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nanomaterial and its fabrication
as a supercapacitor electrode: synthesis,
characterization and electrochemical studies

Irum Shaheen,a Khuram Shahzad Ahmad, *a Camila Zequine,b Ram K. Gupta,b

Andrew G. Thomas c and Mohammad Azad Malikc

In recent times, tremendous efforts have been devoted to the efficient and cost-effective advancements of

electrochemically active metal oxide nanomaterials. Here, we have synthesized a facile nanomaterial of

ZnO@PdO/Pd by employing extracted fuel from E. cognata leaves following a hydrothermal route. The

phyto-fueled ZnO@PdO/Pd nanomaterial was fabricated into a supercapacitor electrode and was

scrutinized by galvanostatic charge–discharge, electrochemical impedance spectroscopy and cyclic

voltammetry to evaluate its energy storage potential, and transport of electrons and conductivity.

Substantial specific capacitance i.e., 178 F g�1 was obtained in the current study in aKOH electrolyte

solution. A specific energy density of 3.7 W h Kg�1 was measured using the charge–discharge data. A

high power density of 3718 W Kg�1 was observed for the ZnO@PdO/Pd electrode. Furthermore, the

observed low internal resistance of 0.4 U suggested effective electron- and ion diffusion. Thus, the

superb electrochemical behavior of the ZnO@PdO/Pd nanocomposite was exposed, as verified by the

significant redox behavior shown by cyclic voltammetry and galvanostatic charge–discharge.
1. Introduction

The current era of advancement in technology has greatly
increased the demand of electrochemical advanced nano-
materials, such as supercapacitors, batteries, and fuel cells.1–6

The performance of these devices critically depends on the ow
of electrons or conductivity of the electrode material.6,9,15–18

Therefore, numerous electrode materials have been intensively
investigated among the scientic community to enhance the
performance of electrodes.7–18 It is believed that a straightfor-
ward approach to develop an efficient electrode is the func-
tionalization of nanomaterials.19,20 Nano-sized materials
contain more active sites, which thus enhance the electronic
and ionic conductivity of an electrode.

Numerous studies have been carried out on diverse nano-
materials with higher electro-activity to adapt the efficiency of
supercapacitors.15–18 The carbon-based nanomaterials are being
investigated for electrical double layer capacitors as these
capacitors materials have a higher pore size and surface area.
Then, the next category of nanomaterials is transition metal
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oxide nanomaterials used in the fabrication of pseudocapaci-
tors, which present outstanding specic capacitance and energy
density.17,18 An electrical double layer capacitor shows charge
storage by reversible ion adsorption at the surface of the elec-
trode and electrolyte interfaces, while charge storage shown by
pseudocapacitors is via Faradaic-redox reactions occurring at
the electrode surface. Pseudocapacitors due to their fast reac-
tions exhibit higher energy density and higher specic capaci-
tance compared to EDLCs. In pseudocapacitors, electrons are
passed on the valence band of the anode species or a redox
cathode. Therefore, pseudocapacitors rest on the nature and the
structure of the electrode material.18–20

Among various pseudocapacitor electrode materials, transi-
tion metal oxides (TMOs) with numerous valences are consid-
ered as the best electrode materials for pseudocapacitors,
offering an enhanced oxidation states for the effective redox ion
transfer. Among TMOs, ZnO is one of the most suitable mate-
rials for pseudocapacitor applications due to its higher elec-
trochemical activity, lower cost and greener nature. Recently, we
synthesized ZnO NPs using the organic fuel prepared from leaf
extract of Euphorbia cognata Boiss, and evaluated its possibility
for energy storage devices.5 Phyto-mediated ZnO NPs revealed
a specic capacitance of 86 F g�1 at 2 mV s�1.5 Then, we have
synthesized and reported the phyto-assisted ZnO–Co3O4 as an
electrode material for supercapacitors, and this electrode
material showed a capacitance of 165 F g�1.1 Another, ZnO-
based electrode material, ZnO@NiO, was synthesized via the
© 2021 The Author(s). Published by the Royal Society of Chemistry
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same biogenic route using the leaf extract of Euphorbia cognata
Boiss.3

