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As electronic devices tend to be integrated and high-powered, thermal conductivity is regarded as the
crucial parameter of electronic components, which has become the main factor that limits the operating
speed and service lifetime of electronic devices. However, constructing continuous thermal conductive
paths for low content particle fillers and reducing interface thermal resistance between fillers and matrix
are still two challenging issues for the preparation of thermally conductive composites. In this study, 3D-
oriented carbon fiber (CF) thermal network structures filled with boron nitride flakes (BN) as thermal
conductive bridges were successfully constructed. The epoxy composite was fabricated by thermal
conductive material with a 3D oriented structure by the vacuum liquid impregnation method. This
special 3D-oriented structure modified by BN (BN/CF) could efficiently broaden the heat conduction
pathway and connected adjacent fibers, which leads to the reduction of thermal resistance. The thermal
conductivity of the boron nitride/carbon fiber/epoxy resin composite (BN/CF/EP) with 5 vol% 10 mm CF
and 40 vol% BN reaches up to 3.1 W m~t K™%, and its conductivity is only 2.5 x 10™* S cm™. This facile
and high-efficient method could provide some useful advice for the thermal management material in
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1. Introduction

Nowadays, microelectronic devices have a high demand for
high thermal conductive materials to solve the problem of
material aging, as micro equipment gradually tends to be energy-
intensive and integrated."® At this stage, the polymer-based
composites are widely used to conduct research on thermal
management composite.** As is well known, polymer materials are
accepted in this field mainly due to their good mechanical
performance, stable chemical performance and excellent process-
ability.*” However, traditional polymer materials have weak point
of low thermal conductivity.*® Usually, thermally conductive fillers,
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the microelectronic field and aerospace industry.

such as metals (Ag,'*** Cu,'>"* Al'**), nitride (BN,'**® AIN,"?* Si3N,
(ref. 22-24)) and carbon materials (carbon nanotube,*?® carbon
fiber,””*° graphene®) are used to modify polymers for high thermal
conductivity. However, it is difficult for particle fillers to achieve
continuous thermal transport at low filler content, while the
mechanical performance of polymer-based composite at high-filler
loading will be changed and destroyed.®*** Among these above-
mentioned fillers, CF material has been regarded as a remarkable
material to improve the thermal conductivity of composites for its
excellent mechanical performance and continuous thermal
conductivity, which provides sufficient heat conduction channels
in the fiber axial direction.***

Over recent years, with the deepening of research, high
thermal conductive composites were always obtained by con-
structing a 3D network structure.'**® The common methods
that are adopted to fabricate 3D CF skeleton include a simple
blending method,*”** chemical vapor deposition method
(CVD),* electrophoretic deposition method,’™** electrostatic
flocking***** and freeze-drying orientation method.*>*® However,
CF filaments are commonly distributed randomly and disor-
derly in the precursor matrix under the action of the blending
process and CVD. It is not easy for composites with non-
oriented CF structures to achieve continuous thermal trans-
port paths. So as to construct a continuous thermal conductive
network structure, improving the CF orientation has been
demonstrated to be an effective means.* It is well known that

© 2021 The Author(s). Published by the Royal Society of Chemistry
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the freeze-drying orientation method is one of the most efficient
methods to control fiber orientation. Jiake Ma*® prepared epoxy/
carbon fiber composites by the “freeze-drying orientation
method”. This 3D oriented structure could improve the thermal
conductivity performance to a certain extent and the thermal
conductivity of composites in the fiber axial direction reached
up to 2.84 Wm™ ' K~ ' (13.0 vol% CF). However, this special CF-
oriented technology includes dispersing CF in solution,
choosing specific binders, freezing by liquid nitride and freeze-
drying process. It could be imaged that this method has too
cumbersome steps, which is not suitable for producing at a big
scale. Moreover, although this 3D-oriented structure could
create quite a lot of continuous thermal transport paths, the
thermal conductivity of CF composites with 3D oriented skel-
eton is also limited by inevitable gaps between adjacent fibers.

