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armacophore modeling and
molecular dynamic simulation approaches to
identify putative MMP-9 inhibitors†

Bharat Kumar Reddy Sanapalli, ‡*a Vidyasrilekha Yele, ‡b Srikanth Jupudi *b

and Veera Venkata Satyanarayana Reddy Karri a

MMP-9 is a calcium-dependent zinc endopeptidase that plays a crucial role in various diseases and is

a ubiquitous target for many classes of drugs. The availability of MMP-9 crystal structure in combination

with aryl sulfonamide anthranilate hydroxamate inhibitor facilitates to accentuate the computer-aided

screening of MMP-9 inhibitors with the presumed binding mode. In the current study, ligand-based

pharmacophore modeling and 3D-QSAR analysis were performed using 67 reported MMP-9 inhibitors

possessing pIC50 in the range of 5.221 to 9.000. The established five-point hypothesis model DDHRR_1

was statistically validated using various parameters R2 (0.9076), Q2 (0.8170), and F value (83.5) at a partial

least square of four. Hypothesis validation and enrichment analysis were performed for the generated

hypothesis. Further, Y-scrambling and Xternal validation using mean-absolute error-based criteria were

performed to evaluate the reliability of the model. Docking in the XP mode and binding free energy was

calculated for 67 selected ligands to explore the key binding interactions and binding affinity against the

MMP-9 enzyme. Additionally, high-throughput virtual screening was carried out for 2.3 million chemical

molecules to explore the potential virtual hits, and their predicted activity was calculated. Thus, the

results obtained aid in developing novel MMP-9 inhibitors with significant activity and binding affinity.
Introduction

Matrix metalloproteinase (MMP)-9, one of the widely investi-
gated MMP, belongs to a family of calcium-dependent endo-
peptidases that contains zinc.1,2 In general, MMP-9 is involved
in breaking the extracellular matrix (ECM) components that
facilitate connective tissue remodeling, organogenesis, devel-
opment, and turnover into normal tissue.3 Usually, MMP-9
activity is strongly controlled by the equilibrium between the
synthesis of active enzymes and the presence of inhibitors.3,4

However, this balance is lost in numerous pathological condi-
tions, causing chronic inammation.5 This chronic condition is
responsible for abnormal tissue degradation, causing
cancers,6,7 atherosclerosis,8 osteoarthritis,9 cardiovascular,10,11

lung,12,13 neurological,14,15 metabolic-related disorders, and
delayed wound healing in diabetes.16 Thus, nding novel
inhibitors that block the elevated levels of MMP-9 could be an
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tion (ESI) available. See DOI:

6831
attractive approach in combating the pathogenesis of several
diseases.

The crystal structure of MMP-9 consists of a catalytic domain
with three a-helices and ve stranded b-sheets. The catalytic
pocket contains an active site with two zinc and ve calcium
ions. The zinc ions in the domain are coordinated by three
histidine residues (His401, His405, His411) and glutamic acid
residue (Glu402).17 All members of the MMP family differ in
their S1 selectivity pocket and chain length. The selectivity loop
of MMP-9 has no regular secondary structure and is oen
mobile, undergoing conformational modications on ligand
binding. Therefore, the sequence of the S1 loop, structural
variability, and the cocrystal ligand nature contribute to the
observed overall shape and size of the selectivity loop pockets in
different MMPs.18 Unfortunately, the electron density at the side
chain of residue Arg424 is very poor and oriented into the S1
loop, forming a smaller enclosed catalytic pocket in the MMP-9
crystal structure.19 The asymmetric crystal structure (PDB: 5I12)
contains a single chain A, with sequence length 157. It contains
a bound ligand, arylsulfonamide anthranilate hydroxamate, the
resolution is 1.59 Å, and the selectivity pocket of the protein
lacks electron density.20

Besides arylsulfonamide anthranilate hydroxamate, various
bioactive moieties have been investigated as potent MMP-9
inhibitors. These include hydroxamates,19 hydroxyquinoline,21

curcuminoid pyrazoles,22 4-thiazolidione,23 tetrahydro b-
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 A workflow methodology of present work.
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carboline,24 4-phenoxybenzenesulfonyl pyrrolidine,25 5-
substituted pyrimidine-2,4,6-triones,26 ethynylthiophene
sulfonamido-based hydroxamates,27 amidine-based thiazole,28

caffeic acid amides,5 and anthranilic acid,29–31 based derivatives.
Inhibition of MMP-9 activity has been explored for the
advancement of novel small molecules, but a potent inhibitor of
MMP-9 has not been reported yet. Although MMP-9 inhibitors
have achieved promising therapeutic effects in pre-and peri-
metastatic settings, in clinical trials (performed on advanced-
stage patients), these inhibitors had serious side effects such
as musculoskeletal pain and inammation due to the broad
inhibition of MMPs.

