
RSC Advances

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
Ju

ly
 2

02
1.

 D
ow

nl
oa

de
d 

on
 1

1/
22

/2
02

5 
12

:3
1:

25
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue
Mining hydroform
aDepartment of Chemistry, Hokkaido Univer

Japan. E-mail: keisuke.takahashi@sci.hokud
bInstitute for Chemical Reaction Design a

University, Kita 21 Nishi 10, Kita-ku, Sapp

smaeda@eis.hokudai.ac.jp

† Electronic supplementary information
data used in this work. See DOI: 10.1039/

Cite this: RSC Adv., 2021, 11, 23235

Received 30th April 2021
Accepted 16th June 2021

DOI: 10.1039/d1ra03395f

rsc.li/rsc-advances

© 2021 The Author(s). Published by
ylation in complex reaction
network via graph theory†

Keisuke Takahashi *a and Maeda Satoshi *ab

Data science is introduced to identify the reactant, product, and reaction path in the chemical reaction

network. Cobalt catalyzed hydroformylation is investigated where the reaction network is built via first

principles calculations. The closeness centrality and high frequency node are found to be the reactant

cobalt tetracarbonyl hydride. In addition, betweenness centrality uncovers three reaction paths which

have the products of aldehyde, CH2O, and CO2, respectively. The energy profile determines that the

reaction path leading to aldehyde is energetically favored; thus, the reaction path for cobalt catalyzed

hydroformylation is identified without kinetics. Hence, the proposed approach can act as a first step

towards understanding the complex chemical reaction network and towards further kinetic

understanding of the chemical reaction.
Introduction

Identifying the reaction path within a chemical reaction is
a challenging task as a chemical reaction involves complex
molecular interactions. For such situations, the introduction of
rst principles calculations gives insight towards the atomic
level understanding of molecular interactions. In particular, the
potential energy surface generated by rst principles calcula-
tions elicits the details of the molecular interactions on an
atomic scale.1,2 This essentially allows for the generation of
a chemical reaction network in terms of molecular interac-
tions.3–7 In general, chemical kinetics is coupled with a calcu-
lated chemical reaction network in order to determine the
reaction pathway.8,9 However, one can consider that hidden
trends and patterns for identifying the reaction path within the
chemical reaction network should be present, considering that
the energy landscape created by rst principles calculation
follows certain rules. In view of how a chemical reaction
network is formed, the network can be treated as a graph data
structure.5,10 Additionally, it is reported that graph theory can be
used in order to extract knowledge from a chemical network.11

Here, data science, particularly graph theory, is implemented in
order to search the reaction paths in a chemical reaction
network.

Hydroformylation is selected as the prototype reaction where
the reaction involves the production of aldehydes from
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alkenes.12,13 In particular, cobalt catalyzed hydroformylation is
investigated for considering homogeneous catalysis as the
details of the reaction process are rather complex.8,14,15 The
chemical reaction network of cobalt catalyzed hydroformylation
is constructed via rst principles calculations where the atomic
interactions of CO dissociated cobalt tetracarbonyl hydride
HCo(CO)3 with ethylene (C2H4), hydrogen H2, and carbon
monooxide (CO) are considered. Reaction paths in the chemical
reaction network for cobalt catalyzed hydroformylation are
sought for via data driven analysis based on graph theory.
Methods
Computational method

The chemical reaction path network is explored using the arti-
cial force induced reaction (AFIR) method combined with rst
principles calculations.16 AFIR induces chemical trans-
formations by applying force and nds reaction paths based on
the force-induced paths. The search is performed using the
single-component algorithm of AFIR (SC-AFIR) starting from
200 initial structures produced by generating mutual positions
and orientations among HCo(CO)3, CO, C2H4, and H2

randomly. Additionally, the model collision energy parameter g
of the AFIR method is set to 300 kJ mol�1, where g denes an
approximate upper limit of the barrier the articial force can
eliminate. During the search, additional weak force with g ¼
0.65 kJ mol�1 is applied to all atom pairs in the system in order
for the molecules to not separate too far in this system. All AFIR
paths were reoptimized using the path optimization method
using the locally updated planes (LUP) method, where the
network of LUP paths are discussed below.17 The traffic volume
is an index showing the total amount of population inux to
and outux from each local minimum within the simulation
RSC Adv., 2021, 11, 23235–23240 | 23235

http://crossmark.crossref.org/dialog/?doi=10.1039/d1ra03395f&domain=pdf&date_stamp=2021-06-30
http://orcid.org/0000-0002-9328-1694
http://orcid.org/0000-0001-8822-1147
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ra03395f
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA011038


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
Ju

ly
 2

02
1.