Thus, it is meaningful for the preparation of polymer-based
thermal management material to find a facile and efficient
method to construct a 3D-oriented network without obvious gaps
between adjacent fillers.** In this work, for improving the conti-
nuity of the thermal conductive network, longer fibers were selected
to achieve a 3D CF-oriented skeleton by airflow network technology
and needle punching method. Herein, BN flakes were chosen as the
second phase thermal conductive filler to optimize the CF network.
The 3D structure prepared in this work has the advantages of strong
orientation and a significant decrease in fiber gaps, which leads to
quite a lot of continuous heat conduction paths in comparison with
a simple CF network. The BN/CF/EP composite with 5 vol% 10 mm
CF and 40 vol% BN presents excellent thermal conductivity of as
high as 3.1 W m~' K and the thermal conductivity is improved
with the increase of fiber length and BN content. Fortunately, due to
the modification of BN material, the BN/CF/EP composite shows an
outstanding insulation performance compared with CF/EP
composite. It is believed that the construction method of the 3D
BN/CF oriented network structure has a great potential application
in thermal management material, especially in the communication
device field and aviation microelectronic equipment field.

2. Experimental
2.1 Materials

The SYT45 CF used in the experiment is polyacrylonitrile-based
CF (PAN CF) and purchased from Zhongfu Shenying CF Co.,
Ltd., Lianyungang, China. The diameter of CF material is 7 pm.
BN white powder was supplied by 3M Co., Ltd., Minnesota, USA.

‘Needle
punching

Fig. 1 The preparation of soft CF felt, CF/EP and BN/CF/EP composite.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Epoxy resin Araldite LY 1564 is a white transparent liquid with
a viscosity of about 40 mPa s and polyamine curing agent Ara-
dur 3486 is a light yellow liquid, which was obtained from
Huntsman Company, Utah, USA. Absolute ethanol was
purchased from Sigma-Aldrich, Co., Ltd., Saint Louis, USA.

2.2 Preparation of soft CF felt

A soft mat was prepared by the airflow network technology and
the needle punching method. The main steps are as follows.
The CF with different lengths (2 mm, 5 mm, 10 mm, 12 cm)
were put into the airtight room. As flow was introduced by the
high pressure, CF moved along with the airflow. The fiber fila-
ment fell at a horizontal angle and formed soft CF felt after
airflow disappears. The CF in the soft felt is arranged disorderly
and randomly in an in-plane direction and possess high
oriented structure. The fibers of soft felt are in physical contact
without additional connection, so fibers could move freely and
the stacked structures could be broken easily under an external
force. For achieving the mechanical stability of the felt, fibers
were needle-punched by the vertical metal pin. About 1% of
fibers in the x-y plane were pushed towards the z-axis direction
by the pin. It is worth noting that soft felts made of different
lengths CF have the same density (0.17 g cm ™). The preparation
process of soft felt is shown in Fig. 1.

2.3 Preparation of BN/CF/EP composite

CF/EP composites with different contents of BN are prepared by
liquid phase impregnation with the assistance of vacuum condi-
tions. The main steps are as follows. Briefly, 2.88 g CF felts were
mixed with BN alcohol solution with different solid contents for 1
hour and then the felt was transferred into the oven to dry at 80 °C
for 2 hours. The corresponding mass ratios of CF and BN are 1 : 2,
1:5,1:10. Next, the oriented BN/CF felts were immersed in the
prepolymer with the mass ratio of epoxy and resin of 3 :1 for 2
hours assisted by vacuum. After the epoxy prepolymer was filled into
the holes, the felt was put into a mold and cured by a hot press
under 20 MPa with 100 °C for 1 hour. The preparation process of the
epoxy composite is shown in Fig. 1. The different components of the
BN/CF/EP composite are displayed in Table 1.