The availability of high-resolution crystal structure of MMP-9
investigated experimentally to develop potential inhibitors with
fewer side effects32 using computational approaches.20 Amongst
various medicinal chemistry approaches, pharmacophore-
based drug design was a more efficient technique for identi-
fying hits or designing novel compounds.33 In this article, we
combined ligand-based pharmacophore modeling, 3D-QSAR,
molecular docking in the extra-precision (XP) mode, binding
free energy and molecular dynamic (MD) studies to discover key
interactions between the protein and ligands that are account-
able for MMP-9 inhibitory activity. Further, the validation of the
model displayed signicant predictive power for the in vitro
activity (pIC50). The highest active molecule was nominated for
MD simulation of 100 ns using GROMACS 2018.1 to validate the
proposed binding pose. In addition, in silico virtual screening
was performed to determine the novel hits against MMP-9
protein.
Computational methods
Data set generation

In the current study, a data set comprising of diversied series
of 67 molecules possessing 8-hydroxyquinoline, caffeic acid
amides, anthranilic acid, and amidine based thiazole scaffolds
(ESI, Table S1†) were used.5,21,28,30 Initially, IC50 values (9 to 5.22
mM) of the data set were converted into pIC50. The molecular
features of compounds in the test set were used for the internal
validation, and those in the training set have been provided as
a template for model development. The 3D structures of mole-
cules were created using the Maestro builder panel and opti-
mized using the LigPrep module (Schrödinger suite 2020-3),
followed by the generation of possible ionization states by the
Propka method.34 Energy optimization was achieved using the
OPLS3e forceeld.35 Minimization of energy was carried out for
the ligands till it reached the cut-off of 0.1 root-mean-square
deviations (RMSD). Then, the prepared ligands were used for
further studies. The overall methodology was represented in
Fig. 1.
Pharmacophore hypothesis generation and 3D-QSAR analysis

The phase module (Schrödinger suite 2020-3) was employed to
build the pharmacophore hypothesis and 3D-QSAR models for
MMP-9 inhibitors. Further, the partial least square (PLS)
method was employed to compare the experimental MMP-9
© 2021 The Author(s). Published by the Royal Society of Chemistry
activity with the 3D molecular descriptors. ConfGen was used
to generate conformers, and distance-dependent dielectric was
applied for the solvation treatment. A data set was assigned with
a threshold activity of pIC50 > 8.3 as active and <5.5 as inactive
compounds while remaining moderately active.36 The pharma-
cophoric sites were generated using pharmacophoric features:
hydrophobic group (H), hydrogen bond acceptor (A), hydrogen
bond donor (D), negative charged group (N), positive charged
group (P), and aromatic ring (R) dened in module phase.
Amongst 67 ligands, 46 were designated as training sets based
on their broad range of activity and diversity. The remaining 21
compounds were selected as test compounds to enable signi-
cant comparison with the predicted models. The pharmaco-
phore hypothesis was generated using 10 active compounds,
keeping 2 Å for the minimum intersite distance and 1 Å for the
pharmacophore-matching tolerance between two pharmaco-
phoric features.

A total of 20 variant hypotheses were developed, keeping ve
as a maximum number of sites while 50% as actives. Amongst
20 generated hypotheses, the best ve were selected based on
the survival score, survival inactive, site score, volume, vector,
energy terms, and the number of matches (Table 1). The test
ligands aligned according to the generated ve-point best-tted
hypothesis factor did not affect the model DDHRR_1 model.
The angles and distances were calculated among various
pharmacophoric features of the selected model and are repre-
sented in Fig. 2(a and b) (ESI, Tables S2a and b†). van der Waals
model of the aligned training set ligands was employed to
generate 3D-QSAR model. A statistically signicant model for
the DDHRR_1 hypothesis was created based on the 46 training
RSC Adv., 2021, 11, 26820–26831 | 26821
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Table 1 Different parameter scores of the generated hypothesis DDHRR_1a

Hypothesis Survival Site Vector Selectivity Survival-inactive Volume Matches

DDHRR_1 5.639 1 0.962 2.089 1.379 0.809 7
DDHRR_4 5.561 0.951 0.991 2.097 1.125 0.667 7
DHRRR_2 5.521 0.832 0.966 2.084 1.375 0.788 7
ADHRR_1 5.605 1 0.958 2.005 1.356 0.797 7
ADHRR_2 5.523 0.956 0.958 2.005 1.476 1.387 6

a D: hydrogen bond donor; H: hydrophobic; R: ring aromatic.

Fig. 2 Pharmacophore model DDHRR_1 (a) intersite angles in Å unit
(b) intersite distances in Å unit, between the pharmacophoric points.
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set ligands via PLS regression. The incremental predictivity and
statistical signicance were detected up to PLS factor four
(Table 2). However, further, increase in the PLS statistics and
predictive ability. The best-tted hypothesis model DDHRR_1
was validated by the predicted activity of the test set, which is
not included in the model development. Besides, ligands
pharmacophoric features arrangement and recognition in
space were evaluated using contour plots.
26822 | RSC Adv., 2021, 11, 26820–26831
Hypothesis validation

To validate the utility of the generated model, an enrichment
study was conducted by mixing the decoy set retrieved from the
Schrödinger database with 10 active molecules (pIC50 > 8.3).
Robust initial enhancement (RIE) and enrichment factor of the
decoy set molecules were calculated for the accurate ranking of
the compounds and to determine the ability to identify actives
from inactives.

Moreover, Y-scrambling or randomization test was carried
out using a training set to determine the reliability of the
generated DDHRR_1 model.37 All independent variables
(molecular descriptors) were kept unchanged during the model
generation, while the dependent variable (activity data) was
randomized throughout the study. Aer performing 10 Y-
scrambling tests, the models with low R2 and Q2 values were
considered reliable (ESI, Table S3†).