Thus, the reported investigations vividly showed that the leaf
extract of Euphorbia cognata Boiss (hereaer written as ECBE)
was a signicant reagent for the synthesis of metal oxides
nanomaterials.1,3,5,21,22 Motivated from the success of pervious
projects of ECBE-based nanomaterials, we have employed the
same ECBE-based synthesis strategy to synthesize a facile
nanomaterial of ZnO@PdO/Pd without using any chemical
reagent. The ZnO-based nanomaterial possessed high crystal-
linity, and thus possessed good supercapacitive properties.1–5 In
this study, supercapacitive properties of the facile ZnO@PdO/
Pd nanomaterial have been investigated by galvanostatic
charge–discharge (GCD), electrochemical impedance spectros-
copy (EIS) and cyclic voltammetry (CV) techniques in a non-toxic
and lower cost aqueous electrolyte, and it showed considerable
specic capacitance.
Fig. 1 PF-supported preparation of the ZnO@PdO/Pd nanomaterial.

Fig. 2 (a) FTIR spectra of the as-prepared ZnO@PdO/Pd, (b) GC-MS ch

© 2021 The Author(s). Published by the Royal Society of Chemistry
The present study is rst a comprehensive exploration
carried out on the preparation of a phyto fuel (PF)-doped mixed
metal oxide (MMO) nanostructure, and the recognition of
phyto-stabilizing agents (PSAs) in the obtained product along
with the exploration of its electrochemical performance related
to supercapacitors. The electrochemical properties of the as
obtained novel nano-product were tested at various scan rates
ranging from higher (300 mV s�1) to lower (2 mV s�1) and under
numerous current densities (0.5–30 A g�1). The overall electro-
chemical results revealed that the ZnO@PdO/Pd nanomaterial
was a capable material useful as an electrode for supercapacitor
applications.
2. Material and methods

Zinc acetate [Zn(O2CCH3)2 (H2O)2] and palladium acetate
[(Pd(CH3COO)2)], ethanol and methanol (C2H5OH) were bought
romatogram of the ZnO@PdO/Pd.

RSC Adv., 2021, 11, 23374–23384 | 23375
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Fig. 3 X-ray diffractogram of the ZnO@PdO/Pd nanomaterial.
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from Sigma Aldrich, Germany. The electrode material fabrica-
tion was carried out using acetylene black, polyvinylidene
(PVDF) as well as N-methyl pyrrolidinone (NMP) bought from
Sigma Aldrich, Germany. Fresh leaves of E. cognata (EC) were
obtained from Rawalakot area [33.8584� N, 73.7654� E] of AJK,
Pakistan.
2.1. Preparation of the ZnO@PdO/Pd nanomaterial

The ECBE was prepared in DI, and its preparation has been
reported in recent studies.1,3,5 Strategy utilized in this study is
depicted in Fig. 1. The ZnO@PdO/Pd nanostructure was
Fig. 4 (a–d) Elemental profiling of the as-synthesized nanomaterial, (e)

23376 | RSC Adv., 2021, 11, 23374–23384
fabricated using ECBE. First, 40 mM of Zn(O2CCH3)2 (H2O)2 was
prepared by dissolving 878 mg of Zn(O2CCH3)2 (H2O)2 into
100 mL of DI solvent, i.e., 3.99 moles of Zn(O2CCH3)2 (H2O)2
were dissolved in 100 mL of DI water inside a 200 mL conical
ask. 10 mL of ECBE was then taken from the stock extract, and
dropped in a conical ask at a magnetic hot plate. The reaction
was stirred for almost 2 h at about 70 �C. Incubation was carried
out for this resultant mixture for almost 24 h. Then, a desicca-
tion treatment was conducted rst on a hot air oven at 95 �C and
then by annealing on an air-furnace at about 450 �C for almost
4 h for attaining fully functionalized ZnO NPs, which were then
sonicated in DI water using an ultrasonicator.