2.4 Characterization

An S-2150 field-emission scanning electron microscope (SEM)
from Hitachi, Japan was used to observe the morphology of CF felt
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Table 1 Components of BN/CF/EP composite
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Samples CF (vol%)

5%
5%
5%
5%

2 mm CFJ/0, 8, 20, 40 vol% BN/EP
5 mm CF/0, 8, 20, 40 vol% BN/EP
10 mm CF/0, 8, 20, 40 vol% BN/EP
12 cm CF/0, 8, 20, 40 vol% BN/EP

and BN flakes. The samples were quenched in liquid nitrogen, and
the surface to be observed was sprayed with a nanolayer of gold for
clear imaging. A Rigaku D max-rA diffractometer (Japan) was used
to collect X-ray diffraction patterns (XRD) of the BN material. The
thermal diffusivity of the composite material was tested by a laser
radiation tester (NanoFlash, LFA 457, Netzsch). The specific heat
capacity of the epoxy composite material was measured using
a differential scanning calorimeter (DSC) on a NETZSCH 200 F3
(Germany) instrument. Thermal conductivity (W m™* K™ ') was
calculated from the product of thermal diffusivity (mm?* s™7),
density (g cm™") and specific heat (J (g~* K ')). At room temper-
ature, samples of 10 mm x 10 mm x 2 mm size were placed on
the heating table and the American Fluke Ti 480 instrument was
used to capture the surface temperature of different samples under
the same conditions. The electrical performance of the composite

BN (g) BN volume fraction (vol%)
0, 5.76, 14.4, 28.8 0, 8, 20, 40%
0, 5.76, 14.4, 28.8 0, 8, 20, 40%
0, 5.76, 14.4, 28.8 0, 8, 20, 40%
0, 5.76, 14.4, 28.8 0, 8, 20, 40%

was measured using an Agilent E4991A impedance analyzer
equipped with a 16453 A dielectric test device. A layer of gold was
sprayed on the upper and lower surfaces of samples as electrodes
to ensure the accuracy and reliability of data.

3. Results and discussion

3.1 Preparation and morphology of CF composite

The CF filaments with different lengths were selected to
construct a 3D network for CF composite due to their high
aspect ratio, low density, good mechanical performance and
high thermal conductivity. In order to achieve the 3D-oriented
structure, airflow network technology was applied in the prep-
aration of soft felt. Under the action of airflow, a great majority
of fibers overlap each other and distribute randomly in the x-y

C
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Fig. 2 The morphology picture of (a) 2 mm CF, (b) 5 mm CF, (c and d) LCF felt (e) BN flakes. (f) The XRD pattern of BN flakes.
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Fig. 3 The morphology images of (a) 2 mm CF/EP composite (b) 5 mm CF/EP composite (c) 10 mm CF/EP composite (d) LCF/EP composite

(e and f) LCF/20 vol% BN/EP composite.

plane. However, it is meaningful for CF felt to increase physical
contact between the upper and lower fibers to enhance the
stability of the CF network structure, so the needle punching
method was introduced. About 1% of fibers in the x-y plane were
pushed towards the z-axis direction under the action of a metal
pin. The fibers oriented in the z-axis not only reinforced the 3D
structure to extend but construct more vertical, thermal conductive
paths in the CF skeleton. It is expected that some gaps between the
adjacent fibers are still existing in the soft CF felt, though the fibers
tend to be oriented in the x-y plane. These gaps mean that fibers
have more possibility to be wrapped by epoxy matrix, resulting in
the increase of the interface thermal resistance between the adja-
cent fibers during the heating transfer process. To improve this 3D
structure and form the highly interconnected network, BN flakes
were selected to be used in the study to improve the 3D CF
structure. The soft CF felt was dipped into the BN alcohol solution
to form the BN/CF skeleton, which provides more heat transfer
paths for the composite with the 3D BN/CF network structure.
Then, the 3D skeleton was composited with epoxy resin with the
assistance of a vacuum by a liquid phase impregnation method. In
order to confirm the feasibility of establishing a 3D-oriented
network structure, the morphologies of the soft CF felt and
composite with the CF network and CF/BN network structures
were observed by SEM.

