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Six methyl-substituted phloroglucinol glycosides (1-6) were isolated from Agrimonia pilosa, including four
new compounds (1-3, 6). The aglycones (1la—4a) of 1-4 and their corresponding oxidized products (1c—4c)

were also obtained from A. pilosa. The structures were determined by a series of spectroscopic analyses and
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Accepted 15th June 2021 chiral separation. Notably, the structures of aglycones la—4a were unstable and prone to oxidation
spontaneously, to yield the dearomatized structures 1c—4c. The mechanism of oxidative dearomatization

DOI: 10.1039/d1ra03588f was disclosed as a free-radical chain reaction with 30, by the techniques of HPLC-HR-MS?, EPR spectra
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and DFT-calculation, and hydroperoxide was defined as the intermediate.

Introduction

Agrimonia pilosa is a plant in the Rosaceae family that is mainly
distributed throughout East Asia. As a traditional Chinese
medicine, the herbs of A. pilosa have been used to treat malaria,
bleeding, dysentery and debility for many years." The chemical
investigation of Agrimonia pilosa suggested the presence of
phloroglucinols in various forms, such as the dimer agrimo-
phol, with significant antituberculosis activity.”> During the
phytochemical research on A. pilosa, six dimethyl-substituted
phloroglucinol glycosides (1-6), four of their aglycones (1a-
4a), and four pairs of dearomatized products (1c-4c) were iso-
lated (Fig. 1). Compounds 1-3 and 6 are new phloroglucinol
glycosides. However, there is an inescapable problem in which
aglycones 1a-4a are readily oxidized by air to form the dear-
omatized products 1c-4¢ spontaneously.

Reference surveys revealed that the natural dearomatized
phloroglucinol derivatives display remarkable pharmacological
activities. a-Acids, isolated from hop (Humulus lupulus L.),
showed antimetabolic activities,® and hydroxysafflor yellow A
(HSYA), isolated from Carthamus tinctorius,* exhibited cardio-
vascular effects.” Over the past few years, the dearomatization of
isopentenyl- and C-glucosyl-substituted phloroglucinols has
attracted much attentions from synthetic chemists. Most
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dearomatizations were proceed by oxidation under alkaline
environment. The oxidants include lead(u) acetate trihydrate,®
[bis(trifluoroacetoxy)iodo]benzene,”  tert-butylhydroperoxide,®
and oxygen. Meanwhile, sodium hydride," sodium bicar-
bonate,” sodium hydroxide,® and pyridine® were utilized as
alkaline. In 2019, our group employed ammonium chloride and
ammonia buffer salt as alkaline to achieve the oxidative dear-
omatization of di-C-glucosyl-substituted phloroglucinols.™
While the mechanism of oxidative dearomatization on

2

Q
I
5
Q
T
5

CHs CHy

R0 OR, R10we S\ OR, R0 OR, R10. OR,
2
S 7 A 10
HsC HaC™ 57 Y HaC HsC
OH O ® OH O OH O OH O

1* Ry =Glc, Ry = Glc
1a Ry=H, Rp=H

2* R;=Glc, Ry =Glc
2a Ry=H, Rp=H

3* Ry=Glc, R, =Glc
3a Ry=H, R,=H

4 Rq=Glc,Ry=Glc
4a Ry=H, Rp=H

H H H H

/ ;

) o o o
HiC_ o HiC, O HiC O HsC,_ O
HO. o} HO o HO. o} HO, 0o
HyC HsC HyC HsC
OH O OH O OH O OH O
1b 2b 3b 4b
HsC_OH HsC OH HsC_ OH HsC_OH
HO. 0 HO. 0 _ HO. fo) HO. o)
HsC HsC HaC' HsC
OH O OH O OH O OH O
1c1 3R 2¢c1 3R 3c1 3R 4c1 3R
1c-2 3S 2¢-2 38 3c-2 38 4c2 38
CHy CH,
GlcO. 0Glc HO. 0Glc
HaC HsC
OH O OH O

5 6*

Fig. 1 Chemical structures of compounds 1-6.
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phloroglucinol by oxygen were barely studied, the phenomenon
of auto oxidative dearomatization of l1a-4a inspired us to
explore the in-depth mechanism. Consequently, a free-radical
chain mechanism was determined by the techniques of HPLC-
HR-MS?, EPR (electroparamagnetic resonance) spectra, and
DFT calculations.