The prediction quality and systematic errors in the devel-
oped hypothesis DDHRR_1 were evaluated by the mean abso-
lute error (MAE)-based criteria method using Xternal Validation
plus 1.1 tool recognized by the DTC soware lab (https://
dtclab.webs.com/sofwafre-tools). All the external validation
parameters of the hypothesis were also computed using the
MAE-based criterion, which classies the prediction quality of
the model into ‘good’, ‘bad’ and ‘moderate’ based on their
evaluation parameters such as standard deviation (SD), MAE,
and absolute error (AE). The standard deviation of absolute-
error (sAE) is well-dened as follows: (a) bad predictions
(MAE + 3 � sAE > 0.25 � training set range and MAE > 0.15 �
training set range); (b) good predictions (MAE + 3 � sAE # 0.2
� training set range and MAE # 0.1 � training set range) and
moderate predictions are the ones that do not fall under either
of the above criteria. Almost 5% of ligands with high AE values
were eliminated using the MAE-based criteria method to over-
whelm the outlier predictions possibility. About 95% of
compounds were employed to determine the external data set of
poorly predicted data, whereas, the predictivity of the model
was penalized using 100% of MAE-based criteria.38 Besides, to
determine the presence of systematic error prediction, absolute
value means of the number of negative prediction errors (nNE),
negative prediction errors (MNE), the average absolute predic-
tion errors (AAE), the absolute value of average prediction errors
(AE), the mean of positive prediction errors (MPE), number of
positive prediction errors (nPE) were employed using Xternal
validation plus 1.1 tool.39,40 The results obtained using the
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Phase 3D-QSAR PLS statistical results of the selected pharmacophore model DDHRR_1a

PLS SD R2 F P Stability Q2 RMSE Pearson-R

1 0.5778 0.7216 95.9 8.07 � 10�12 0.854 0.6712 0.64 0.8340
2 0.4696 0.8212 82.6 3.5 � 10�14 0.812 0.7343 0.57 0.8744
3 0.4172 0.8627 73.3 3.63 � 10�15 0.766 0.7650 0.54 0.9011
4 0.3473 0.9076 83.5 4.27 � 10�17 0.709 0.8170 0.48 0.9454

a PLS: partial least square; SD: standard deviation; R2: regression coefficient; F: test statistic for F-tests; P: level of signicance; Q2: cross-validated
correlation coefficient; RMSE: root-mean-square error; Pearson-R: Pearson product-moment correlation coefficient.
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current method are considered satisfactory if any one ormore of
the above-mentioned prediction errors obeys the rules demar-
cated using the MAE-based criterion method (ESI, Table S4†).
Ligand preparation, docking studies, and binding free energy
calculation

The X-ray crystal structure of the MMP-9 enzyme conjugation
with arylsulfonamide anthranilate hydroxamate inhibitor (PDB:
5I12, resolution 1.80 Å) was retrieved from the RCSB-protein
data bank. The optimization of the selected protein was per-
formed by the protein preparation wizard module available in
the Schrödinger suite 2020-3.41,42 The addition of hydrogens and
renement were performed using restrained minimization of
the OPLS3e force eld.35 Side-chain renement, the building of
breaks was carried out using the Prime module.43 Geometric
optimization was performed using OPLS3e forceeld
(Schrödinger suite 2020-3). Molecular docking was performed
for the entire data set ligands against the MMP-9 catalytic
domain in (XP) mode using the Glide module (Schrödinger
suite 2020-3).44

Minimization of ligands was achieved using the local opti-
mization feature in the Prime module. The continuum solvent
model (VSGB), OPLS3e force eld, and rotamer search algo-
rithm were used for computing the binding free energies of the
ligands.
High-throughput virtual screening (HTVS)

HTVS was performed in the binding pocket of MMP-9 using the
Glide docking module of Schrödinger suite 2020-3. The receptor
was set as a rigid body, whereas the ligands were set as exible
before subjecting to docking. Before the study, the database
library (23 lakh molecules), retrieved from Specs, Timtec,
Enamine, and Zinc databases, were ltered based on their
physicochemical properties. Three thousand molecules were
nominated based on the phase screen-score and tness to
perform clustering using discovery informatics and the 3D-
QSAR model available in Maestro 12.5 (Schrödinger suite
2020-3). Volume overlapping matrices were calculated using 1.7
Å xed radius in the normalized mode by keeping a grid spacing
at 1 Å. Clustering was performed using a clustering strain of
1.134 Å and the average linkage method. Almost 20 clusters
were generated using duplicate entries to a new group for each
cluster formed. The clustering analysis was performed using the
Kelley index, dendrogram, and distance matrix.
© 2021 The Author(s). Published by the Royal Society of Chemistry
Virtual screening includes three systematic layers viz.,
HTVS, standard precision (SP) docking, XP docking. These
three precisions of docking were employed to obtain a poten-
tial lead molecule with rapid speed. Although HTVS screens
a large set of molecules rapidly, the sampling methods were
conned, and the outcome could not be interpreted directly.
Thus, the ligands screened by HTVS were further docked using
SP, which provides a suitable binding pose from a large pool of
ligands. Additionally, the best 10% of SP molecules were
selected for docking in the XP mode and analyzed using an XP
visualizer. The rst ve molecules were chosen for free energy
calculations based on their Glide score, Glide E-model, and
Glide energy.
MD simulation

