therefore,
inhibiting the concentration quenching of activator ions can
increase the doping concentration of activator ions, thus
enhancing the intensity of luminescence. Based on this
conclusion, we found that the design of layered crystal structure
and the selective occupation of activator ions can inhibit the
concentration quenching of activator ions and improve the
luminescent properties of Ce**~Eu®" co-doped phosphors to
some extent. Next, we will take some reported hosts as an
example for specific analysis.

3. Effects of crystal structure on
luminescence properties of Ce>*—Eu?*
co-doped phosphors

3.1 Improving luminescence performance of Ce**-Eu®" co-
doped phosphors by designing selective occupancy of
activator ions

A large amount of Ce**, Eu®" singly-doped and Ce*'-Eu”" co-
doped phosphors have been reported. According to these
reports, Ce®* and Eu®*" are sensitive to the changes of
surrounding crystal field environment. Specifically, their lumi-
nescence location, spectral range, quenching concentration and
thermal stability will be different with the variations of crystal
field environment. Therefore, it is a common way to adjust the

26358 | RSC Adv, 2021, 11, 26354-26367
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luminescent properties of phosphors by changing the crystal
field environment around activator ions. In particular, the
method of improving the luminescent properties of phosphors
by designing the occupation sites of activator ions has been
intensively studied."”” "3

Since the luminescent properties of Ce** or Eu*"-singly
doped phosphors can be improved by the method of activator
ion selective occupation, the luminescence properties of Ce*'-
Eu®" co-doped phosphors is also expected to be improved using
the same way. Currently, a large number of Ce*-Eu*" co-
activated halogenated phosphate hosts have been found. Bas-
Ca,(PO,);F* and Sr5(PO,);Cl*® are two representatives, and both
of them belong to the apatite structure system. As shown in
Fig. 5a and d, the crystal structure of them belongs to the
hexagonal system with P6;/m space group. There are two kinds
of cationic sites in BazCa,(PO,);F, which are signed as M1(Ca1/
Ba1l) and M2(Ca2/Ba2) to facilitate the following discussion. The
M1 sites are surrounded by nine oxygen anions with local
symmetry C;, forming a tricapped trigonal prism. The M2 sites
are seven-fold coordinate surrounded by six oxygen anions and
one fluorine anion with Cs point group symmetry. While in
Sr5(P0O,);Cl, the cationic sites are signed as Sr1 and Sr2. From
Fig. 5a and d we can see that each Sr1/M1 sites is surrounded by
anionic polyhedron and Sr2/M2, every three Sr2/M2 poly-
hedrons form a cluster with F~ ion through the vertex angle,
and each cluster is separated by Sr1/M1 polyhedron and anionic
polyhedron.

It can be seen from the structure diagram that if the doped
RE ions occupy both lattice sites, the distance between activator
ions is likely to be smaller, which increases the possibility of
concentration quenching as discussed above. As shown in
Fig. 5b and e, the emission spectrum of Ba;Ca,(PO,);F:Eu”*
contains asymmetrically broad green-emission band from 400
to 650 nm, which is ascribed to the two different sites of Eu*".*
According to the previous analysis of crystal structure, this
spectrum can be decomposed well into two Gaussian bands
with peaks centering at 498 and 534 nm, respectively. The
Eu2(M2) site will lead to a shorter wavelength band due to the
presence of F~ anion, so the 498 nm emission comes from the
Eu2(M2) site and the 534 nm emission comes from the Eu1(M1)
site.’ In contrast, in the host Sr5(PO,);Cl, the emission spec-
trum of Eu*>" shows a symmetrically narrow emission band from
400 to 500 nm, which indicates that Eu*" is likely to enter only
one of the cation sites and therefore indirectly pull the distance
between the same lattices, making the same cationic lattices
farther apart and reducing the probability of ET between acti-
vator ions.*

According to the above inference, the doping concentration
of Eu®" in Sr5(PO,);Cl is higher than that in BazCa,(PO,)sF. It
can be seen from Fig. 5c¢ and f that in Sr5(PO,);Cl, with the
increase of Eu** doping concentration, the luminescence
intensity of Ce®* decreases greatly, while the luminescence
intensity of Eu** increases sharply. When the doping concen-
tration of Eu®" reaches x = 0.5, the emission intensity of Eu**
still does not show a downward trend.®® In contrast, the emis-
sion intensity of Ce®" in BazCa,(PO,);F decreases with the
increase of Eu®*" doping concentration, and the emission