Results and discussion

The structures and absolute configurations of 2 and 3 were
elucidated by extensive spectroscopic data (Tables S1 and S2+)
and a chiral separation method. Of note is that 2 and 3 are a pair
of epimers with the opposite chirality at C-8, sharing the same
molecular formula of C,sH33014 by HR-ESI-MS. The '"H NMR
spectrum of 2 exhibited two aliphatic methyl groups at dy 0.97
(3H, t,J = 7.5 Hz) and 1.00 (3H, d, J = 7.5 Hz), two aromatic
methyl groups at dy 2.20 and 2.32 (each 3H, s), one methylene
group at 0y 1.42 and 1.91 (each 1H, m), one methine group at oy
3.74 (1H, overlapped), and two anomeric protons of the B-glu-
copyranosyl moiety at dy 4.43 and 4.67 (each 1H, J = 7.5 Hz).
The "*C NMR spectrum of 2 displayed twenty-five carbon reso-
nances, including the characteristic signals of two glucopyr-
anosyl moieties and one phloroglucinol.

The "H-'H COSY correlations between H;-11 and H-8, H-8 and
H,-9, and H,-9 and H;-10 implied the presence of the H;-11-H-8-H,-
9-H;-10 proton spin system, corresponding to an o-methylbutyryl
group. This was further verified by the HMBC correlations from H-8
to C-7/C-9/C-10/C-11, from H;-10 to C-8/C-9, and from Hj;-11 to C-7/
C-8/C-9. The HMBC correlations from H-1' to C-2 and from H-1" to
C-4 placed two glucopyranosyl moieties at C-2 and C-4. In addition,
HMBC correlations from H;-12 to C-2/C-3/C-4 and from H;-13 to C-
4/C-5/C-6, suggested two aromatic methyl groups were located at C-3
and C-5, respectively (Fig. 2A). The configuration of two glucopyr-
anosyl moieties were determined as B-D based on the *Jy 5, 1
values (7.5 Hz) and the retention time (20.39 min) by GC analyses
(Fig. S2 and S3t). Hence, the structure of 2 was deduced as 3,5-
dimethyl-a-methylbutyrylphloroglucinol-2,4-O-B-o-
diglucopyranoside.

The 1D and 2D NMR data of 3 were in good agreement with
those of 2, except for the difference of the a-methylbutyryl group
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Fig. 2 (A) Key HMBC and COSY correlations of 2 and 3; (B) experi-
mental ECD spectra of 2 and 3; (C) HPLC-DAD spectra of (S)-3a,
hydrolysis products of 2 and 3 (HPLC condition: CHIRALPAK AD-H,
250 x 4.6 mm, n-hexane: IPA=90:10, T=40°C,v=1mLmin % 1=
280 hm).
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signals. Compared with "H NMR spectrum of 2, the chemical
shifts of H-9a, H-9b and H;-10 of 3 were shifted upfield by 0.38,
0.12, and 0.23 ppm, while the chemical shift of H;-11 of 3 was
shifted downfield by 0.13 ppm. Detailed analysis of the NMR
data revealed that the planar structure of 3 was identical with 2
but the opposite chirality at C-8, resulting in a pair of epimers.

