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Poly(ethylene terephthalate) (PET), known for its clarity, food safety, toughness, and barrier properties, is
a preferred polymer for rigid packaging applications. PET is also one of the most recycled polymers
worldwide. In light of climate change, significant efforts are underway to improve the carbon footprint of
PET by synthesizing it from bio-based feedstocks. Often times, specific applications demand PET to be
copolymerized with other monomers. This work focuses on copolymerization of PET with a bio-based
co-monomer, 2,5-furandicarboxylic acid (FDCA) to produce the copolyester (PETF). We report the
multifunction of FDCA to influence the esterification reaction kinetics and the depolymerization kinetics
(via alkaline hydrolysis) of the copolyester PETF. NMR spectroscopy and titrimetric studies revealed that
copolymerization of PET with different levels of FDCA improved the esterification reaction kinetics by
enhancing the solubility of monomers. During the alkaline hydrolysis, the presence of FDCA units in the
backbone almost doubled the PET conversion and monomer yield. Based on these findings, it is
demonstrated that the FDCA facilitates the esterification, as well as depolymerization of PET, and
potentially enables reduction of reaction temperatures or shortened reaction times to improve the
carbon footprint of the PET synthesis and depolymerization process.

Introduction

In the new age of circular economy and heightened awareness
of climate change, polyethylene terephthalate (PET) has gained
greater acceptance as a circular packaging polymer due to its
excellent properties and recyclability.'® Industrially, PET is
synthesized either by transesterification of dimethyl tere-
phthalate (DMT) with ethylene glycol (EG) (DMT process) or
direct esterification of terephthalic acid (TPA) with EG (TPA
process).” With advancement in processes to obtain purified
TPA, the capacity of PET produced from the direct esterification
of TPA and EG has increased significantly in the last two
decades. The esterification step of the TPA process is a dissolu-
tion limited process due to the extremely low solubility of TPA in
EG.”® Higher reaction temperatures and pressures are required
for the esterification step to dissolve the TPA in EG.
Commercially available grades of PET used for packaging
application generally contain small quantities of comonomers
to modulate properties required for injection and stretch blow
molding of PET.” In the production of PET via TPA process,
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comonomers like isophthalic acid (IPA) are introduced in the
free diacid form along with TPA. During the copolymerization,
the comonomer diacid may compete with TPA for the esterifi-
cation reaction with EG and may affect the dissolution and
reaction kinetics, especially at higher molar contents. While
detailed studies on the role of solubility in the esterification
kinetics of PET have been reported,'®** to the authors' knowl-
edge, no published study on the effect of copolymerization on
the esterification step of PET synthesis is available.

In the recent past, significant research effort has been
devoted to develop bio-based alternatives to PET."*™” Poly(-
ethylene 2,5-furandicarboxylate) (PEF), which can be produced
from bio-based 2,5-furandicarboxylic acid (FDCA) and EG, has
gained significant academic and industrial interest due to its
superior properties and structural similarity to PET.'**” Due to
limited availability, high costs, and limited mechanical recy-
cling compatibility of PEF with PET stream, copolymerization or
blending of PET with PEF is being considered as an effective
approach to avail the enhancements of PEF without affecting
the cost or recyclability of the final packaging.*~*° In our
previous work, we reported that FDCA has much higher solu-
bility in EG compared to TPA.** This difference in the solubility
may play a role during the esterification step for synthesis of
copolyesters of FDCA and TPA with EG (PETF copolyesters).

The primary focus of this work was to study the kinetics of
co-esterification of TPA and FDCA with EG. The composition
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range of FDCA in the copolyesters was restricted to 20 mole
percent due to the practical limitations associated with the cost
of FDCA and recyclability of the copolyesters. Esterification
kinetics were performed at two different temperatures of 250 °C
and 225 °C. The temperature of 250 °C was chosen since the
esterification step of PET synthesis is typically done at 250 °C
commercially.” The temperature of 225 °C was chosen to eval-
uate the possibility to perform the esterification of PETF copo-
lyesters at milder conditions than those typically used for PET
commercially. Since the advantage of higher solubility of FDCA
in EG can play a crucial role only in the first step of the poly-
merization, this study was restricted to the analysis of the
reaction conditions for esterification step of PET production. A
previously developed NMR method?** was modified to track the
end group conversion of hydroxyl and carboxyl end groups (for
both diacids, TPA and FDCA) during the reaction. The end
group conversion was also confirmed by titrimetry to validate
the NMR method.

Lastly, proof-of-concept alkaline hydrolysis experiments
were carried out with PET and PETF20 (copolyester with 20
mole% FDCA) to investigate the potential effect of the presence
of FDCA on reaction kinetics for PET depolymerization. In
summary, this work is focused on developing a mechanistic
understanding of effect of FDCA on esterification and depoly-
merization kinetics of PET.

Experimental

Materials

2,5-Furandicarboxylic acid (99.27% by HPLC) was purchased
from Chem-Impex International Inc. (Illinois, USA). Tereph-
thalic acid (99+%) and dimethyl sulfoxide-ds (99.5 + atom% D)
were purchased from Acros Organics (New Jersey, USA).
Ethylene glycol (certified ACS), dimethyl sulfoxide (certified
ACS), sodium hydroxide pellets (CAS grade), and sulfuric acid
(certified, 72% w/w, 24.0 N, £0.1 N (12 M)) were purchased from
Fisher Scientific (New Hampshire, USA). All the reagents were
used as received without further purification.