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (a) The crystal structure of BasCa,(PO4)sF. (b) The PL spectra of BazCay(PO.4)sF:EU* phosphors (c) the PL spectra of a series of Baz-
Capn(PO.)sF:0.1Ce3* xEu* phosphors with different Eu?* concentrations excited at 287 nm. The inset shows the emission intensity of Ce** and
Eu?* with the increase of Eu?* concentration in BazCax(PO4)sF phosphors. (d) The crystal structure of Srs(PO,)sCl. (€) The PL spectra of Srs(-
PO4)sCLEU?* phosphors. (f) The PL spectra of a series of Srs(PO4)sCl:0.01Ce>* xEu?* phosphors with different Eu?* concentrations excited at
317 nm. The inset shows the emission intensity of Ce>" and Eu?* with the increase of Eu?* concentration in Srs(PO.4)sCl phosphors. (Reproduced
with permission from ref. 10 and 65, copyright 2013, 2017, J. Mater. Chem. C, J. Alloys Compd.)

intensity of Eu®" increases first and then decreases with the inference is correct. The distance between cation lattices does
maximum at x = 0.05.° Therefore, no matter in terms of the QC  affect the quenching concentration of Eu** and the ET efficiency
of Eu®" or the actual ET efficiency of Ce**-to-Eu®", Sr5(PO,);Clis  of Ce*'-to-Eu®". When the cation lattices are far apart, the ET
superior to Ba;Ca,(PO4);F. This result proves that the previous efficiency of Ce**-to-Eu”" is relatively high. It is because the
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Fig. 6 (a) The crystal structure of Ca,PO4CLl (b) The PL spectra of CapPO4CLEU?Y phosphors. (c) The PL spectra of a series of Ca,POg4-
Cl:0.03Ce>* yEu?* phosphors with different Eu* concentrations excited at 370 nm. The inset shows the ET efficiency as a function of Eu?*
concentration in Ca,PO4Cl phosphors. (d) The crystal structure of Ca,BO=CL. (e) The PL spectra of Ca,BOsCl:Eu?* phosphors. (f) The PL spectra
of a series of Ca,BOzCl:0.006Ce>* yEu* phosphors with different Eu?* concentrations excited at 320 nm. (Reproduced with permission from
ref. 92 and 55, copyright 2014, 2019, RSC Adv., J. Mater. Sci.: Mater. Electron.)
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probability of ET between the same activator ions is reduced
and the concentration quenching effect between activator ions
is restricted to some degree.

The layered structure sometimes can be formed by selective
occupation of activator ions in several hosts, which thus
improves the luminescent properties of phosphors to a certain
extent. It will be shown using the crystal structures of Ca,PO,-
CI*> and Ca,BO;CI*® as given in Fig. 6a and d. The Ca,PO,Cl
crystallizes in the orthorhombic system with space group of
Pbcm, and the crystal structure of Ca,BO;Cl belongs to the
monoclinic system with space group of P2,/c. There are two
kinds of cationic sites (Cal and Ca2 sites) in Ca,PO,Cl and
Ca,B0;Cl, as shown in Fig. 6a and d. The Cal and Ca2 sites of
Ca,PO,Cl are arranged in layers, while in Ca,BO;Cl, the Cal and
Ca2 sites are staggered. If the doped Eu** enter only one of the
lattice sites, the far distance between the lattice sites will lower
the probability of ET between activator ions, so the concentra-
tion quenching of Eu** does not occur easily when the doped
concentration is low.

It can be seen from Fig. 6b that the emission spectrum of
Ca,PO,Cl:Eu** ranges from 400 to 530 nm under excitation at
370 nm, and the spectral profile of this emission are symmet-
rical with a relatively narrow full width at half maximum.**
Thus, it is very likely that Eu** occupies only one of the cationic
lattices after entering the host, and the luminescence intensity
of Eu”* does not quench when the doping concentration is y =
0.1, as can be seen from Fig. 6¢.°” This further confirms that
Ce**-Eu®" system has relatively high ET efficiency due to the
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relatively high QC of Eu®** caused by the large distance between
cationic lattices. However, the emission spectrum of Ca,BO;-
Cl:Eu** contains asymmetrically broad emission band from 450
to 700 nm, which is ascribed to the two different sites of Eu**.5>
It can be seen from the structure diagram (Fig. 6d) that if the
doped RE ions occupy both lattice sites, the distance between
activator ions will be closer when the concentration of activator
ions doped becomes larger. The energy will gradually dissipate
due to the ET between different lattice sites and the same lattice
sites, so the activator ion quenches when the doping concen-
tration is low. In Ca,BO;Cl, the luminous intensity of Ce**
decreased with the increase of Eu®>*, and the luminous intensity
of Eu*" increased first and then decreased with its maximum at
x = 0.015.%° Therefore, no matter in terms of the QC of Eu*" or
the actual ET efficiency from Ce®" to Eu®*, Ca,PO,Cl is superior
to Ca,BO;Cl. This further shows the luminescence properties of
phosphors can be improved by selective occupancy of activator
ions.