© 2021 The Author(s). Published by the Royal Society of Chemistry

From the microscopic morphology images shown in
Fig. 2(a)-(c), 2 mm, 5 mm and 12 mm CF, felts are presented
from the in-plane direction at the same magnification, indi-
cating that CF felt with a longer CF skeleton has a more
continuous structure. As the magnification of 12 mm CF (LCF)
felt further increased, it was observed clearly that fibers are
cylindrical and the surface is very smooth and regular, as shown
in Fig. 2(d). The fibers with different lengths almost have the
same narrow diameter of 7 pm. As expected, fibers in the soft CF
felts are distributed randomly and overlap with each other in
the x—y plane, which means that the 3D CF-oriented structure is
successfully constructed with the introduction of the airflow
network method. Moreover, it is confirmed from the micro-
scopic morphology of soft CF felt that there are lots of gaps
between the adjacent fibers. If these gaps continue to remain in
the epoxy composite, a large interface thermal resistance will be
generated during the heating transfer process between CF and
epoxy matrix and it will reduce the thermal conductivity of the
epoxy composite. In this study, hexagonal BN flakes were
chosen to compound with the CF and epoxy resin to promote CF
felt to form a highly interconnected structure. For verifying the
composition of the second thermally conductive (filler,
morphology and XRD patterns of powders were obtained, as
shown in Fig. 2(f). The microscopic morphology clearly presents

RSC Adv, 2021, M, 25422-25430 | 25425
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a two-dimensional flake shape and the characteristic peaks of
26.68°,41.67°,43.87° and 55.14° were obviously displayed in the
XRD pattern, indicating that the filler used in the study is
a hexagonal BN material with much high thermal conductivity.

To achieve the final composite, 3D network structures were
dipped into the epoxy resin by the liquid phase impregnation
method with the assistance of a vacuum. In order to estimate
the combined performance between the matrix and thermally
conductive fillers, the morphology of epoxy composite was
observed, as shown in Fig. 3. Firstly, it could be seen that the
epoxy resin was fully immersed in the holes of the felt, and
fibers with different lengths are combined perfectly with the
resin matrix. The phenomenon indicates that defects almost do
not exist between the two-phase material and the liquid
impregnation method is suitable for the composite of resin and
carbon fiber skeleton. As BN flakes were added in the 3D CF
skeleton, gaps between the adjacent fibers are occupied by BN
flakes, as shown in Fig. 3(e) and (f). These BN flakes connected
many non-contact fibers and constructed more thermal
conductive pathways. Moreover, BN flakes attached to the fibers
are embedded in the resin matrix, showing that CF, BN and
resin matrix are tightly combined. The perfect combination of
three materials reflects that the BN/CF network prepared in this
study could provide much more heat transfer paths, then
construct a denser 3D heat transfer structure and reduce the
interface thermal resistance between fibers and resin matrix.
This excellent 3D thermal conductive network structure also
paves the way for the BN/CF/EP composite with high thermal
conductivity.

3.2 The electrical performance of BN/CF/EP composite

The function graph of the electrical performance changing with
the frequency ranging from 5 x 10 to 10° Hz is shown in Fig. 4.
It is well known that epoxy resin is a highly electrically insu-
lating material and the electrical conductivity of the pure epoxy
resin is even lower than 10~* S em ™. However, it could be seen
that the electrical conductivity of the composite reinforced by
the 3D CF-oriented network improves significantly in the fiber

10" 5
'g 10°] =——LCF/20vol% BN ~——10mm
& i ——LCF/8v0l% BN =——5mm
= ——LCF ——2mm
&
S 107
-
]
=
= 1024
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)
B
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10* 10° 10°
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Fig. 4 Electrical conductivity of the CF composite.
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axial direction. Moreover, the 3D CF skeleton constructed by
longer CF has an excellent oriented effect and provides a more
continuous heat conduction paths. Therefore, conductivity has
a positive correlation with the fiber length and the conductivity
of the CF/EP composite is improved obviously by several orders
of magnitude (107> to 10~' S cm '), when the CF length reaches
12 cm.

As is known, most of the materials have consistent thermal
and electrical conduction laws. However, the BN material as
a good insulating material possesses excellent thermal
conductive performance, so it is meaningful to modify the 3D
CF skeleton with the BN material. In this work, the electrical
conductivity decreased sharply after the 3D CF skeleton
changed into a 3D BN/CF network structure. This is because the
BN material attached to the CF surface, especially CF over-
lapping positions, and the CF contact area was occupied by BN,
leading to the blocking of electrical conduction pathways in the
3D BN/CF network. Over recent years, insulated and high
thermal conductive materials have drawn increasing attention
due to their broad applied fields. It is believed that this kind of
composite modified by the 3D CF/BN network structure with
good electrical insulation and outstanding thermal conductivity
could be useful as a thermal management material in the
microelectronics field.