Initially, the ECD spectra were expected to determine the
absolute configuration of C-8, but the experimental ECD spectra of
2 and 3 were very similar, suggesting the ECD cotton effects were
mainly affected by glucopyranosyl moieties (Fig. 2B). To determine
the absolute configuration of C-8, (S)-aglycone 3a was synthesized
from phloroglucinol through a series of chemical reactions
(Section S3.6t), and compounds 2 and 3 were hydrolyzed by 2 M
HCI at 60 °C (Section S3.41). The products of the acidic hydrolysis
were analyzed by a normal-phase chiral chromatographic column,
and the unequal enantiomers 2a and 3a were monitored (Fig. 2C).
This is due to the fact that carbonyl tautomerism occurred in the
acidic hydrolysis of 2 and 3. However, the area ratios of the two
peaks 0.9:1 in 2 and 1:0.8 in 3 suggested that the absolute
configurations of C-8 in 2 and 3 were R and S, respectively.

The structures of 1 and 6 were also identified as new
compounds (Section S17), 4 and 5 were elucidated as kunzea-
phlogin F and D, respectively.™

Apart from the phloroglucinol glucosides, a series of
dimethyl-substituted phloroglucinol derivatives 1a-4a and 1c-
4c were also isolated (Section S27). During the separation of 1a-
4a, it's interesting to find that when the mixture of 1a-4a was
stored at methanol under room temperature, new peaks 1b-4b,
1c and 4c were monitored by HPLC analyses after eight days
(Fig. 3A). As time went on, peaks 1b-4b were disappeared and
peaks 1c-4c were increased a lot after 6 months (Fig. 3A).

The structures of 1c-4c¢ have been elucidated as the dear-
omatized products of 1a-4a (Fig. 1), but 1b-4b can't be isolated
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Fig. 3 (A) HPLC-DAD spectra of la—4a; (B) HPLC-DAD spectra of
0.05 M (S)-aglycone 3a. (HPLC condition: 0-16 min, 35-70% MeCN-
H,O, T =40 °C, v =1mL min% 1 = 254 nm).
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Scheme 1 The main fragmentation pathway of 4b.

purely due to their poor stability. Therefore, high performance
liquid chromatography (HPLC)-high resolution tandem mass
spectrometry (HR-MS?) was applied for elucidating the struc-
tures of 1b-4b (Section S4t). For example, 4b were diagnosed as
hydroperoxide by the high resolution quasi-molecular ions m/z
257.1018 and main fragment ions m/z 224.1041, 205.0863,
197.0809, 181.0496 (Scheme 1). Subsequently, 0.05 M synthe-
sized (S)-aglycone 3a was stored at oxygen-saturated methanol
under room temperature and monitored by HPLC every two
days. The results indicated that 3a first rapidly transformed into
3b and then 3b transformed into 3¢ gradually (Fig. 3B). Those
findings support the conclusion that dimethyl-substituted
phloroglucinol derivatives can transform into the dearomat-
ized structures spontaneously, and the hydroperoxides acted as
the intermediate.

Some mechanisms of oxidative dearomatization, such as
Diels-Alder reactions, [2 + 2] cycloaddition, or free-radical
reaction, have been introduced before,"” and singlet oxygen
was often applied as the oxygen donor. But when we add TEMP
(2,2,6,6-tetramethylpiperidine) to the reaction system of 4a for
detecting singlet oxygen, the EPR spectra didn't showed the
signal of the adduct of TEMP and singlet oxygen (Fig. S67),
indicating oxygen participating in the reaction was the triple
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Fig. 4 Electroparamagnetic resonance (EPR) spectra of 4a (room
temperature in oxygen-saturated acetonitrile). The concentrations of
DMPO and 4a were 500 and 50 mmol L™, respectively.
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Scheme 2 Proposed mechanism of oxidative dearomatization of 4a.