3.2 Improving the luminescence properties of Ce**~Eu”* co-
doped phosphors by designing layered crystal structure

In addition to the above mentioned way of elective occupation
of activator ions, choosing the host with layered crystal struc-
ture is also a method to improve the luminescence performance
of phosphors. In recent years, many Ce*'-Eu®* co-doped hosts
with layered structure have been reported, among which
BaMg,(PO,), (ref. 87) and Ba,Mg(BO;), (ref. 86) are two repre-
sentatives. Although the two hosts are both layered structure,

Fig. 7
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BaMg,(PO4), and BaMg(BOs),. (c) The crystal structure of Ba,Mg(BOs),. (d) The photoluminescence emission (PL) spectra of a series of
BaMg,(PO4),:3%Ce>" x%Eu?* phosphors with different Eu?* concentrations excited at 323 nm. The inset shows the ET efficiency as a function of

Eu?* concentration in BaMg,(PO,)» phosphors. (e) PL spectra of a series

of Ba;Mg(BOx),:2%Ce>* x%Eu?*,2%Na* phosphors with different Eu?*

concentrations excited at 296 nm. (Reproduced with permission from ref. 87 and 86, copyright 2014, 2012, J. Alloys Compd., J. Rare Earths.)
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the crystal structures, the composition of cationic layers, and
the distances between layers are all different. As can be seen
from Fig. 7c and d, the luminous intensity of Ce*" decreased
with increasing Eu** doping concentration, while the luminous
intensity of Eu®" increased first and then decreased. Moreover,
the actual ET efficiency from Ce®*" to Eu®>" in BaMg,(PO,), is
significantly higher than that in Ba,Mg(BO;),.***” Therefore, it
is reasonable to speculate that different distances between
cationic layers cause different inhibition effects on the
quenching of activator ions and thus different actual ET effi-
ciency from Ce*" to Eu*"

In fact, in addition to the above reasons, the critical distance
between different hosts also affects QC effect. As shown in
Fig. 7b, the distance between the cationic layers (Ba ions and Ba
ions) in BaMg,(PO,), is 9.691 A, and the critical distance of ET
from Ce’* to Eu*" system is 30.7 A. When the doping concen-
tration of Eu®" is x = 0.05, the luminescence intensity of Eu**
reaches its maximum.®” In contrast, the distance between the
cationic layers (Ba ions and Ba ions) in Ba,Mg(BO;), is 6.312 A,
and the critical distance between Ce*" and Eu®" is 27.5 A. When
the doping concentration of Eu®" is x = 0.025, the luminescence
intensity of Eu®" reaches its maximum.® It is obvious that
BaMg,(PO,), is better than Ba,Mg(BOs3) in terms of the distance
between cationic layers, the critical distance between Ce*" and
Eu”" and the QC of Eu*". In addition, the actual ET efficiency
from Ce** to Eu®" in BaMg,(PO,), is significantly higher than
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that in Ba,Mg(BOj3),. It further indicates that for the hosts with
similar composition and crystal structure, a greater distance
between layers can lower the ET probability caused by the close
distance between the layers of the same activated ions, thus
inhibiting the concentration quenching of activator ions and
leading to higher doping concentration of activator ions. In
addition, large critical distance between Ce** and Eu®" ensures
that the doping concentration of activator ions can be effectively
increased in the range where the ET from Ce*" to Eu** can
happen, thus making the actual ET efficiency from Ce** to Eu**
of BaMg,(PO,), relatively high.

Although it has been mentioned above that the actual ET
efficiency from Ce®" to Eu®" is relatively high in the hosts with
layered crystal structure, it does not mean the hosts with layered
structure always ensure a high actual ET efficiency of Ce**-to-
Eu®’. For example, the crystal structures of Ca,Mgg,sAl; s
Si; 550, (ref. 46) and Ca,Mgy sAl; 5Si; 505 (ref. 4) as shown in
Fig. 8a and b are all layered structures. It can be seen from the
emission spectra presented in Fig. 8c and d that the luminous
intensity of Ce®* decreased greatly with the increase of Eu**
doping concentration, whereas the Eu®>" emission only showed
a slight increase, and the total emission intensity decreased.
Obviously, the ET efficiency calculated according to the formula