Hereaer, 40 mM [(Pd(CH3COO)2)] solution was prepared by
taking 898 mg (4 moles) of [(Pd(CH3COO)2)] into 100 mL of DI
water. This sonicated suspension of ZnO NPs was added into
the prepared 40 mM solution of [(Pd(CH3COO)2)] in a ratio of
8:2 via a stirring (550 rpm) treatment for about 15 min along
with temperature upsurged up to 70 �C. Moreover, 2.5 mL of
ECBE was also mixed in this mixture along with stirring for
another 1 h. The mixture was then evaporated within an oven
for all night, and then dried in a furnace at 450 �C for 4–5 h. The
resultant material was ground, saved in Eppendorfs, and
labelled as ZnO@PdO/Pd.
3. Characterization

ZnO@PdO/Pd was analysed via UV-Vis spectrophotometry (UV-
Vis, spectrophotometer 1602, Biomedical services, Spain) to
study the bandgap. OGFs were monitored via FT-IR spectros-
copy (FTIR, 8400, Shimadzu, Japan). Presence of organic species
was conrmed by GCMS QP5050. Phases were identied by XRD
(XRD5 PANalytical X'Pert Pro, Manchester, U.K.). The shape and
EDX spectrum of the as-synthesized material.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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type of elements present were determined by SEM (Quanta 250-
FEG, Thermo Fisher Scientic, U.S.A.) along with EDX (Bruker,
U.S.A). Similarly, investigations on the surface chemistry were
accomplished via a Kratos-Axis Ultra spectrometer (XPS).
3.1. Electrochemical measurements

In order to fabricate the resultant product, within N-methyl
pyrrolidinone, a slurry encompassing ZnO@PdO/Pd, AB, as well
as PVDF in 8 : 1 : 1 was prepared, which was then dispersed over
porous Ni foam at 60 �C for 10 h under vacuum. The electrode
material was examined electrochemically via CV, GCD, and EIS.
To carry out these studies, an electrochemical work station was
produced having a three-electrode system along with a working
electrode comprising a ternary nanocomposite-adapted Ni
foam, a platinum wire counter electrode and saturated calomel
as the reference electrode. Electrochemical analyses were
carried out via KOH (3 M) by CV at varying scanning rates
ranging 2–300 mV s�1. Galvanostatic charge discharge (GCD)
was altered by uctuating the current densities (CD) i.e., 0.5–
30 A g�1. EIS was directed for sample utilizing frequency of 50
mHz to 10 kHz.
Fig. 5 XPS of ZnO@PdO/Pd (a) Zn 2p, (b) Pd 3d, (c) C 1s, (d) O 1s.

© 2021 The Author(s). Published by the Royal Society of Chemistry
4. Results and discussion
4.1. Functionalized ZnO@PdO/Pd nanomaterial

In the literature, numerous plant-mediated nanomaterials have
been synthesized.23–28 In the current study, a facile nanomaterial
has been synthesized for investigating its electrochemical
behaviour. Before employing ZnO@PdO/Pd for fabrication of an
electrode, it was analysed for its compositional and morpho-
logical properties. Initially, PF-assisted ZnO@PdO/Pd was
examined by FTIR spectroscopy and GC-MS for obtaining the
presence of PSAs.

Fig. 2a shows the FTIR analysis of our observed material
(ZnO@PdO/Pd), displaying clear vibrational peaks at
687.56 cm�1, given by the N–H wag along with the C–H oop,
matching to aromatics as well as 1� and 2� amines. These
vibration peaks were associated with the PF-doped ZnO@PdO/
Pd material. Inset shown in Fig. 2a reects M–C, and M–O (M
¼ Zn and Pd) bonds within frequency 600–400 cm�1.39,54 Thus,
aromatics and 1� and 2� amines behaved as SAs in the as-
prepared product.

GC-MS of our tested sample is presented in Fig. 2b, showing
peaks at 4.78, 4.92, 5.519, as well as at 20.43, representing
RSC Adv., 2021, 11, 23374–23384 | 23377
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benzeneethanamine (C8H11N), benzenemethanol (C7H8O),
benzeneethanamine along with octodrine (C8H19N), connected
to PdO/Pd-doped ZnO, respectively.