Methods

Solubility determination by clear point method. Solubilities
of diacids in EG were determined using the clear point method
to support the esterification kinetics study. Different concen-
trations of the diacid (i.e. TPA and FDCA) in EG were added to
a glass tube equipped with a hose connection for nitrogen inlet.
The contents were well mixed using a magnetic stirrer. The
glass tube was immersed in an oil bath. Temperature of the oil
bath was controlled using an Omega temperature controller
(Connecticut, USA) and was ramped at 0.5 °C per minute from
room temperature until the clear point was achieved. Sample
was immediately removed from the oil bath and allowed to air
cool. Experiments were run in triplicates to ensure the repeat-
ability of the data. A temperature ramp of 0.5 °C per minute was
used to ensure equilibrium dissolution of the diacid at the
temperature.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Solubility parameter evaluation using Hoftyzer and Van
Krevelen** method. The solubility parameter for the monomers
and oligomers was calculated using the group contribution
method developed by Hoftyzer and Van Krevelen.*® The overall
solubility parameter (6) is divided into three components based on
the structural contributions including (i) dispersive force (64), (ii)
polar force (), and (iii) hydrogen bonding (dy,). Each component
was calculated by functional group contribution and the overall
solubility parameter () was calculated using eqn (1).

0 =04+ 0,0 + oy (1)

Esterification kinetics study for copolyesters of PET with
FDCA. The esterification protocol used for this study was
adapted from the synthesis protocol used for the commercial
production of PET from TPA and EG.” In each experiment, 0.048
moles of the diacid and 0.072 moles of EG (1.5 : 1 molar excess
of glycol to diacid) were charged to a 4590 Parr micro bench top
pressure reactor (Illinois, USA) equipped with a condenser
assembly. No additional catalyst or DEG suppressor was added.
Reaction mixture was stirred at 300 rpm under a nitrogen purge
for 10 minutes to ensure inert atmosphere. After purging, the
reactor was pressurized at 44 psi (3 atm) with industrial grade
nitrogen. The mixture was heated to 100 °C over 15 minutes and
held at that temperature for 25 minutes as a paste making step.
NMR spectroscopy was performed to confirm that the paste
making conditions were insufficient to initiate any esterifica-
tion reaction and do not interfere with the kinetics experiments
as shown in the ESI.T Following paste making, the mixture was
heated to the esterification temperature over 15 minutes. The
mixture was held at the esterification temperature for the
desired time and quenched by immersing the reactor in a cold-
water bath. This procedure was repeated at different times to
study the kinetics of the reaction. For example, a reaction time
of 0 minutes indicates that the mixture was immediately
quenched following the ramp to esterification temperature
without any hold.

Synthesis of poly(ethylene 2,5-furandicarboxylate) (PEF)
oligomers for solubility studies. The PEF oligomers used for
solubility studies were synthesized in house by esterification of
FDCA with EG (1.5 : 1 molar excess of EG) using a synthesis
protocol similar to the one described above. Following esteri-
fication at 180 °C for 120 minutes, the recovered oligomers were
vacuum dried and milled prior to the solubility measurements.
The PEF oligomers had a number average molecular weight of
930 Daltons and degree of polymerization of 5 as confirmed by
the MALDI-MS (Fig. S10(a) in ESIT).

Alkaline hydrolysis of PET and PETF20 copolyester films. In
order to make PET flakes for depolymerization studies, the
oligomers obtained after the esterification reaction were first
polymerized using a typical PET synthesis protocol and pro-
cessed into continuous films outlined in our previous work.**
The PET and PETF20 (copolyester of PET with 20 mole% FDCA)
films were cut into flakes with size of 6 mm x 6 mm. Alkaline
hydrolysis of PET and PETF20 flakes was carried out in a sealed
glass vial at 90 °C at atmospheric pressure (10 mL 1.1 M NaOH
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per gram of flakes) following the method reported in the liter-
ature by Karayannidis et al®* A temperature of 90 °C was
maintained with an oil bath using a Corning PC-420D hot plate
with thermocouple. Due to the low reaction temperature, the
hydrolysis reaction was carried out for an extended period of
time. After three days, the glass vials were removed from the oil
bath and allowed to cool. Once the reaction mixture reached
room temperature, it was neutralized to pH ~ 6.5 with H,SO,
and vacuum filtered to remove unreacted PET solids. The
resulting filtrate was precipitated to form TPA, FDCA, and
Na,SO, salt by acidification with H,SO, to a pH of 2.5. The
acidified mixture was vacuum filtered using Whatman™ filter
paper to recover monomer diacids, TPA and FDCA, with the EG
remaining in the aqueous solution. Diacids were washed with
methanol to remove any impurities, salts, and trace amounts of
EG. The solid residue was dried under vacuum at 80 °C, weighed
on an analytical balance to estimate the monomer molar yield
as shown in eqn (7). The structure of the product was confirmed
using NMR as discussed in the ESI.{3*

Characterization techniques

Nuclear magnetic resonance spectroscopy (NMR). NMR
spectra were recorded using Bruker Avance III spectrometer at
600 MHz and 150 MHz for 'H and "*C nuclei, respectively. All
samples were dissolved in DMSO-ds. A probe temperature of
60 °C was chosen to enhance the signal to noise ratio. Carboxyl
and hydroxyl end group conversion during the esterification
step were determined using the method described in detail in
the ESL 1%

Titrimetry to determine end group conversion for PETF
esterification kinetics study. The total carboxyl end group
conversion for the esterification kinetics study of PETF copo-
lyesters was monitored by titration.** For this analysis, 0.1 gram
of the sample was dissolved in 5 mL of benzyl alcohol with
heating. After cooling the dissolved sample in benzyl alcohol,
5 mL of chloroform was added. The solution was titrated with
0.1 M sodium hydroxide (NaOH) with phenol red as an indi-
cator. By determining the acid value (AV) of the samples at

o o N o o
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HO—C—X—C—O0H + H—O-CH,;CH;~OH === HO—C—X—C—0-CH,CH;~
H
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initial time and desired time, the total carboxyl end group
conversions were calculated by eqn (2) and (3).