I
Ner =1— I—s does not match the spectra.
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In order to clarify this problem, we analyzed the crystal
structure and the information obtained from the reported
literatures, concluding that the crystal structure of these two
hosts is layered structure. Moreover, the distances between each
two layers of Ca,Mgy 25Al; 55142507 (ref. 46) and Ca,Mg, 5Al, 5
Si; 50 (ref. 4) are separately 5.05 A and 5.036 A, the smallest
distances of the layered structure hosts with connective bonds
listed in this paper. Based on the previous discussion, this may
be due to the fact that the distance between cationic layers is
smaller and the distance between the same cation lattices is
closer, thus increasing the probability of ET between activator
ions. Therefore, the emission of Eu®>* is quenched at low doping
concentration. As shown in Fig. 8c and d, the luminescence
intensity of Eu** decreased with increasing doping concentra-
tion, which further verifies that even if the crystal structure of
a host with high calculated ET efficiency from Ce** to Eu*" is
layered, its actual ET efficiency might be relatively low due to the
small distance between layers. Therefore, not every host with
layered crystal structure has good luminescence performance.
When the spacing between layers is small, the distance between
the same cations will be closer, thus increasing the probability
of concentration quenching of activator ions. Therefore, the
hosts with layered crystal structure and large spacing between
layers are highly recommended when designing new phosphors
in the future.

4. Summary and outlook

To sum up, the effect of crystal structure on the luminescence
properties of phosphors is reviewed in this paper. It is found
that the actual ET efficiency from Ce*" to Eu®" in the hosts with
layered structure is higher than that with non-layered structure.
It is because in these hosts with layered structure, the same
cation lattice is far apart due to the special crystal structure,
thus reducing the probability of ET caused by the close distance
between activator ions and making the quenching concentra-
tion of activator ions relatively high. Therefore, the actual ET
efficiency from Ce®** to Eu®" in these hosts is relatively high.
Although the luminescence performance of the hosts with
layered crystal structure is excellent, the ET efficiency from Ce**
to Eu®" in some hosts such as Ca,Mg ,5Al; 5Si; 550 (ref. 46) and
Ca,Mg sAlL, 5Si; 50, (ref. 4) is, however, not so ideal. It is
because the spacing between layers is small, and the distance
between the cation sites is close, which increases the probability
of ET of activator ions and leads to concentration quenching
when the doping concentration is small. In addition, it is also
found that for some non-layered matrices, the luminescent
properties can also be improved by the method of selective
occupation of activator ions. By using this method, the crystal
structure of hosts can be changed from cluster structure to
layered or interstitial structure, which indirectly increases the
distance between the same cation sites, restrains the activator
ion concentration quenching, and make the emission efficiency
of Eu** is higher, the luminous performance of phosphor
material is better.

Over the past decades, great progress has been made in the
field of WLED, especially the single-phase WLED excited by the

26362 | RSC Adv, 2021, 11, 26354-26367
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near-ultraviolet radiation. Since the positions of the excited
4f°5d" state relative to the ground state are strongly influenced
by host lattice, the position of emission band depends strongly
on the environmental conditions of Eu*" and Ce*" such as
coordination number, bond length, crystal field splitting, the
nephelauxetic effect, the Stokes shift, the distortion of host
lattice and so forth. It thus varies between the near ultraviolet
and near infrared spectral range. These works have been
reviewed a lot, but there is no general rule applicable to all
phosphor systems at present. Exploring the structure-related
luminescence mechanism is still the focus of future research.

Although a particular emphasis is placed on Ce**-Eu*" co-
doped phosphors, we believe these theoretical approaches
should be readily expandable to other lanthanide-doped
systems with the characteristics of 4f-5d optical transitions,
such as Ce**-Mn** and Eu®**-Mn>" co-doped systems. In addi-
tion, in some Ce*-Eu** co-doped phosphor, the crystal struc-
ture of host not only affects the QC of activator ions and the ET
efficiency from Ce** to Eu**, but also affects the luminous color,
thermal stability and quantum efficiency of phosphors. There-
fore, these issues are also worthy of exploration, in order to
meet different market demand for different performance LED.

It is worth noting that although the design of layered crystal
structure and the selective occupation of activator ions can
improve the luminescent properties of Ce*'-Eu®>" co-doped
phosphors, these rules do not apply to all Ce**~Eu** co-doped
materials. The luminescence properties of phosphors are
related not only to the crystal structure of host, but also to the
overlapping degree of excitation spectrum of activator and
emission spectra of sensitizer, synthesizing environment of
materials, doping concentration of sensitizer and the critical
distance between Ce®*" and Eu®". In conclusion, despite the
many contributions to the development of Ce*"~Eu®* co-doped
phosphors in recent years, there are still some open questions
that need to make further study in the future.
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