 D
ow

nl
oa

de
d 

on
 1

1/
22

/2
02

5 
12

:3
1:

25
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
time tMAX. Therefore, local minima having large traffic volume
values are regarded to be kinetically important. The traffic
volume Li is computed for all local minimum structures, and
paths are searched preferentially from those having large
values.9 For the traffic volume calculations, the initial pop-
ulation is evenly distributed to local minimum structures
having the same bond connectivity to the initial species where
the reaction time tMAX was set to 3600 seconds, the reaction
temperature set to 300, 400, and 500 K, and the model
temperature parameter TR set to 4000 K.9 The search is termi-
nated when the latest N successful paths do not update the
structural types of the top M traffic volumes, where N and M
were set to ten and three times, respectively, of the total number
of atoms in the system, a structural type stands for a group of
local minimum structures having the same bond connectivity
pattern and a successful path corresponds to a path connecting
different structural types. All electronic structure calculations
are done by the Gaussian 16 program where the uB97X-D
functional and LanL2DZ basis set are implemented.18 All
structural displacements were taken by a development version
of the GRRM program (version on April 9th, 2020).19 Note that
the generated data is a preliminary study of the chemical
reaction created for data science applications and requires
further study for a more, detailed understanding of the ener-
getics of the chemical reaction. Details of the SC-AFIR method
and the traffic volume index are described in previous work.9,16
Data science method

The chemical reaction network for cobalt catalyzed hydro-
formylation is investigated using data science and graph theory.
The created reaction network is transformed into a directed
graph where source and target nodes are dened as reactants
and products, respectively. The activation energy barrier is
represented as node edges and is reected in edge weight.
Gephi is then implemented for graph visualization and anal-
ysis.20,21 Force Atlas 2 is used for graph visualization while
closeness centrality and betweenness centrality are imple-
mented for graph analysis.20,22,23
Results and discussion

Data analysis is performed on the data obtained from cobalt
catalyzed hydroformylation reaction calculations. The data set
consists of 8558 data points with the following information in
the columns: reactant node number, product node number,
equilibrium energy of the reactant, equilibrium energy of the
product, and activation energy barrier. Node number and acti-
vation energy barrier are treated as nodes and edges in the
network, respectively. The data is treated as a directed graph
where reversing the node results in different activation energy
barriers. Note that the data and corresponding structural
information are listed in the ESI.† Frequency analysis reveals
that node number 54 appears 55 times within the 8558 data
points. In particular, node number 54, which represents cobalt
tetracarbonyl hydride HCo(CO)4 with H2 and C2H4 molecules, is
found to be the node with the highest frequency within the
23236 | RSC Adv., 2021, 11, 23235–23240
map. Understanding which nodes have high frequency in the
reaction network allows one to better understand the initial step
taken within the reaction as high frequency indicates that many
nodes visit this node. Given its frequency, one can therefore see
that the molecules represented in node number 54 experience
a high level of traffic within the network and thus can be seen as
a key step of hydroformylation.

Network visualization is performed in order to represent the
calculated hydroformylation reaction as a network. In partic-
ular, the Force Atlas 2 algorithm is used in order to visualize the
network as shown in Fig. 1.20 Network visualization is informed
by the continuous algorithm and is force-directed where nodes
repel each other while edges attract their respective nodes,
making node placement dependent on the other nodes present
within the network. Fig. 1 shows the overall reaction network of
hydroformylation created by the AFIR method where the reac-
tion network traces how the AFIR method navigates the reac-
tion. Fig. 1 demonstrates that some nodes form clusters at the
center of the network while other groups form a branch-like
structure that stems out from the center of the network. Note
that node numbers 26, 145, 1856, and 1812 are isolated from the
network as a result of SCF convergence failure that occurred on
paths to these nodes.

Here, the question arises concerning how the reactant,
product, and reaction paths connecting them will be identied
within the reaction network as shown in Fig. 1. In order to nd
the key nodes within the reaction network, network analysis is
performed in terms of graph theory. In particular, harmonic
closeness centrality and betweenness centrality are explored
where closeness and betweenness represent how close a node is
to other nodes and which nodes control the network, respec-
tively.22 In other words, one can consider that harmonic close-
ness centrality can help indicate energetically stable structures
while betweenness centrality can help indicate key intermediate
compounds in the reaction. Harmonic closeness demonstrates
that node number 54 has the highest score, indicating that node
54 accesses many neighboring nodes and has good agreement
with the observation that node 54 has the highest frequency
within the network. Note that node 54 is colored in yellow in
Fig. 1. HCo(CO)4, the compound represented by node 54, has
been previously reported to be an active catalyst for hydro-
formylation where the dissociation of CO from HCo(CO)4 is
considered as the initial step for hydroformylation.24 Hence,
analyzing closeness centrality helps determine the reactant
within the calculated hydroformylation reaction network.