. Titre volume (mL) x MWy,on X molarity of NaOH

AV Sample weight (g)
(2)

AV) . — (AV
XcooH,total = %}ti)’ 3)

Matrix-assisted laser desorption ionization time-of-flight
mass spectroscopy (MALDI-ToF-MS). MALDI-ToF-MS analysis
was performed to determine number average molecular weight
(M,,) and dispersity (P) of oligomers obtained after the esterifi-
cation step. Bruker Daltonics UltrafleXtreme MALDI-TOF/TOF
mass spectrometer operating in the linear positive ion mode
was used for the measurements. 2,5-Dihydroxybenzoic acid
(DHB) was used as a matrix in water. Samples were purified by
dissolving in CH,Cl,/HFP and precipitating out in methanol to
separate the unreacted monomers. Then, samples were redis-
solved in CH,Cl,/HFP (~10 mg mL ') and deposited on the
probe plate with the matrix (1/1 volume ratio) by the dried-
droplet approach. Solvents were evaporated at room tempera-
ture for matrix crystallization.

Results and discussion

As described in the Introduction section, the TPA process is
a dissolution limited process due to limited solubility of ter-
ephthalic acid (TPA) in ethylene glycol (EG).”® Higher temper-
atures and pressures are required to dissolve the TPA in EG. In
the case of synthesis of copolymers of PET via TPA process, the
co-monomers like isophthalic acid are introduced in the diacid
form for compatibility with the process. During the copoly-
merization, the co-monomer diacids are expected to compete
with TPA for the esterification reaction with EG. Fig. 1 depicts
a detailed reaction scheme for co-esterification of 2,5-fur-
andicarboxylic acid (FDCA) and TPA with EG. Since this is
a dissolution limited process,”® the difference in the solubilities

FDCA

HO-CH,CH,~0—C—X—C—0-CH,CH,~OH +H;0  Diesterification

BHEF or BHET

I I
N HO—C—X—C—0-CH,CHy~0—H + MHO—C—X—C—0-CH,CH,~OH =—== HT-0—C—X—C—0-CH,CH,rOH + Hy0
H

MHEF or MHET MHEF or MHET

0] (0]
(I? (I.T‘ Il I

ntm Oligomerization
PETF oligomers

o
Temp o
1 HO—C—X—C—0-CH,CH,-OHz*+ M H—0-CH,CH,~0—C—X—C—0-CH,CH,~OH =—== HO—CHZCHz{O—C—X—C—O—CHZCHZ OH * H0
H

MHEF or MHET BHEF or BHET

n+m
PETF oligomers

Fig. 1 Series of chemical reactions involved during the co-esterification of diacid X (TPA and FDCA) with EG; MHEF = monohydroxyethyl 2,5-

furandicarboxylate, MHET = monohydroxyethyl terephthalate, BHET

= bishydroxyethyl terephthalate, BHEF = bishydroxyethyl 2,5-fur-

andicarboxylate, PETF = poly(ethylene terephthalate-co-2,5-furandicarboxylate).
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between FDCA and TPA can potentially affect the esterification
kinetics and copolymer microstructure. In our previous work,
we reported that FDCA has much higher solubility in EG
compared to TPA.>* Higher solubility of FDCA in EG could
potentially translate into faster conversion of FDCA to bis-
hydroxyethyl 2,5-furandicarboxylate (BHEF) and oligomers.
During PET synthesis, oligomers of PET (bis-hydroxyethyl tere-
phthalate or BHET) are often added to improve solubility of TPA
in EG solution.”® The BHEF and FDCA-rich oligomers formed
during the co-polymerization could provide an improved solu-
bility effect similar to BHET.

To evaluate the effect of FDCA on dissolution and esterifi-
cation kinetics of PET, direct esterification of copolymers of PET
with FDCA was performed at 10 and 20 mole% of FDCA. As
mentioned in the Experimental section, the protocol for
industrial scale synthesis of PET was used for the esterification
reactions for greater applicability of this work. The direct
esterification was carried out at a commercially applicable
temperature of 250 °C and a milder temperature of 225 °C to
understand the effect of temperature on the kinetics. For
simplicity, the copolyesters of PET with 10 and 20 mole% of
FDCA are referred as PETF10 and PETF20, respectively. Note
that the results and discussion are limited to the oligomers
obtained during the esterification step.

End group conversion by NMR

'H and *C NMR spectroscopy was used to track the hydroxyl
and carboxyl end group conversion during the esterification of
TPA and FDCA with EG. The details of the method are described
in the ESIL.{ Fig. 2 shows the hydroxyl end group conversion
(Xon) during the esterification of PETF co-polyesters at two
esterification temperatures. As seen from Fig. 2(b), the reaction
kinetics were much slower at 225 °C and the reaction had to be
run for a longer time to achieve equilibrium conversions. At
commercial synthesis conditions of 250 °C, equilibrium
conversion was reached within one hour of reaction time for the
co-polyesters. Please note that the esterification reaction
conditions, and the reactor design were optimized to effectively
remove the water generated during the esterification reaction
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without losing the EG in the condensate. Based on this
assumption of no loss of EG, the equilibrium values of X were
close to the theoretical conversion of 0.66 expected with 1.5 : 1
excess of hydroxyl end groups.