state (*0,) instead of singlet state (*0,). To further explore the
mechanism, DMPO (5,5-dimethyl-1-pyrroline N-oxide) was
employed as a spin trapper and monitored by HPLC, the
oxidative dearomatization was prevented (Fig. S7 and S87).
Obviously, the oxidative dearomatization of 4a involves a radical
intermediate. Furthermore, the characteristic signal of the
adduct of alkyl radical (R") and DMPO in the EPR spectra (Fig. 4)
suggested that the oxidative dearomatization of 4a is a free-
radical reaction. Based on the above HPLC and EPR results, the
free-radical mechanism for 4a were proposed as Scheme 2.
Firstly, 4a lose a hydrogen atom and give the radical al1. Because
al and a2 were a pair of resonance structures, al can transform
into a2. Then, radical a2 react with oxygen to give the peroxy
radical a3, followed by the hydrogen atom transfer from 4a,
giving the intermediate 4b. In the next step, the hydroperoxide
4b transform into the oxygen free-radical a4 and hydroxyl
radical ("OH) through the homolysis of peroxy bond. Finally, the
oxygen radical a4 captures hydrogen atom of 4a to gain the
dearomatized product 4c. As the chain carrier, radical a2 was
considered as the alkyl radical trapped by DMPO.

Density functional theory (DFT) research was performed to
better understand the mechanisms, the Gibbs free energy
profile was established as shown in Fig. 5. The transition states
of the reactions of a2 and 0,, a3 and 4a, a4 and 4a were defined
as TS-1-3, respectively. Firstly, the Gibbs free energy barrier for
the electrophilic addition of radical a2 to 0, was 17.7 keal mol
~1, and the relative energy of a3 was 6.7 kcal mol . Likewise,
when the radical peroxy radical captures the hydrogen atom of
4a, exhibiting a similar relative energy barrier 17.0 kcal mol %,
but the relative energy of product was —26.6 kcal mol ',
leading the production of the intermediate 4b. In fact, the rate
of generating 4b was faster than 4c, but it still needs two days to
achieve, which accord with the calculated energy barriers (17.7
and 17.0 kcal mol ~'). There is no transition state during the
homolysis of O-O bond, proved by the potential energy surface
scanning (Fig. S121). The BDE of O-O bond was calculated as

RSC Adv, 2021, N, 22273-22277 | 22275
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Fig. 5 Gibbs free energy profiles for the free-radical chain reaction of 4a and the structures of transition states TS-1-3.
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Fig. 6 Stability of the substituted phloroglucinol derivatives (R = n-
propyl, isopropyl, isobutyl).

45.3 keal mol ~*, indicating the cleavage of O-O bond was the
rate-limiting step, which was also correspond to the slow
generation of 4c from 4b. Besides, the process from a4 to 4¢ was
barrier-less, the relative energy of TS-3 and the product 4c were
—10.2 and —47.3 kecal mol ~'. Generally, the auto oxidative
dearomatization pathway of dimethyl-substituted phlor-
oglucinol derivatives were kinetically and thermodynamically
accomplished.

When the 2-hydroxyl of the phloroglucinol derivatives get
glycosylation or esterification, such as 1-7 (Fig. 6), the struc-
tures couldn't transform into the hydroperoxides or dearomat-
ized structures. Structurally, two free phenolic hydroxyls at C-2
and C-6 were essential for the auto oxidative dearomatization,
one hydroxyl formed a strong hydrogen bond with the carbonyl,
and another hydroxyl was regarded as the hydrogen atom donor
attributed to the radicals.

Conclusions

As a research hot spot, studies of phloroglucinol derivatives
have been ongoing for many years. In present study, fortunately,
six phloroglucinol glucosides (1-6), together with four agly-
cones (1a-4a) and four pairs of dearomatized products (1c-4c)

22276 | RSC Adv, 2021, N, 22273-22277

were isolated from A. pilosa. Moreover, this is the first report on
the instability and structural variability of dimethyl-substituted
phloroglucinol derivatives. We found that dimethyl-substituted
phloroglucinol derivatives were readily oxidized to their dear-
omatized structures, and the intermediates were determined as
hydroperoxides by HPLC-HR-MS?. With the aid of EPR and DFT
calculations, the mechanism was clarified as a free-radical
chain reaction.
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