A 100 ns MD simulation was carried out for the 5/5I12 complex
using GROMACS 2018.1 soware package.45 Energy optimiza-
tion of the selected complex was performed using the gromos
54a7 force eld. The structural topologies of the ligand
complex were constructed from the PRODRG web server.46

Simulation of the system was carried out with an SPC water
model and in a cubic boundary box. Neutralization of the
system was achieved by replacing water molecules with
sodium (Na+) and chloride (Cl�) ions that direct periodic
boundary conditions. The system was equilibrated at constant
1 atmospheric pressure and 300 K of temperature. As per the
report by Duan et al. 2019, it is clear that 300 K is considered as
standard and most suitable temperature for MD simulations
as it possesses the highest cluster occupancy (cluster analysis),
lower free energy state (free energy landscape analysis) and
RMSD distribution.47 Energy minimization was performed
using the steepest descent algorithm.48
MD analysis

GROMACS 2018.1 soware package was used to analyze the MD
conformations.45 For analyzing the radius of gyration (RG), root-
mean-square deviation (RMSD), command lines g_gyrate and
g_cluster were employed. Energy calculation was performed
using the g_energy program command line. The commands
g_rmsf and g_rmsd were employed for root-mean-square uc-
tuation (RMSF) of amino acid residues and mean-square
displacement. The docked 5/5I12 complex was used to
observe the migration over the simulation time.
RSC Adv., 2021, 11, 26820–26831 | 26823
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Molecular Mechanics-Poisson Boltzmann Surface Area (MM-
PBSA) calculation

The binding free energy of compound 5/5I12 complex aer the
MD simulation was calculated using the MM-PBSA.49 This
approach calculates the free energies of the end states directly
by eliminating the simulation of intermediate states and
combines the molecular mechanical energies with the
continuum solvent strategies. Explicit water molecules were
removed from the snapshots.

The binding free energy (DGbind) was calculated as follows:

DGbind ¼ DEgas + DGsolv � TDSconf

where DEgas is the interaction energy between the protein and
ligand in the gas phase;

DEgas ¼ DEvdW + DEelec

where DEvdW and DEelec refer to protein-ligand van der Waals
and electrostatic interactions, respectively.

Solvation free energy (DGsolv) is the sum of a polar solvation
free energy (DGNP) and electrostatic solvation free energy
(DGPB):50

DGsolv ¼ DGNP + DGPB

TDSconf, solute entropies were calculated by the module
NMODE in GROMACS.
Fig. 3 The correlation plot between the experimental and predicted
activity (pIC50) of 8-hydroxyquinoline, caffeic acid amides, anthranilic
acid, and amidine based thiazole inhibitors using pharmacophore-
based QSAR model of (a) training set (b) test set with best-fit line y ¼
0.65x + 2.39 (R2 ¼ 0.89).
Results and discussion

The best ve-point model DDHRR_1 hypothesis was created
based on 10 active compounds (pIC50 > 8.3). The pharmaco-
phore hypothesis DDHRR_1 was considered as the best model
based on the values obtained for cross-validated coefficient (R2)
of 0.9076, survival score of 5.639, Pearson-correlation coefficient
(r) of 0.9454, regression coefficient of 0.89, smaller signicance
level of variance ratio (p) of 4.27 � 10�17 and highest variance
ratio (F) value of 83.5. The DDHRR_1 model consists of two
hydrophobic, two ring features, and a hydrogen bond donor.
Aer the alignment of hypothesis DDHRR_1 over actives (10)
and inactives (7) revealed that angles and distances are signif-
icant attributes for inhibitory activity of MMP-9. Besides,
a higher degree of condence in the hypothesis model
DDHRR_1 was exhibited by the higher value of QSAR model
stability 0.709 on a maximum scale of 1 with an SD of 0.3473,
root-mean-square-error (RMSE) of 0.48, and Pearson correlation
coefficient (r) of 0.9454. In the training set, the high coefficient
of determination (R2) of 0.9076 indicated the relevancy of
generated model. Further, the validity and ability of the
hypothesis model in experimental activity prediction of test
compounds were suggested by the higher cross-validated
correlation-coefficient (Q2) of 0.8170 PLS-4 (ESI, Table S1†). A
comparison between experimental activity and phase-predicted
activities of test and training set molecules were calculated, and
the results are represented in Fig. 3a and b, respectively. The
26824 | RSC Adv., 2021, 11, 26820–26831
scatter plots of both training and test indicate the moderate
deviation between predicted and experimental activity.