The hydroxyl end group conversion increased significantly
for the PETF co-polyesters compared to PET at 250 °C, especially
at low reaction times. On the other hand, at 225 °C, the increase
in Xop following copolymerization was much less evident
possibly due to the reduced solubility of TPA in EG and slower
reaction kinetics compared to 250 °C. The Xy values at both
temperatures for the PETF10 and PETF20 samples at zero
reaction time were greater than 0 indicating the onset of the
reaction during the ramping step. However, the PET sample did
not show any conversion of hydroxyl groups during the ramping
step. This observation indicated that the FDCA starts reacting
with the EG at temperatures much lower than the TPA con-
firming the results published in our previous work.*" The
hydroxyl end group conversion was also employed to track the
production of diethylene glycol, a known side reaction during
the esterification step with a detailed discussion in the ESL}

Acid end group conversion was determined for FDCA and
TPA independently using the "*C NMR spectra as discussed in
the ESILt Total carboxyl end group conversion (Xcoomu,total) Was
calculated from the FDCA (Xcoon,rpca) and TPA (Xcoon,rra) €nd
group conversions using eqn (4).

Xcoomn,total = X X Xcoon,ppca T (1 — X) X Xcoon,tea  (4)

where x is mole fraction of FDCA in the polyester.

As shown in Fig. 3, Xcoomu,total followed a similar trend to that
of Xon. Total acid end group conversion increased for the PETF
copolyesters compared to PET. As was seen for Xoy, the increase
was significant especially at low reaction times. At 250 °C, the
Xcoo,total Values converged at higher times (Fig. 3(a)) to a value
of 0.87. However, this convergence was not observed in the time
scale studied at 225 °C (Fig. 3(b)) indicating the slower kinetics
at 225 °C.

Fig. 4(a) and (b) show the conversion of FDCA end groups at
250 and 225 °C respectively. The FDCA end groups reacted
almost instantaneously at both reaction temperatures.

10 {(b) 225°C
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Fig. 2 Hydroxyl end group conversion determined by *H NMR for PET (-),PETF10 (-) and PETF20 (-) for direct esterification performed at (a)

250 °C and (b) 225 °C.
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Fig. 3 Total carboxyl end group conversion determined by **C NMR for PET (=), PETF10 (-) and PETF20 (-) for direct esterification performed at

(a) 250 and (b) 225 °C.
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Fig.4 FDCA end group conversion determined by **C NMR for PETF10 (-) and PETF20 (-) for direct esterification performed at (a) 250 °C and (b)

225 °C.

Interestingly, almost half of the end groups were esterified
during the ramping step (Xcoom,rpca ~ 0.5 at ¢ = 0). As reported
in our previous work, FDCA exhibits an order of magnitude
higher solubility in EG compared to TPA at temperatures higher
than 180 °C.** Additionally, in the case of copolymers, FDCA was
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dissolved in a very large molar excess of EG (15 : 1 in case of 10
mole% FDCA since total molar ratio of EG: diacid was set to
1.5 : 1). High solubility and molar excess of EG to FDCA resulted
in an instantaneous dissolution and esterification of FDCA end
groups. This rapid esterification of FDCA end groups was
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Fig.5 TPA end group conversion determined by **C NMR for PET (=), PETF10 (-) and PETF20 (-) for direct esterification performed at (a) 250 °C

and (b) 225 °C.
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Table 1 Composition or mole% of furan in PETF copolyesters and degree of randomness values (in parenthesis) as a function of esterification

time calculated using the *H NMR spectroscopy

250 °C 225 °C

Time (min) PETF10 PETF20 PETF10 PETF20

0 49 =+ 01 (1.04) 69 + 01 (0.56) 66 + 04 (0.83) 85 + 05 (1.23)
5 22 =+ 07 (1.03) 47 + 04 (0.85) — —

10 19 + 01 (1.50) 33 + 01 (1.00) — —

15 15 + 03 (1.53) 26 + 01 (0.99) 35 £ 03 (1.37) 56 =+ 03 (0.86)
30 11 + 02 (1.26) 25 + 03 (1.00) 24 + 01 (1.10) 41 + 01 (1.01)
45 — 21 + 02 (1.33) — —

60 — 26 + 02 (1.13) 20 + 02 (1.22) 39 + 01 (0.95)
120 — 22 + 04 (1.10) 18 + 01 (1.12) 31 + 03 (0.95)
180 — — 19 + 01 (1.24) 24 + 01 (0.97)
240 — — 19 + 01 (1.21) 26 + 01 (0.97)
300 — — 16 + 03 (1.39) 24 + 01 (1.08)

primarily responsible for the increase in the Xoy and Xcoomu,total
at low times.

As shown in Fig. 1, esterification of TPA and FDCA with EG
could be considered as competing parallel reactions. However,
within 15 minutes of the reaction time at 250 and 225 °C, most of
the FDCA was esterified (Xcoomrpca ~ 0.9). On the other hand,
most of the TPA was unreacted after 15 minutes (Fig. 5). Hence,
due to the instantaneous esterification of FDCA, it is proposed that
the reactions occurred in series rather than in parallel. Addition-
ally, as shown in Fig. 5(a) and (b), TPA end group conversions
increased for PETF10 and PETF20 samples compared to PET.

