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oxy indolizines and related
imidazo[1,5-a]pyridines through the SN2
substitution/condensation/tautomerization
cascade process†

Guiyun Duan,‡ Hao Liu,‡ Liqing Zhang, Chunhao Yuan, Yongchao Li
and Yanqing Ge *

A simple and efficient cascade reaction was developed for the construction of hydroxy substituted

indolizines from pyrrole-2-carbaldehydes and commercially available 4-halogenated acetoacetic esters.

Their optical properties were also evaluated.
Introduction

Indolizine, a biostere for indole, is commonly found in
numerous natural products and pharmaceuticals. Indolizine
derivatives exhibit diverse biological activities such as anti-HIV,
anti-inammatory, anti-tubercular, and anticancer activities.1–5

They are also used in dyes and optical materials owing to their
bright colors.6–11 As a consequence, much effort has been
devoted to their synthesis and functionalization, and thus many
methods have been developed.12–14 In addition to classical
Scholtz or Tschichibabin reactions, a variety of straightforward
and efficient methods have been reported in recent years15–20

including 1,3-dipolar cycloaddition of pyridinium salts and
intramolecular cyclization catalyzed by transition metals and
intermolecular cyclization. Despite the efficiency of these
methods, they suffer from the requirement of specic preor-
ganized substrates, necessity of expensive metal catalysts,
multistep synthesis, and a lack of product diversity. Moreover,
no method has been reported for the preparation of indolizines
bearing a hydroxyl group.

Recently, we synthesized a series of indolizine and related N-
bridgehead heterocycles via a cascade reaction (Scheme 1a).21

To achieve the related pyrazolo[1,5-a]pyridines through
a shorter and convenient route, a simple and efficient synthetic
method was also reported subsequently using commercially
accessible starting materials (Scheme 1b).22 Based on the results
obtained in our laboratory, we expected that a cascade reaction
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of pyrrole-2-carbaldehyde 1with 4-halogenated acetoacetic ester
2might be successful in the presence of a weak base (Scheme 1).
In continuation of our effort to search for new uorophores for
imaging,23–26 herein, we report a simple and efficient method for
the synthesis of hydroxy substituted indolizines via an SN2
substitution/condensation/tautomerization cascade process in
a metal-free fashion. Their optical properties were also
evaluated.

Results and discussion

Initially, commercially available pyrrole-2-formaldehyde and
ethyl 4-chloro-3-oxobutanoate 2a were selected for the experi-
mental design. However, only the dimerization product of 2a
was obtained. Subsequently, we optimized the reaction condi-
tions using 4-propionyl-pyrrole-2-formaldehyde 1a and ethyl 4-
chloro-3-oxobutanoate 2a as the model substrates. To our
delight, the desired cyclized product 3a was obtained in an
acceptable 56% yield in the presence of K2CO3 (Table 1, entry 1).
The reaction even progressed very well at room temperature
Scheme 1 Access to indolizines via a cascade reaction.
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Table 1 Optimization of reaction conditionsa

Entry Base
T
(�C) Solvent Time Yield (%)

1 K2CO3 50 MeCN 6 h 56
2 K2CO3 25 MeCN 6 h 70
3 DBU 25 MeCN 6 h 54
4 Cs2CO3 25 MeCN 6 h 63
5 NaOH 25 MeCN 6 h 42
6 t-BuOK 25 MeCN 6 h 59
7 NaOAc 25 MeCN 6 h 12
8 CsOAc 25 MeCN 6 h 26
9 K2CO3 25 DMF 6 h 67
10 K2CO3 25 EtOH 6 h 60
11 K2CO3 25 Acetone 6 h 62

a 1 mmol 1a, 2 mmol 2a, 3 mmol base, and 10 mL solvent were used.

Scheme 2 Substrate scope of pyrrole-2-formaldehyde. Reaction
conditions: 1 (1 mmol), 2 (2 mmol), K2CO3 (3 mmol), CH3CN (10 mL),
20 �C, 6 h.

Fig. 1 X-ray crystal structure of compound 3k.

Scheme 3 Substrate scope studies of 4-halogenated acetoacetic
ester. Reaction conditions: 4 (1 mmol), 2 (2 mmol), K2CO3 (3 mmol),
CH3CN (10 mL), 20 �C, 6 h.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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(entry 2). Other bases such as DBU, Cs2CO3, NaOH, t-BuOK,
NaOAc, and CsOAc were then evaluated. However, the yields
decreased, especially for a weak base (NaOAc) (entries 3–8).
Regarding the effect of solvents, no improvement in the yield
was obtained when the reaction was carried out in DMF, EtOH,
and acetone (entries 9–11).

Then, the reactions of various substituted pyrrole-2-
formaldehyde were tested (Scheme 2). Generally, the desired
products were obtained in moderate-to-good yields when the
pyrroles contained electron-withdrawing groups at the 4- or 5-
position. However, no product was obtained for pyrrole-2-
formaldehyde, presumably due to the reduction of nucleophi-
licity of the pyrrole ring. The structure of compound 3k was
conrmed by X-ray crystal structure analysis (Fig. 1, CCDC
2081693†).
Fig. 2 UV-vis and FL spectra of compounds 3a–3l.

Scheme 4 The proposed mechanism.
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Next, the applicability of this cascade reaction was expanded
to the synthesis of imidazo[1,5-a]pyridine, furnishing the
desired product 5a in 61% yield. The scope of the 4-halogenated
acetoacetic ester was also evaluated (Scheme 3). The results
indicate that the halogen and alkyl groups on position 4 and the
ether group hardly inuenced the yields.

Based on the above mentioned results and our previous
work, we propose amechanism as shown in Scheme 4. First, SN2
substitution of 4-halogenated acetoacetic ester 2 and pyrrole-2-
formaldehyde 1 yields intermediate 6. Subsequently, cyclized
intermediate 7 is formed through intramolecular nucleophilic
substitution. Finally, the desired products 3 are obtained
through dehydration and tautomerism.

To advance our efforts to search for new uorophores for cell
imaging and their strong luminescence, we investigated the UV-
vis and uorescence spectra of these new compounds (Fig. 2).
Compounds 3a–3l show similar absorptions at ca. 250 nm
(Table S1†), which should be assigned to the p–p* electronic
transition originating from the indolizine ring. Notably, the
substituent and their position on the indolizine ring slightly
affect these absorption peaks. However, the weak absorption
bands between 290 nm and 445 nm due to n–p* electronic
transition are especially different for compounds 3h and 3i
containing a strong electron-withdrawing group (NO2). The
maximum emission bands of 3c, 3e, and 3f are similar (425–
455 nm, Table S1†), while those of 3a, 3b, and 3d are 540 nm,
535 nm, and 505 nm, respectively, with a much higher red shi.

Conclusions

In summary, we developed an efficient cascade reaction to
construct indolizines and related imidazo[1,5-a]pyridines with
a hydroxyl group, which is difficult to introduce through other
methods. The structure was conrmed by single-crystal X-ray
diffraction analysis. The compounds showed strong uores-
cence in a dilute solution. Further studies on the optical prop-
erties of these indolizines are in progress.
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