3.3 The thermal conductive performance of BN/CF/EP
composite

Many microelectronic devices become high-powered and inte-
grated, which significantly generates a lot of heat, so it is
meaningful to consider the dissipation problem as a crucial
issue. In order to study the heat transfer performance, the
thermal conductivity (K) of the CF composite was tested by the
laser flash technology from cross-plane (K, ) and in-plane (K-)
directions at 25 °C, as shown in Fig. 5(a) and (b). It is well-
known that pure epoxy resin has low K, which is only about
0.2 Wm™ ' K '. Herein, the 3D CF network skeleton was chosen
as the thermally conductive filler to compound with the epoxy
resin to construct abundant heat transfer paths in the resin
matrix. It could be seen that K_ of the CF/EP composite has not
significantly improved as the fibers are short. As the fiber length
increases, it is worth recognizing that K_ of the LCF/EP
composite is almost 2.2 times that of the 2 mm CF/EP
composite. This phenomenon is mainly resulting from that
longer fiber has a relatively higher orientation in the 3D CF
skeleton and more continuous heat conduction paths are
formed. Therefore, a 3D network constructed by CF with a high
aspect ratio could help promote the K_ of the polymer
composite significantly, which provides some advice for the
preparation of the thermal management material integrated
into electronic devices.

Some gaps existing in the 3D CF skeleton still hinder heat
transfer through fibers that are oriented. It is meaningful for the
3D CF network to introduce the other thermal conductive filler
to promote the continuity of the network. As expected, the
introduction of the BN material results in multiple increases in
K_ of the composite material. K_ of CF/40 vol% BN/EP increases

© 2021 The Author(s). Published by the Royal Society of Chemistry
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25 °C, (c) K_/K of CF-based composites with different BN, (d) temperature-dependent K_ of the CF composites.

most significantly, upto 2.4 Wm 'K ' (2mm),2.7Wm 'K
(5 mm) and 3.1 Wm ' K ! (10 mm). The high K_ is mainly due
to the following reasons.

Firstly, K_ of composite material has an obvious improve-
ment with low BN loading. This is mainly due to the intrinsic
high thermal conductivity of the BN filler. The 3D CF skeleton
modified by BN flakes broadens the thermal conductive paths,
which leads to a more efficient transmission of the phonons.
The thermal conductive performance has an excellent
improvement as BN loading increases, as shown in Fig. 5(a).
Secondly, the thermal conductivity is also affected by thermal
resistance at the interface between the thermally conductive
filler and the resin matrix, which leads to phonon scattering
and low thermal conductivity. As is reported, the continuous
thermal conductive paths could form at the 60-70 vol% filler
loading. However, in this study, it is obtained that K_ of the
composite material shows an excellent improvement at such
small filler loading (5 vol% CF and 20, 40 vol% BN). This
phenomenon exhibits that BN flakes connected to the adjacent
fibers and continuous heat conduction paths began to be con-
structed gradually at low BN contents in the 3D CF network
structure, which runs through the resin matrix. Apparently,
such continuous heat conduction paths could reduce heat
resistance and improve K_ significantly. Moreover, in order to
study the anisotropy of the CF composite, the value of the
thermal conductive anisotropy (TCA) was calculated according
to the formula K_/K , at different BN loading. It is obtained that
the TCA is dominated by BN loading when the 3D CF network is
constructed by short fibers, as shown in Fig. 5(c). These high

© 2021 The Author(s). Published by the Royal Society of Chemistry

TCAs imply that the orientation of BN material at relatively
higher loading is improved by CF space limitation and a hot
press process, which reduce the in-plane thermal resistance of
the composite. Under the action of BN orientation, the structure
of the 3D BN/CF network is improved and values of K_ of BN/CF/
EP composite increase significantly. It is believed that the epoxy
composite reinforced by 3D BN/CF-oriented network with good
thermal conductive performance could be useful in advanced
thermal management of materials in the microelectronic field.