At 250 °C, higher Xcoompa Was obtained in the case of PETF10
and PETF20 over the full reaction time. However, at 225 °C, the
improvement in Xcoom,rea for PETF samples occurred after
a specific delay time as shown in Fig. 5(b) with arrows. This delay
time observed at 225 °C was shorter for PETF20 (30 minutes)
compared to PETF10 (180 minutes). Based on this observation, it is
hypothesized that a certain concentration of esterified FDCA-rich
oligomers in the reaction media was necessary to facilitate the
conversion of TPA at 225 °C. This concentration was achieved at
shorter times for PETF20 compared to PETF10 due to the higher
molar ratio of FDCA in the feed for PETF20, and hence higher
concentration of BHEF and FDCA-rich oligomers.

551 (a) 250 °C

70 |
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20 1

10 : ......................................................
1 PETF10
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— T
0 15 30 45 60 75 90 105 120
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In summary, hydroxyl and total carboxyl end group conver-
sions increased with the presence of FDCA in the reaction
media. The FDCA carboxyl end groups were almost instanta-
neously converted to the esterified products. These esterified
FDCA-rich oligomers accelerated the conversion of TPA carboxyl
end group in PETF copolyesters compared to PET. At 250 °C,
Xcoon,pa Of 0.84 was achieved for PET sample after 60 minutes of
esterification reaction. A similar value of conversion was achieved
in 45 minutes for PETF20 reducing the reaction time by 15
minutes or 25%. Esterification performed at 225 °C showed
significantly slower reaction kinetics compared to 250 °C.
Surprisingly, even at 225 °C, almost all of the FDCA was esterified
within the first 15 minutes of reaction. TPA carboxyl end group
conversions at 225 °C showed a delay time before the improve-
ment due to esterified FDCA products was observed.

Composition and degree of randomness by NMR

"H NMR was also employed to investigate the composition and
the degree of randomness of the growing chains as a function of
esterification time and temperature. The oxyethylene proton
peak corresponding to the in-chain EG unit showed peak
splitting depending on the acid units surrounding it. Based on
the area under the peaks, the mole fractions and degree of

225 °C

(b)

PETF20

(2]
o
P T N TS Y T T T MR |
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o
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240 300

Fig.6 Mole% of furan in PETF copolyesters determined by *H NMR for PETF10 (-) and PETF20 (-) for direct esterification performed at (a) 250 °C
and (b) 225 °C. Dashed lines indicate the expected mole% values (10% for PETF10 and 20% for PETF20).
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randomness of PEF and PET blocks was calculated (as explained
in the ESIT) and summarized in Table 1.

Fig. 6 shows the composition of the growing copolyester
chains as a function of the reaction time and temperature. At low
reaction times, the values of the ratio of PEF to PET unit were
much higher confirming the observation that the FDCA reacted
very rapidly to produce ‘FDCA-rich oligomers’ followed by
incorporation of the TPA into the growing chain. As time pro-
gressed, TPA units were incorporated in the growing chains, and
eventually expected mole% values were achieved in the case of
250 °C. At 225 °C, the mole% of furan units was higher than the
expected values for the time scale studied. This indicated that the
incorporation of TPA units was not complete after 300 minutes of
esterification reaction time as observed from the Fig. 3(b).

The values of degree of randomness (R) at very low times
were lower than 1 in some cases indicating a block character for
the copolymers. This could be due to the blocks of rapidly
esterified FDCA-rich oligomers and absence of PET oligomers
formed at low times. However, for most of the reaction time, the
R values remained between 1.0 to 1.5 indicating a random
microstructure. These R values suggested that even though
FDCA reacted faster than TPA, the reversible nature of the
esterification reaction caused a redistribution of the repeat
units at higher times and randomized the FDCA units in the
backbone.

Based on the hydroxyl and carboxyl end group conversions
and the degree of randomness analysis, it was concluded that
the FDCA dissolved in EG almost instantaneously and reacted to
form bis-hydroxyethyl 2,5-furandicarboxylate (BHEF) and FDCA-
rich oligomers which promoted the dissolution-rate-limited-
esterification of TPA with EG most likely by acting as a co-
solvent and enhancing the solubility of the TPA in the mixture
of EG and oligomers. Note that, the observed improvement in
the reaction kinetics of TPA was different for 250 °C compared
to 225 °C. This difference was primarily attributed to the
temperature effect on the solubility of TPA in EG. At 250 °C, the
solubility of TPA in EG was sufficient to promote the reaction
and the presence of FDCA-rich oligomers enhanced the disso-
lution of TPA only marginally. On the other hand, at 225 °C, the
esterification kinetics of FDCA was slower compared to 250 °C
(Fig. 4). This resulted in a delay time to obtain sufficient
concentration of the BHEF and FDCA-rich oligomers to
promote the esterification of TPA with EG. Another possible
explanation for the observed improvement in TPA conversion
was that the dissolved FDCA improved reaction kinetics with
catalytic effect since the esterification is an acid-catalyzed
reaction.® As explained in the following sections, detailed
solubility studies and pK, measurements were performed to
further investigate the observed improvement in the reaction
kinetics of esterification of TPA with EG in the presence of
FDCA.