Fig. 3 shows the XRD patterns of hexagonal ZnO according to
(ICSD 00-036-1451). ZnO showed crystalline peaks at 2 theta (q)
¼ 31.97, 34.65, 36.465, 47.751, 56.79, 63.06, 66.63, 69.24, and
77.128, relating to (100), (002), (101), (102), (110), (103), (200),
(201) and (202) miller index planes. According to ICSD 00-036-
1451, the crystal system is hexagonal for ZnO, the space group is
P63mc and space group number is 186. The unit cell parameters
are as follows;

3a (Å): 3.2498

3b (Å): 3.2498

3c (Å): 5.2066

3Alpha (�): 90

3Beta (�): 90

3Gamma (�): 120

Moreover, XRD revealed the PdO (A) at 2 theta (q) ¼ 34.082,
42.184, 54.97, 60.45, 71.61, and 85.81 corresponding to hkl
planes of (101), (110), (112), (103), (211), and (114) (ICSD 00-041-
Fig. 6 Morphological images ZnO@PdO/Pd at different magnifications

23378 | RSC Adv., 2021, 11, 23374–23384
1107). According to the ICSD 00-041-1107 crystal system, PdO is
tetragonal, its space group is P42/mmc, space group number is
131, and the unit cell parameters are a (Å): 3.0456, b (Å): 3.0456,
c (Å): 3.3387, alpha (�): 90, beta (�): 90, gamma (�): 90. However,
the formation of cubic Pd (C) was conrmed by peaks at 2 theta
(q) ¼ 40.3601 (111), 46.89 (200), 68.22 (220), 82.35 (311) and
86.06 (222) with ICSD 00-005-0681. However, the formation of
cubic Pd (C) was conrmed by peaks at 2 theta (q) ¼ 40.3601
(111), 46.89 (200), 68.22 (220), 82.35 (311) and 86.06 (222) with
ICSD 00-005-0681. ICSD 00-005-0681 states that the crystal
system of Pd is cubic, space group is Fm3m, space group
number is 225, while unit cell parameters are a (Å): 3.8898, b (Å):
3.8898, c (Å): 3.8898, Alpha, Beta and Gamma is same as for
PdO. Moreover, the crystallite size shown by ZnO@PdO/Pd was
27–29 nm as calculated by the Debye Scherrer's.71

EDX analysis of the tested sample is given in Fig. 4, indi-
cating that Zn was in excess, whereas Pd was in a minor
quantity. Results further veried the carbon presence, which is
because of PSAs.

The Zn 2p spectrum (Fig. 5a) shows two orbit split peaks by
Zn-2p3/2 along with Zn-2p1/2,39 with binding energies (BE)
relatable to the ZnO spectra.42 Pd 3d spectra indicate that Pd
3d5/2 and Pd 3d 3/2 also have Pd2+ on 342.2 BE (Fig. 5b). The O1s
region (Fig. 5d) indicates C]O, C–O, OH and H–C–O.29,42 The C
1s spectrum shows OFGs, i.e., C–O, COO, O–C]O, C]O, C–C,
C–H and C]C.29,42,64 The energy region in C 1s is higher than
(a ¼ 5 mm, b ¼ 3 mm, c ¼ 1 mm and 500 nm).

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 (a) UV Absorption analysis displayed by ZnO@PdO/Pd, (b) optical bandgap energy (BGE) of ZnO@PdO/Pd through Tauc's plot.
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290 eV because of sp3 hybridized (C–C).64 Thus it is fruitfully
expressed by XPS that the functionalization of ZnO@PdO@Pd
by OFGs is achieved in a good way.

FE-SEM pictures of ZnO@PdO/Pd displayed in Fig. 6 gave
distinct nano-structures in spherical forms arranged in an even
and less agglomerated fashion, thus verifying that the role of PF
for the preparation of required material is done in an excellent
way.1,3,5,23–25
Fig. 8 Supercapacitive properties of the ZnO@PdO/Pd electrode by (a) C
SC of ZnO@PdO/Pd electrode at ASR, and (d) SC at applied CD.