Fig. 5(d) shows the variation of K_ based on the 10 mm CF
composite, 10 mm CF/20 vol% BN composite and LCF/20 vol%
BN composite at different possible working temperatures.
These data illustrate that K_ of the three samples decreased as
the temperature changed from 25 °C to 125 °C. K_ of the three
samples at 125 °C are reduced by 34.1% (10 mm CF), 19.5%
(10 mm CF/20 vol% BN) and 17.2% (1 LCF/20 vol% BN). The
thermal conductivity decreases with the increase of tempera-
ture, which is caused by the thermal expansion of the
composite. With the increase of temperature, the volume of the
composite expands, and the gap between resin, fiber and filler
also increases, which hinders the phonon transition, and finally
leads to a decrease in the thermal conductivity of the composite.
The higher the temperature, the more is the thermal conduc-
tivity decreases. It could be seen that K_ of the composite with
3D CF/BN network structure still maintains a high level, though
the K_ decline to a certain extend. Therefore, these 3D LCF/BN
thermal conductive network structures could provide some
advice for the development of thermal management materials
in the microelectronics field.

RSC Adv, 2021, N, 25422-25430 | 25427
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Fig. 6 (a) An optical image and (b) the infrared thermal images of the
temperature at the surface of CF composites with different CF/BN
networks during the heating process.

3.4 The thermal management performance of the BN/CF/EP
composite

To study the heat absorption capability of the composite with
different network structures during the heat process, four
samples with the same specifications of 2 mm CF composite,
LCF composite, LCF/8 vol% BN composite and LCF/20 vol% BN
composite, were heated on the same heating source. The
surface temperatures were captured by an infrared thermal
imager, as shown in Fig. 6. The thermal response performance
could be evaluated by observing the changing speed of color on
the sample surface. We could see that the short CF composite
has a lower speed of temperature change than that of LCF
composite as heating progresses, which indicates that the
composite with 3D LCF network structure has better heat
transfer performance. With the introduction of BN flakes, the
surface color of composite with the 3D BN/CF network structure
has become slightly yellow from dark purple, while the
composite modified by the single CF skeleton is still purple at
2 s. After 60 s of the heating process, the surface colors of LCF/
BN composite almost display the same color as the heating
source but CF composites without modification by BN flakes are
still at a relatively low temperature. Moreover, the LCF/20 vol%
BN composite exhibits the fastest thermal response speed. This
phenomenon illustrates that more denser heating transfer
pathways for the composite with 3D LCF/BN network are con-
structed in comparison with that of the composite with the 3D
CF network structure.

CF/EP composites LCF/EP composites

BN/LCF/EP composites
A BN (0 epoxy 8 cF

Fig. 7 Diagram of the heat transfer mechanism of composites with
different 3D network structures.

Heat flow
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For explaining intuitively the improvement of the heat
conduction effect of the composite with the introduction of BN
flakes, schematic diagrams of the heat transfer mechanism of
the composite reinforced by different 3D thermal conductive
network structures are shown in Fig. 7. It could be seen that the
separated fibers are connected by the BN thermal conductive
filler. The interfacial thermal resistance and thermal scattering
could be reduced by improving the thermally conductive
structure with the addition of BN flakes, which effectively
promotes the phonon transfer in the BN/CF network. Therefore,
this 3D BN/CF network structure has great potential to be
applied in advanced thermal management materials to improve
the heat dissipation performance of microelectronic devices.

4. Conclusion

The epoxy composite with the 3D BN/CF oriented network
structure was successfully manufactured with the assistance of
the airflow network technology, needle punching and liquid
phase impregnation method. The large K_ of BN/CF/EP
composite is mainly due to ‘BN flakes broadening the thermal
conductive paths’, BN flakes increasing continues heat
conduction paths' and ‘CF space constraining BN orientation
effect’. It is worth noting that K_ of BN/CF/EP composite with
5 vol% 10 mm CF and 40 vol% BN is improved significantly,
which reaches up to 3.1 W m™* K due to the unique 3D
oriented BN/CF network structure. Furthermore, the electrical
conductivity has significantly decreased because of the addition
of the insulated BN material. It is believed that this 3D-oriented
BN/CF network structure could give some useful suggestions for
the preparation of advanced thermal management material in
the microelectronics field to help efficiently dissipate heat.
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