Effect of FDCA and pre-synthesized PEF oligomers on the
solubility of TPA in EG

In a previous study, we reported that the solubility of FDCA in
EG is an order of magnitude higher than that of TPA at the
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esterification temperatures.** For PET synthesis, the solubility
of TPA in EG is often enhanced by adding small quantities of
PET oligomers.”® Solubility experiments were carried out to
confirm the proposed hypothesis that BHEF and PEF rich
oligomers acted as co-solvents and improved TPA solubility in
EG. A fixed quantity of TPA was mixed with different quantities
of EG in the presence of FDCA or pre-synthesized PEF
oligomers.

Fig. 7 shows the effect of FDCA and PEF oligomers on the
solubility of TPA in moles per kg of EG. Please note that for the
experiments with FDCA and PEF oligomers, the weight of TPA
was kept constant and additional 20 mole% of FDCA or PEF
oligomers was added. The solubility curve of TPA shifted to
lower temperatures by ~10 °C in the presence of 20 mole% pre-
synthesized PEF oligomers throughout the temperature range
studied. As mentioned previously, similar effect of enhanced
solubility of TPA in EG has been reported when PET oligomers
were mixed with EG.?

The trend in the improvement of solubility was different for
the samples with the 20 mole% FDCA. The FDCA did not impact
the solubility of TPA at lower temperatures (90 to 140 °C).
However, the solubility curve of TPA improved significantly in
the presence of FDCA at temperatures higher than 140 °C. The
previous work on esterification of FDCA with EG revealed that
the onset of esterification reaction of FDCA occurred at 140 °C.**
Hence, this significant deviation in the solubility of TPA in
presence of FDCA at temperatures higher than 140 °C was
primarily attributed to the in situ esterified PEF oligomers.
However, the improvement in solubility of TPA by in situ
esterified PEF oligomers was greater than the improvement
observed in the case of TPA with pre-synthesized PEF oligomers.
MALDI-MS was employed to investigate the difference in the in
situ esterified PEF oligomers and the pre-synthesized PEF olig-
omers. As confirmed from the MALDI-MS spectrum in Fig. S10

in ESIf the primary difference was the degree of
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Fig. 7 Solubility of TPA in moles per kg of EG determined using clear
point method for TPA alone (filled triangle, A), TPA (black line) reported
by Yamada et al.,** TPA with 20 mole% pre-synthesized PEF oligomers
(empty circle, 0), TPA with 20 mole% FDCA (empty diamond, <), and
FDCA reproduced from previous work®: (filled square, m).
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polymerization. In the case of in situ esterification, most of
FDCA was only converted to BHEF and PEF dimer due to the
huge excess of EG. Hence, it was hypothesized that the presence
of the BHEF formed during the heating step had a greater effect
on solubility of TPA in EG compared to the pre-synthesized PEF
oligomers with higher degree of polymerization. As previously
discussed, during the copolymerization reaction with 10 and 20
mole% FDCA, the instantaneously dissolved FDCA reacted with
large molar excess of EG (relative to moles of FDCA) most likely will
form BHEF at shorter reaction times (oligomers are expected to
form as the reaction progresses since the molar excess of EG
relative to moles of FDCA is reduced due to reaction with TPA)
which resulted in the observed improvement in TPA conversions.
Solubility parameters for the monomers and oligomers were
calculated using the group contribution method devised by
Hoftyzer and Van Krevelen® to support the hypothesis of
difference in solubility of TPA in EG in the presence of BHEF vs.
PEF oligomers. For consistency, molar volumes of the mono-
mers and oligomers were predicted using the group contribu-
tion method by Fedors.*® Table S2 from ESIf shows the
calculated solubility parameters for different chemical species
involved in the esterification reaction. Based on the calculated
solubility parameters, potential of mutual solubility of two
species can be determined from the individual components
using eqn (5).
Bo12 = [(0a1 = 802 + (Bpa — 0p2)” + Bna — 0n2)]  (5)
The lower the value of Ad; ,, the greater the solubility of two
components with each other. Adgg x and Adrp, . were calculated
to understand the solubility of EG and TPA with the different
chemical species.’” Fig. 8(a) and (b) show the calculated A¢
values for EG and TPA, respectively. As shown in Fig. 8(a), lower
value of A¢ for the EG,FDCA pair compared to EG,TPA pair
indicates that FDCA is expected to have higher solubility in EG
compared to TPA. These results are consistent with the
observed solubility values reported in Fig. 7. Similarly, the
solubility of BHEF in EG was predicted to be higher than the
PEF pentamer based on the A¢ values calculated for the
respective pairs. Even though the BHEF and PEF pentamer have
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similar 64 and 6, values, the hydrogen bonding contribution (6y)
was higher for BHEF compared to PEF tetramer (Table S21).
This difference in the hydrogen bonding contribution should
result in improved solubility of the EG,BHEF pair relative to the
EG,PEF tetramer pair. Additionally, TPA is predicted to have
much higher solubility in the BHEF and PEF pentamer
compared to EG (Fig. 8(b)). Hence, based on the solubility
parameter analysis, it was concluded that the sequential nature
of the co-esterification on PETF copolyesters with FDCA reacting
prior to TPA resulted in improved solubility of TPA in EG due to
the presence of BHEF and PEF oligomers in the reaction
mixture. The solubility studies revealed that, for the tempera-
ture range considered, copolymerization with FDCA would
result in a better solubility enhancement than the direct addi-
tion of pre-synthesized PEF oligomers primarily due to better
solubility of BHEF in EG over PEF oligomers.