© 2021 The Author(s). Published by the Royal Society of Chemistry
4.2. Bandgap energy

Apart from compositional and morphological analysis, the
facile fabricated material was further investigated for its optical
direct bandgap energy (eV). For this, a very diluted and trans-
parent aqueous suspension of the as-synthesized nanomaterial
was scanned by UV-Vis at 200–800 nm. The subsequent spec-
trum is displayed in Fig. 7a. Based on the absorbance data and
V at applied scan rates (ASR), (b) GCDmeasurements at applied CD, (c)

RSC Adv., 2021, 11, 23374–23384 | 23379
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using Tauc's equation, the optical bandgap energy was deter-
mined (Fig. 7b).

Fig. 7a depicts an absorption peak at 376.34 nm related to
OFGs and MOs correspondingly. Fig. 7b shows the BGE of
ZnO@PdO/Pd through Tauc's plot. Consequential BGE for OFG-
binded ZnO@PdO/Pd was very low, i.e., 2.25 eV, whichmade the
transference of electrons quite easy with greater CD making it
promising for capacitance.29–31,43,44
4.3. Electrochemical studies

The reported literature presents PdO as an excellent electro-
chemical test material having precise redox behavior.72–74

Moreover, it can ominously lower the BGE of ZnO, resulting in
a boosted electrochemical behavior (Fig. 8 and 9). In our
previous study, we have synthesized ZnO NPs employing the
phytochemical extract for supercapacitive investigation.5 In the
current study, the effects of Pd/PdO were investigated for the
reported electrochemical behavior of ZnO NPs.5

Fig. 8a and b reveal CV as well as GCD proles given by
ZnO@PdO/Pd, pointing Faradaic redox peaks by pseudocapa-
citors. With an upsurge in SR from 2–300 mV s�1, anodic (AP)
and cathodic peaks (CP) altered their intensity, as well as the
positions. AP showed an increase in CD (peak), while moving to
high potentials. However, CP showed a decline in CD showing
Fig. 9 (a) Ragone plot by ZnO@PdO/Pd; (b) measured ED and PD on diffe
Nyquist plot at higher frequency part); (d) change in impedance along w

23380 | RSC Adv., 2021, 11, 23374–23384
a shi to low potentials. These results were in agreement with
those obtained by Khan et al.,32 Duraisamy et al.34 and Pramanik
et al.35 Reasons behind these ndings were kinetic irreversibility
as well as electric polarization given by ions of electrolyte at the
surface of the electrode with higher SR.33,36–40 This changed the
CV curves shape to a rectangular form with more SR. SC values
shown by the ZnO@PdO/Pd electrode are noted at different SR
(Fig. 8c). SC of 178 F g�1 were witnessed at about 2 mV s�1 by CV
data (Fig. 8c), indicating efficient stability of ZnO@PdO/Pd that
maintained high at 2 mV s�1. However, for ZnO NPs, 86 F g�1

was recorded at 2 mV s�1.5 As discussed above, Pd has a fast
redox behavior,74 and it is well reported to have fast redox
reactions, contributing to the enhancement of the specic
capacitance.40–50 Table 1 shows a contrast of the capacitance
shown by the ZnO@PdO/Pd electrode with those obtained in
earlier reports.

Fig. 8 shows the charge storage capacity of M.Os composite
investigated by GCD measurements. Non-linear curves are
observed in GCD, which agreed with the observation from CV
data, conrming the pseudocapacitance behavior of ZnO@PdO/
Pd. Extreme SC attained by GCD data was about 69 F g�1 at
0.5 A g�1 (Table 2).

The ability of energy storage shown by ZnO@PdO/Pd was
estimated via specic ED (W h kg�1) along with PD (W kg�1)
(Fig. 9a and b). Fig. 9b shows that ZnO@PdO/Pd exhibited the
rent CD; (c) Nyquist plot by ZnO@PdO/Pd at low frequency part (inset:
ith frequency.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Contrast between the as-synthesized ZnO@PdO/Pd electrode and earlier reports