In enrichment analysis, the hypothesis model DDHRR_1
could determine 100% active compounds on the hit list. The
results obtained from the enrichment analysis in terms of the
recovered actives from the top 1–20% of decoy set molecules
that rank-ordered with respect to tness score of the generated
pharmacophore model (ESI, Tables S7–S9 and Fig. S1†). From
the results, it is clear that recovery of the 50% actives is possible
from the top 5% of the decoy set with decent enrichment values.
RIE was computed for the hypothesis models to evaluate the
ranking of active set contribution in the enrichment study. The
obtained RIE value 13.07 for the best-tted model DDHRR_1
directed the superior ranking over random distribution. To
© 2021 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1ra03891e


Table 3 Results of Enrichment factor (EF) analysis for the generated
3D-QSAR models

Pharmacophore
model AUC RIE ROC

Phase hypo
score BedROC160.9

DDHRR_1 0.83 13.07 0.70 1.06 0.84
DDHRR_4 0.83 13.07 0.70 1.05 0.84
DHRRR_2 0.83 13.07 0.70 1.05 0.83
ADHRR_1 0.83 13.07 0.70 1.05 0.80
ADHRR_2 0.83 13.07 0.70 1.04 0.80

Fig. 4 Mapping of the (a) active compounds (b) inactive compounds
onto the pharmacophore. Circle (orange): aromatic rings, dot (blue):
donor pharmacophoric feature, dot (green): hydrophobic pharmaco-
phoric feature.
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estimate the DDHRR_1 performance, the area under the accu-
mulation curve (AUC) of the receiver operating characteristic
(ROC) curve was plotted as a reliable metric. The generated
DDHRR_1 model achieved a good value of ROC (0.70) and AUC
(0.83) (Table 3 and ESI, Fig. S1†).

Further, to determine the reliability and robustness of the
predicted model DDHRR_1, the Y-scrambling method was
used, which guarantees that the generated hypothesis is reliable
and not occurring by chance. Y-scrambling test also validates
the training data set sufficiency by comparing the non-
randomized score obtained with the scores of non-
randomized data. If the similarity persists between the pre-
dicted activity of the original model and the randomized model,
then the observation set is insufficient to sustenance the
generated model. However, the new 3D-QSAR models were re-
ported to have low Q2 and R2 values aer numerous repetitions
(ESI, Table S3†). The results show that the DDHRR_1 model is
noticeably signicant and reliable and was in good agreement
with the calculated statistical parameters.

A total of 21 external test molecules were found to cover
a response range of 2.3332 logarithmic units. The prediction
quality of the model generated was found to be ‘good’ in
harmony with MAE-based criteria (ESI, Table S4†). The pre-
dicted residuals MAE and MAE + 3 � sAE were observed at
0.3734 and 1.1394, respectively, aer eliminating 5% test set
objects with high residual values. To judge the predictivity of
the model, threshold values such as 0.7820 (training set range
� 0.1), 1.5639 (training set range � 0.2), 1.1729 (training set
range � 0.15), 1.9549 (training set range � 0.25) were used. As
per the prediction error of MAE-based criteria, the generated
3D-QSAR model was found to be reliable. Besides, to evaluate
the systematic errors in the generated model, it is merely
necessary to investigate the prediction errors of test
compounds. The prediction errors were calculated and the
results obtained are jMPE/MNEj (1.1445), AAE � jAEj (0.2669),
nNE/nPE (0.5672), nPE/nNE (1.7632), jMNE/MPEj (0.8738) (ESI,
Table S3†). The R2 value was found to be 0.8936 between pre-
dicted and observed values (ESI, Table S4†).
Contour plot analysis

Contour plot analysis was carried out to determine the effects of
the spatial arrangement of structural or molecular features of
the selected molecules possessing MMP-9 inhibitory activity.
The favorable and unfavorable contributions of the ligand
inhibitory properties are represented using blue cubes and red
© 2021 The Author(s). Published by the Royal Society of Chemistry
cubes, respectively. The best-tted hypothesis DDHRR_1 of
most active ligand 5 (pIC50 ¼ 9.00) and less active ligand 66
(pIC50 ¼ 5.222) were used for a comparison. All the actives and
inactives were mapped onto the developed pharmacophore
model (Fig. 4(a and b)). The most unfavorable and favorable
pharmacophoric sites were nominated in Fig. 5(a–f).

Hydrogen-bond donating pharmacophoric feature was eval-
uated for active ligands (Fig. 5a) and inactive ligand (Fig. 5b) by
visualizing contour plots. The appearance of blue cubes at
position four of the biphenyl ring system exhibited favorable
contribution of electron-donating groups –OH (D8-pharmaco-
phoric feature) and –NHOH (D7-pharmacophoric feature). In
contrast, red cubes on the aromatic ring of the biphenyl system
and at position two of the biphenyl ring were unfavorable
because of the negative contribution to the MMP-9 inhibitory
activity. In the case of inactive 66, the presence of red cubes on
the 8-hydroxy quinoline ring demonstrates the non-preference
of electron-donating pharmacophoric features with an unfa-
vorable contribution.