Prediction of pK, of FDCA and TPA

Direct esterification of carboxylic acids with glycols is an acid-
catalyzed Fischer esterification reaction.® The carboxylic acid
can auto-catalyze the reaction depending on the strength or the
pK, of the acid. The pK, value determines the equilibrium
between the acid and its conjugate base with lower values of pK,
indicating that the acid will be present in the deprotonated
form at neutral pH. These free protons can auto catalyze the
esterification reaction.® Hence, pkK, of the diacid can influence
the esterification reaction kinetics. In the case of PET, direct
esterification of TPA with EG has been reported to be auto-
catalyzed by TPA.”® Otton and Ratton reported that the esteri-
fication reaction rate increased linearly with decreasing the pK,
of the carboxylic acid.*® The objective of this section was to
predict the pK, for FDCA and compare it with the reported
values of pK, for TPA. Different predictive tools are available for
calculating the pK,s based on the structure. The accuracy of the
predictions has been reported to be in good agreement with the
experimental values in the case of carboxylic acids.** Chemic-
alize tool provided by ChemAxon was used for pK, predictions
for TPA and FDCA. The predicted pK, values for TPA were very
close to the experimental values reported in the literature as

(b)

(88) (M)/m?3) /2

6 .
4 4
2 | L
0 B
TPAEG TPA,BHEF TPA,PEF
pentamer

Fig. 8 Ao values calculated using eqgn (1) to predict solubility of different reaction species with (a) EG and (b) TPA.
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Table 2 Predicted values of pKj, for terephthalic acid (TPA) and 2,5-furandicarboxylic acid (FDCA) and comparison to reported values

Species Structure PKa Source
il Lo b 12 .
TPA a: 3.32 ChemAxon
b: 4.56
a: 3.61
. a ? ? b b: 15.10
Monoesterified TPA HO—C C—0-CH,CH,-OH ChemAxon
a: 2.76
b: 3.47
FDCA HO— CQ ChemAxon
O
a o) a: 3.06
|| / \ I b b:15.10
Monoesterified FDCA HO—C C—0O-CH,CH,-OH ChemAxon

o]

shown in Table 2. The predicted values for FDCA were lower
than TPA indicating that FDCA is a stronger diacid compared to
TPA. Similar trend was observed in the case of monoesterified
TPA and FDCA. Based on these predicted pK, values and
extending the observation by Otton and Ratton,*® FDCA should
exhibit higher esterification rates than TPA. In conjunction with
the reported esterification kinetics data, these results indicate that
the improved solubility and faster esterification kinetics are
responsible for instantaneous dissolution and conversion of FDCA
for PETF copolyesters. The dissolved esterified products of FDCA
increase the solubility and potentially reactivity of the dissolved
TPA and result in improved TPA conversions at the reaction
temperatures studied. A detailed modeling of the dissolution and
reaction kinetics should be used to fit the experimental data and
obtain the esterification rates to confirm the effect of pK, of FDCA
on the esterification rates. However, due to the complexity of the
copolymerization process, modeling of the reactions was consid-
ered outside of the scope of the current study.

End group conversion by titration

To confirm the NMR methods used above, the carboxyl end
group conversions were determined by titration and compared
with the values obtained by NMR as shown in Table 3. The
percent difference between the methods calculated using the
eqn (6) was +13% validating the end group analysis studies
performed based on the NMR method.

Xcoot total (B NMR) — Xcoom torar (by  titration)
Xcoon,iori(by NMR)

% Difference =

x 100
(6)

The trend of increase in the end group conversion for PETF
samples was consistent in the end group data by titration. The
observed variability between the two methods was consistent with
the literature reports* and was primarily attributed to the random
error arising from the inherent differences in the techniques.

Table 3 Number average molecular weight (M), dispersity (D) and Xcoon total Calculated with NMR and titration and % difference between the

methods as a function of reaction temperature (T) and time (t)

T (°C) t (min) Sample M, (Da) D Xcoom,total by NMR Xcoom,total DY titration % difference in Xgoom,total
250 30 PET 900 1.08 0.57 + 0.01 0.51 + 0.01 11.1
PETF10 960 1.07 0.67 4+ 0.01 0.64 4+ 0.01 5.2
PETF20 960 1.08 0.68 + 0.01 0.59 4+ 0.01 12.6
60 PET 890 1.08 0.84 4+ 0.01 0.84 4+ 0.04 0
PETF10 970 1.08 0.86 + 0.01 0.80 + 0.03 7.3
PETF20 960 1.09 0.89 4+ 0.01 0.80 4+ 0.03 10.4
225 180 PET 870 1.07 0.55 + 0.01 0.49 4+ 0.03 11.5
PETF10 880 1.09 0.59 £ 0.01 0.66 £ 0.01 —11.1
PETF20 970 1.07 0.75 £+ 0.02 0.68 + 0.01 9.9
420 PET 920 1.08 0.76 4+ 0.02 0.81 4+ 0.04 —6.7
PETF10 950 1.09 0.85 + 0.02 0.81 + 0.01 4.6
PETF20 970 1.08 0.92 4+ 0.01 0.86 4+ 0.02 6.7
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Molecular weight evolution by MALDI-MS