Electrode Electrolyte Specic capacitance (F g�1) Scan rate (mV s�1) References

ZnCo2O4 nanorods PVA 10 10 45
5 100

ZnCo2O4 nanowires PVA 0.4 mF 100 46
0.85 mF 30

ZnO–Co3O4 3M KOH 165 2 1
Co3O4 powder (<50 nm) 2M KOH 118 5 10
Co-doped TiO2NT/RGO Na2SO4 34.8 5 49
ZnO NPs 3M KOH 86 2 5
ZnO@PdO/Pd 3M KOH 178 2 Present work

118 5
57 100

Table 2 Comparison of the GCD-based capacitance of ZnO@PdO/Pd
with literature

Electrodes Electrolytes
SC value
(F g�1) CD A g�1 References

ZnO–Co3O4 3M KOH 84.3 0.5 1
Ti3C2–ZnO KCL 70 0.5 51
ZnO 3M KOH 39 0.5 5
ZnO@NiO Aqueous KOH 34 5 3
Mo–ZnO KOH 46.2 10 50
ZnO@PdO/Pd 3M KOH 69 0.5 Current work
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highest ED, i.e., 3.3 W h kg�1, which also is better than previous
ndings on electrodes of ZnO,39 ZnO,5 MoO2, Mo O3 (ref. 66 and
69) and Co3O4.56 The ZnO NPs revealed the highest ED of 1.9 W
Kg�1,5 which is much lower than ZnO@PdO/Pd. This is again
credited to the fast Faradaic reactions of PdO/Pd.55–67 ED of PF-
binded ZnO@PdO/Pd was also improved than ZnO-activated
carbon39 ZnO NPs.40 Excellent PD of ZnO@PdO/Pd was
3718 W kg�1 (3.7 KW kg�1) (Fig. 9b), which is much better than
ZnO NPs,5 ZnO,39 ZnO–Co3O4 (ref. 1) and ZnO@NiO.3 Fig. 9a
shows a Ragone plot revealing a negative relation among ED
and PD, as veried in previous ndings.29–32 Accordingly, both
ED and PD demonstrated ZnO@PdO/Pd as an efficient elec-
trode for energy storage devices.

EIS measurements were also carried out to evaluate the
internal resistance (Ri) as well as the charge transfer resistance
(Rct), as shown in Fig. 9c and d. The inset shown in Fig. 9c in
Nyquist displayed a semicircle at lower frequencies, pointing to
Rct. Intercept (in real part) shown at higher frequencies was
because of Ri. Fig. 9a shows a line at 45� that is known as the
Warburg element (Zw).1,29,30 Lower Ri of 0.4 U shown by our
prepared ZnO@PdO/Pd conrmed the high speed movement of
ions as well as electrons, and this low value is because of more C
and O consisting OFGs at the electrode surface, thus creating
more sites for the transportation of electrons and ions giving
a rise to improved conductivity.50–55,67–70 The semi-circle arc
shown in Fig. 9c veried the best supercapacitor behavior also
authenticated by a vertical line shown by Zw as well as a minor
semicircle present along with it. Fig. 9d represents a very low
© 2021 The Author(s). Published by the Royal Society of Chemistry
impedance along with a change in frequency also veried the
best conductivity given by ZnO@PdO/Pd.

These electrochemical examinations including the low Ri

and Rct showed a superb redox behavior (CV as well as GCD),
verifying that the fabricated ZnO@PdO/Pd nanostructure can
be fruitfully employed as a supercapacitor.
5. Conclusion

We have successfully synthesized the facile ZnO@PdO/Pd
nanomaterial demonstrating its pretrial utility for energy
storage. The ZnO@PdO/Pd nanomaterial revealed a spherical
shape and less agglomeration. XPS analysis and GCMS unveiled
ZnO@PdO/Pd surface functionalization by phyto compounds
(C8H11N, C7H8O, and C8H19N). Consequently, ZnO@PdO/Pd
displayed more active sites, thus facilitating the effective
diffusion of electrons as well as ions. An enhanced specic
capacitance and energy density was obtained for the fabricated
electrode due to the combination of ZnO and PdO. The signif-
icant redox behavior was noticed in the fabricated electrode, as
depicted via CV along with GCD, revealing that it had
a considerable potential for energy storage devices. Thus,
current investigation presented the excellent potential of
ZnO@PdO/Pd for pseudocapacitance.
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