The hydrophobic group is a vital pharmacophoric feature
that is accountable for the MMP-9 inhibitory activity. The
favorable and unfavorable hydrophobic features for active 5
(Fig. 5c) and inactive 66 (Fig. 5d) were analyzed using contour
plots. In this hypothesis, hydrophobicity (H9-pharmacophoric
feature) was evaluated for both inactive and active
compounds. The appearance of blue cubes at positions two and
six of the biphenyl ring species the preference of hydrophobic
feature. Further, the presence of the methyl group at position
RSC Adv., 2021, 11, 26820–26831 | 26825
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Fig. 5 3D QSAR contour plot visualization for the generated favorable
and unfavorable (a) hydrogen bond effects in the active compound 5
(b) hydrogen bond effects in the inactive compound 66 (c) hydro-
phobic interactions in the active compound 5 (d) hydrophobic inter-
actions in the inactive compound 66 (e) electron-withdrawing effect in
the active compound 5 (f) electron-withdrawing effect in the inactive
compound 66. Circle (orange): aromatic rings, dot (blue): donor
pharmacophoric feature, dot (green): hydrophobic pharmacophoric
feature.
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two is substantially favorable for the inhibitory activity of MMP-
9. From this, it is clear that the appearance of blue cubes at
these positions is vital for MMP-9 inhibition. However, the
appearance of red cubes at position four of the biphenyl ring
system was non-crucial for the MMP-9 inhibitory activity. In the
case of inactive 66, red cubes around the hydroxy (OH) group of
8-hydroxyquinoline indicate the non-preference of hydrophobic
features with an unfavorable contribution. The existence of red
cubes on the bridge carbons of the fused ring system (8-
hydroxyquinoline) also exemplies the unfavorable contribu-
tion of the hydrophobic feature. Further, the appearance of blue
cubes at position two of 8-hydroxyquinoline shows the favorable
hydrophobic feature for the inhibitory activity of MMP-9.

Electron withdrawing pharmacophoric feature is another
component that potentially impacts inhibitory activity. In the
case of active compound 5 (Fig. 5e), the existence of blue cubes
around the OH and NHOH at position four of the biphenyl ring
system exemplies the favorable contribution of electron-
withdrawing groups at these positions. Moreover, OH and
26826 | RSC Adv., 2021, 11, 26820–26831
NHOH groups at these positions were observed to be indis-
pensable for the MMP-9 inhibition, as evidenced by the high
active compounds (pIC50 range¼ 8.30103 to 9.000) compared to
low active compound 66 (pIC50 ¼ 5.221849). However, the lower
activity of compound 66 (Fig. 5f) might be because of the
absence of electron-withdrawing features around its nucleus.
The explanation was provided by the appearance of red cubes
around the pyridine ring of the 8-hydroxyquinoline.

Molecular docking and binding free calculation analyses

Docking protocol validation was performed by redocking the co-
crystallized ligand (PDB: 5I12) into the catalytic domain of the
MMP-9 receptor (ESI, Fig. S2†). The conformational orientation
similarity between the docked pose and co-crystallized ligand
(RMSD¼ 1.9675 Å) conrms the docking protocol accuracy (ESI,
Fig. S3†). The comparative investigation of docking results re-
ported the similarity in the binding poses of the selected
ligands (ESI, Table S5†). The hydrogen-bonding interactions
and p–p interactions with amino acid residues Tyr179, Leu 188,
Ala189, His190, His191, Phe192, and Glu227 played a crucial
role in the inhibitory activity of MMP-9. These interactions are
in good agreement with the previous study by Kalva et al. 2013.51

Further the occupancy (%) of hydrogen bonding interaction of
these residues is detailed in ESI, Table S10.† The binding poses
of high active compound 5 were analyzed and compared with
the co-crystallized ligand.

The glide score (Gscore) of ligand 5 was found to be
�8.414 kcal mol�1 and exhibited good binding affinity with the
receptor. From the docked pose of active ligand 5, the –NH
present at position four of the biphenyl ring system displayed
a hydrogen-bonding interaction with the backbone carbonyl
group of Ala189 (–NH----O]C, 1.80 Å). A second hydrogen-
bond interaction was found between the pC]O of the sul-
phonyl group attached to the biphenyl ring system at position
three and side-chain –NH of His190 (pC]O----HN–, 1.91 Å).
Another hydrogen-bonding interaction was found between the
OH of Glu227 and NHOH of ligand 5 (H----OH, 1.75 Å). Further,
three p–p interactions were observed between the electron
cloud of aromatic rings present in the active ligand and electron
density residues such as Tyr179, His190, and Phe192 (Fig. 6).

Binding free energy of the selected compounds 1–67/5I12
docked complexes were ranked using Prime, Molecular
Mechanics Generalized Born Surface Area (MM-GBSA) approach
(ESI, Table S6†). The binding free energy (DGbind) values were
observed to range from 87.69 to�42.23 kcal mol�1. In addition,
the van der Waals energy term (DGvdw ¼ �66.300 to
�30.350 kcal mol�1) is a major favorable contributor. In
comparison, coulombic energy (DGcoul ¼ �0.800 to
�67.22 kcal mol�1) was a moderately favorable contributor to
the MMP-9 inhibitory activity. Covalent energy term (DGcov ¼
�2.67 to 14.58 kcal mol�1) strongly disfavors for the inhibitory
activity.