MALDI-MS spectra were recorded to monitor the effect of
copolymerization on the number average molecular weight (M,,)
and dispersity or polydispersity index of the samples (D). Two
different reaction times corresponding to Xcoom,total fOr PET of
approximately 0.5 and 0.8 were chosen for each reaction
temperature as shown in Table 3. The recorded MALDI-MS
spectra are shown in the ESL.} At both reaction temperatures,
copolymerization with FDCA marginally increased the number
average molecular weight of the oligomers after a reaction time
corresponding to Xcoow,otat ~ 0.5. The M, remained
unchanged at higher reaction times. The dispersity (P) was
close to 1.08 and was unchanged by the reaction time,
temperature, or presence of FDCA. The low values of P indicated
the effective redistribution of repeat units in growing chains as
expected in the case of low molecular weight oligomers. It has
been reported that the esterification step produces oligomers
with 4 to 5 repeat units.” Any further increase in the molecular
weight needs an effective catalyst system and removal of EG
which only takes place in the polycondensation step. The degree
of polymerization for the samples was between 4 and 5 (repeat
unit molecular weight = 192) consistent with the reports.”
Hence this data confirmed that the presence of FDCA simply
improved the kinetics of the esterification reaction without
affecting the degree of polymerization of the oligomers.

Alkaline hydrolysis of PETF20 vs. PET

This work demonstrated that the solubility and pK, differences
in FDCA and TPA result in improved esterification kinetics.
Considering the reversible nature of condensation reactions, it
was hypothesized that a similar improvement in kinetics may
be observed in the depolymerization of PETF copolymers via an
alkaline hydrolysis pathway. As a proof-of-concept, a simple
alkaline hydrolysis experiment was carried out on polymer (PET
and PETF20) film flakes in a glass vial as described in the
Experimental section. Due to the nature of the glass vial set up,
the reactions were carried out at low temperatures (lower than
100 °C to avoid boiling of the water). To achieve equilibrium
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Fig.9 % Conversion (@) and % diacid yield () of PET vs. PETF20 flakes
after alkaline hydrolysis with 1.1 M NaOH solution for 3 days at 90 °C.

The % conversion and monomer yield of PET and PETF20
depolymerization reactions are shown in Fig. 9. Both, the
conversion and yield almost doubled for PETF20 flake samples
compared to PET. '"H NMR spectroscopy was employed to
confirm the purity of the diacid monomers recovered after the
depolymerization (Fig. S13 in ESIT). NMR spectrum confirms
that depolymerization was complete and both, FDCA and TPA
were recovered as a mixture.

PET depolymerization reactions are known to be surface
reactions, where the alkali, in this case, NaOH, reacts with the
surface ester linkages and continues to scrape away the surface
of the flakes.** Based on the well-proven surface mechanism of
depolymerization and the solubility work done in this study we
propose the following possible explanations for the observed
increase in depolymerization kinetics in case of PETF20, (1)
higher solubility parameter of PETF20 enhances the interaction
of solvent molecules with the polymer flakes, swelling the
polymer matrix resulting in faster reaction kinetics; (2) the ester
linkage with FDCA may be more labile to hydrolytic degradation
resulting in more rapid depolymerization. Similar effect of

Number of moles of diacids after reaction

Monomer molar yield (Y%) =

100 (7)

Number of theoretical moles of diacids

% Conversion of PET =

conversions at lower temperatures, reaction was run for an
extended period of time (3 days). After the workup, the solid
residue was weighed to determine monomer molar yield and
conversion of PET using eqn (7) and (8).

© 2021 The Author(s). Published by the Royal Society of Chemistry

initial weight of PET — final weight of PET y
initial weight of PET

100 (8)

higher hydrolytic degradation has been reported in the case of
other bio-based co-monomers like isosorbide.** A more detailed
study of alkaline hydrolysis of copolyester of PET and PEF will
be presented in a future paper.
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Conclusions

The effect of copolymerization with FDCA on the dissolution
and esterification of TPA with EG was studied in detail in this
work. End group conversion analysis based on NMR revealed
that the co-esterification reactions occurred ‘in series’ rather
than ‘in parallel’ as FDCA reacted with EG almost instanta-
neously to form FDCA-rich oligomers followed by esterification
of TPA with EG. The presence of FDCA-rich oligomers promoted
the dissolution of TPA in the reaction mixture and improved the
TPA esterification reaction kinetics for PETF copolyester
samples compared to PET homopolyester. The carboxyl end
group conversions obtained from the NMR were confirmed by
titrimetry validating the method used. MALDI-MS results
showed that the copolymerization did not affect the degree of
polymerization, however, the number average molecular weight
increased marginally at shorter reaction times by copolymeri-
zation with FDCA. This increase was attributed to the improved
kinetics at shorter times as shown by the NMR results. FDCA
was predicted to be more acidic than TPA based on the calcu-
lated values of pK,. Since esterification is an acid-catalyzed
reaction, the lower pK, and thus, the higher acidity of FDCA
could also contribute to the enhancement of kinetics in addi-
tion to the co-solvent effect of FDCA-rich oligomers. As
demonstrated in the ESILt the higher acidity of FDCA also
resulted in increased DEG production, a side product of the
esterification step. Based on the improved esterification
kinetics, it is proposed that the esterification step of PETF
copolyesters can be performed at lower temperatures or times
and reduce the energy consumption during the synthesis step.

Due to the reversible nature of the condensation reactions,
the effect of copolymerization with FDCA on depolymerization
kinetics of PET was also investigated through a proof-of concept
alkaline hydrolysis reaction. PETF20 copolymers showed almost
double equilibrium conversion and monomer yield compared
to PET homopolymer. A more comprehensive study on depoly-
merization of PETF copolymers at industrially relevant
temperatures and recovery of FDCA from the diacid mixture will
be published in a subsequent article.
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