Molecular dynamic simulation and analysis

The structural behavior, molecular exibility, and stability of
MMP-9 docked with highly active compound 5 were assessed by
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Glide XP-docked poses of compound 5, in the catalytic pocket of MMP-9 (PDB ID: 5I12). Dotted line (blue): p–p stacking interaction,
dotted line (green): hydrogen bonding interaction.
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100 ns of MD simulation employing GROMACS 2018.1. RMSD is
a measure of the average distance between the backbone resi-
dues or atoms of a protein. The RMSD of MMP-9 was calculated
against the 5/5I12 complex; a graph was plotted using the three-
dimensional Xmgrace plotting tool to compare the stability of
the protein backbone and Ca atoms. The protein Ca and
backbone residues showed minimal uctuations before equili-
bration of the system and were found to be stable throughout
the MD simulation study. However, the RMSD of Ca atoms
remain stable throughout equilibration but showed minimal
uctuations from 36 to 59 ns (Fig. 7a). While the protein
backbone exhibited signicant uctuations between 38 to 60 ns
in the MD simulation study (Fig. 7b). RMSF was also calculated
Fig. 7 RMSD (Å) of (a) C atoms (b) protein backbone of 5/5I12 complex

© 2021 The Author(s). Published by the Royal Society of Chemistry
for the 5/5I12 complex, and the graph plotted using a three-
dimensional Xmgrace plotting tool to compare the exibility
and stability of protein backbone and Ca atoms. The Ca atoms
of the RMSF plot exhibited uctuations at 0.31 and 0.34 nm of
520 and 700 atoms, respectively (Fig. 8a).

In contrast, the protein backbone showed higher uctuation
at 0.32 and 0.34 nm, which covered almost 500–750 atoms of
a receptor (Fig. 8b). Overall, protein residual uctuations in the
5/5I12 complex were found to be minimal. The radius of gyra-
tion (RG) is indicative of the compaction level in the protein
structure. The result indicates the constant stability of the 5/
5I12 complex throughout the MD simulation study (Fig. 9).
.

RSC Adv., 2021, 11, 26820–26831 | 26827
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Fig. 8 RMSF (Å) of (a) C atoms (b) protein backbone of 5/5I12 complex.

Fig. 9 Radius of gyration of the 5/5I12 complex during 100 ns MD
simulation.

Fig. 10 Total number of hydrogen bonding interactions exhibited
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H bond formation/deformation depicts the number of
hydrogen bonding interactions formed or broken during the
MD simulation study. During 100 ns of study, hydrogen bond
number was constant, indicating the molecular or structural
stability of compound 5 with MMP-9 (PDB: 5I12). Almost six
hydrogen bonds were found to be constant throughout the
study. In contrast, extra two hydrogen bonds appeared from 60
to 75 ns (Fig. 10). The binding of the ligand with the protein
residues is relatively stable, and electrostatic energy was found
to be a key driving force for the binding stability of the 5/5I12
complex.
26828 | RSC Adv., 2021, 11, 26820–26831
Further, the continuous contribution of hydrogen bonding
interactions in the binding pose analysis indicates that active
compound 5 possesses stable interaction with the MMP-9
protein. The 3D structure of the 5/5I12 complex displayed
a key hydrogen bonding interaction with the residues Tyr179,
Leu187, His190, Phe192, Pro193. In addition, compound 5 was
also stabilized by forming a halogen bond with Leu187 (ESI,
Fig. S4†). All these interacting residues exhibited a radius of
gyration in the range of 0.16 to 0.28 nm indicating minimal
uctuations and greater stability throughout the MD simulation
study (ESI, Fig. S5†).

The total energy (potential, kinetic energies) was calculated.
The graph was plotted using a three-dimensional Xmgrace
plotting tool to know the stability of the 5/5I12 complex aer the
between compound 5 and 5I12 (MMP-9).

© 2021 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1ra03891e


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
A

ug
us

t 2
02

1.
 D

ow
nl

oa
de

d 
on

 1
/1

1/
20

26
 2

:2
4:

27
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
addition of water molecules and ions. The total energy of the
complex should be persistent during the MD simulation study
as it is a summation of both the potential and kinetic energy of
the residues. Potential energy levels must be increasing or
constant to exhibit structural stability. At the same time, the
kinetic energy level represents the general confusion of protein
structure. The total energy was found to be constant throughout
the MD study (Fig. 11).

The 5/5I12 complex was snapshotted at every 20 ns intervals
of 100 ns MD simulation trajectory and was superimposed to
evaluate the binding stability of compound 5 (ESI, Fig. S6†). It
showed that the compound 5 positions bound in MMP-9 are
more conned and stable because of the binding pocket
accessible volume, which further dictates that ligand interac-
tions inside the catalytic pocket must be stronger and more
specic to stabilize the system throughout the study.

Further, RMSD was calculated for conformations obtained
through MD, pharmacophore, and docking poses. Similar
orientation was observed with compound 5 aer XP-docking
and MD pose (ESI, Fig. S7†); conformations of compound 5
aer MD pose and DDHRR_1 (ESI, Fig. S8†); conformations of
compound 5 of XP-docking pose and DDHRR_1 (ESI, Fig. S9†).
MM-PBSA

MM-PBSA analysis allows us to segregate the total free binding
energy into van der Waals, electrostatic and solute–solvent
interactions, to get insight into the binding modes and the 5/
5I12 complex association process. Binding calculation values
were represented for every 10 ns intervals of 100 ns aer
attaining equilibrium. The binding free energy of the complex
was found to be �93.698 � 34.656 kcal mol�1. From Table 4, it
is clear that van der Waals interactions (�103.870 �
41.780 kcal mol�1) play a crucial role in the simulation,
contributing signicantly more to the total interaction energy
than the other energies.
Fig. 11 Total energy of the 5/5I12 complex during the 100 ns MD
simulation.

© 2021 The Author(s). Published by the Royal Society of Chemistry
High-throughput virtual screening (HTVS)

The developed pharmacophore hypothesis DDHRR_1 was
utilized as a query model to screen a library of molecules. The
clustering analysis was performed using the Kelley index,
dendrogram, and distance matrix. The Kelley penalty plot
evaluates the balancing of the normalized spread of the ligand
clusters generated at a specic level with the total number of
clusters developed. The plot shows that all 20 clusters were
equally distributed at the specied level (ESI, Fig. S10†).
Dendrogram provided information about the 3000 virtual hits
merging distance based on their clustering indices (ESI,
Fig. S11†). Further, distance matrix or dissimilarity index
among the clusters developed for 3000 virtual hits were calcu-
lated based on their order of clustering or ranking order (ESI,
Fig. S12†). Docking was performed for the 3000 virtual hits
against the MMP-9 enzyme (PDB: 5I12) in a standard precision
mode. The top 10% of the molecules were selected for the
redocking in XP mode based on their glide score and glide
model. Further, binding free energy was calculated for these 300
molecules using the MM-GBSA approach. Five virtual hits VH1–
VH5 are selected based on their glide score and binding free
energy. The activity was predicted for these ve virtual hits, and
the results obtained are summarized in ESI, Table S11.† In
addition, molecular properties were also calculated for virtual
hits using the QikProp algorithm. The virtual hit VH1
(CACPD2011a-0002144822) is completely buried within the
catalytic pocket of MMP-9, as evident by its glide score
(�10.967 kcal mol�1), binding free energy (�68.65 kcal mol�1),
and predicted activity (7.963). A hydrogen-bond interaction was
formed between the –NH of benzimidazole nucleus and Tyr247,
and the other was exhibited between the pC]O group of the
VH1 and Glu227. Further, the molecule was stabilized by p–p

interaction between the electron cloud of the aromatic nucleus
present in the molecule and His226, His230, His236 (ESI,
Fig. S13†). The virtual hit VH2 (CACPD2011a-0000241403) is
also embedded within the catalytic pocket of MMP-9, which was
supported by its glide score (�9.948 kcal mol�1), binding free
energy (�62.97 kcal mol�1), and predicted activity (7.562). VH2
exhibited a single hydrogen bonding interaction with –NH of
benzimidazole nucleus and Met247. In addition, VH2 was
stabilized by forming a p–p interaction between the electron
cloud of the aromatic nucleus present in the molecule and
His226 residue (ESI, Fig. S14†).

Further, a 50 ns MD simulation was carried out for the
complexes VH1/5I12 and VH2/5I12 to determine the stability of
the complex. The RMSD and RMSF were calculated against the
complexes (VH1/5I12 and VH2/5I12); graphs were plotted using
the three-dimensional Xmgrace plotting tool to compare the
stability of protein backbone and Ca atoms. The RMSD for the
VH1/5I12 complex, Ca atoms, and the protein backbone atoms
remain stable throughout equilibration but showed minimal
uctuations at 20 ns in theMD simulation study (ESI, Fig. S15†).
The RMSF plot of complex VH1/5I12 revealed that Ca atoms and
protein backbone atoms displayed uctuations at 0.4 and
0.42 nm, respectively (ESI, Fig. S16†).
RSC Adv., 2021, 11, 26820–26831 | 26829
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Table 4 MM-PBSA analysis of compound 5/5I12 complex

van der Waal interactions
(kcal mol�1)

Electrostatic energy
(kcal mol�1)

Polar solvation energy
(kcal mol�1)

Solvent accessible
surface area energy (kcal
mol�1) Binding energy (kcal mol�1)

�103.870 � 41.78 �16.633 � 9.308 36.499 � 23.749 9.678 � 4.00 �93.698 � 34.65
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The RMSD for the VH2/5I12 complex, Ca atoms, and protein
backbone atoms remain stable throughout equilibration but
showed minimal uctuations from 10 to 18 ns in the MD
simulation study (ESI, Fig. S17†). The RMSF plot of the complex
VH2/5I12 revealed that Ca atoms and protein backbone atoms
displayed uctuations at 0.42 and 0.44 nm, respectively (ESI,
Fig. S18†).

Conclusion

In the current study, 8-hydroxyquinoline, caffeic acid amides,
anthranilic acid, and amidine-based thiazole scaffolds were
subjected to computer-aided drug screening for the potential
MMP-9 inhibitors. The generated DDHRR_1 model exhibited
cross-validation of coefficient (Q2¼ 0.8170) and high-coefficient
of determination (R2 ¼ 0.9076) reecting good predictive power
of the models. Further, contour plot visualization exposed
a vital pharmacophoric site necessary for MMP-9 inhibition.
Molecular docking analysis exposed the hydrogen-bond and
hydrophobic interactions with key amino acid residues of
enzyme. A 100 ns of MD simulation trajectory of complex 5/5I12
possess greater stability and exibility as evident from the
minimal uctuations in RMSD and RMSF. The pharmacophore
hypotheses and 3D-QSAR predictions retrieved hits with diverse
scaffolds and good ADME properties. Virtual hits exhibited
signicant interactions and binding affinity with the active
residues. The MD simulation of 50 ns was carried out for the
top-ranked hits (VH1 and VH2) against the MMP-9 enzyme and
indicated the signicant stability of the binding poses of
complexes.
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