Similarly, betweenness centrality is investigated where the
top 40 betweenness centrality nodes are selected and colored in
red as shown in Fig. 1. Please see the ESI† for the top 40
betweenness centrality nodes. It is surprising to nd that three
paths appear when connecting the top 40 betweenness
centrality nodes as shown in Fig. 1. More importantly, each path
contains key molecules where paths (1), (2), and (3) result in
aldehydes, formaldehyde (CH2O), and carbon dioxide (CO2),
respectively. Given that hydroformylation is a reaction that
produces aldehydes, this result therefore shows that between-
ness centrality can be used to help identify reaction paths for
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Visualization of the hydroformylation reaction network via Force Atlas 2. Structures of reactant and key products are also represented.
Color code: pink: cobalt; gray: carbon; white: hydrogen; red: oxygen.
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aldehyde formation from node 54 (which contains HCo(CO)4)
without kinetics.

Further details of paths (1), (2), and (3) in Fig. 1 are investi-
gated in terms of the energy proles as shown in Fig. 2. The
energy prole of path (1) indicates that aldehydes (node 436) are
formed in the node order 54 / 6 / 523 / 436 where an
activation barrier of 204.05 kJ mol�1 is required when
attempting to move from nodes 523 to 436. In the same fashion,
paths (2) and (3) are analyzed via an energy prole. However,
these paths encounter multiple high activation energy barriers
and endothermic reactions when attempting to arrive at CH2O
(node 1254) and CO2 (node 1517) in path (2) and path (3),
respectively. Note that node 212 is not in top 40 ranking nodes
with high betweenness centrality. Therefore, paths (2) and (3)
(illustrated in Fig. 1) can be considered to be unlikely to occur
while path (1) is energetically favored. Although the actual
reaction path could be more complex with kinetic analysis, data
science has provided a near-instant method of providing
potential candidates for reactants, products, and reaction paths
encountered within a complex reaction network. This approach
therefore accelerates the identication of reaction paths within
a reaction network without additional kinetics analysis. It must
© 2021 The Author(s). Published by the Royal Society of Chemistry
be noted that the frequency of nodes as well as betweenness
centrality analysis are able to detect key nodes based on the
structure of the network shown in Fig. 1 created by a develop-
ment version of the GRRM program (version on April 9th, 2020),
therefore, different network analysis might be required
depending on the structure of network. In other words, the
proposed approach can act as the rst step towards deeper
kinetic analysis into a reaction network and provide insight into
where further investigation can occur.

The chemical reaction network is then kinetically investigated
in order to compare kinetics against the proposed reaction path
created using graph theory. The kinetically most feasible path
from node 54 to the most stable catalyst–product complex 880 is
extracted from the network and depicted in Fig. 3. The path is
obtained by combining the shortest path in terms of overall rate
constants with local equilibration paths. The local equilibration
paths can be seen in the processes from 54 to 1931 and from 527
to 544. The path consists of many steps that include bond reor-
ganization steps and fast steps such as pseudo rotation and
conformation change. As can be seen in Fig. 3, the energy prole
has three regions: (a) an initial region including node 54 which
represents HCo(CO)4 + C2H4 + H2, (b) the intermediate region
RSC Adv., 2021, 11, 23235–23240 | 23237
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Fig. 2 Energy profiles of paths (1), (2), and (3) found by betweenness centrality. Ea is the activation energy barrier. Structures of reactant and key
products are also represented. Color code: pink: cobalt; gray: carbon; white: hydrogen; red: oxygen. Note that the energies path is searched and
calculated by AFIR with Gaussian 16 and numbers represent the node number in Fig. 1.
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including node 194 which represents CH3CH2Co(CO)3 + CO + H2,
including node 1078 which represents CH3CH2Co(CO)4 + H2,
CH3CH2C(O)Co(CO)3 + H2, and (c) the nal region which includes
node 446 which represents HCo(CO)3 + CH3CH2CHO. This path
shows agreement with the well-knownHeck–Breslowmechanism,
which justies the use of this network in this study.14 Additionally,
23238 | RSC Adv., 2021, 11, 23235–23240
aldehyde is found in both the graph network and the kinetic
study, where aldehyde is found to be produced at node 436 within
the network while aldehyde is found to be produced at node 880
during the kinetic investigation. Thus, these results show that the
kinetic study and chemical reaction network are both capable of
nding nodes where aldehyde is produced.
© 2021 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ra03395f


Fig. 3 Energy profile of stable path by kinetic analysis. Color code: pink: cobalt; gray: carbon; white: hydrogen; red: oxygen. Note that the
energies path is searched and calculated by AFIR with Gaussian 16 and numbers represent the node number in Fig. 1.
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Here, one can also understand that the closeness centrality
and betweenness centrality of the network shown in Fig. 1
reects the search procedure used in the SC-AFIR algorithm.
First, when Li is used as an index to rank local minimum
structures, the preference in a group that reaches equilibrium
in a shorter timescale than tMAX is dependent on the Boltzmann
distribution at TR. At the start of the search, only complexes
among HCo(CO)3 + CO + C2H4 + H2 are considered and paths
are computed from these structures. Once the structures in the
intermediate region are found, searches are done preferentially
from structures in the intermediate region since the structures
in the initial region can transition to the intermediate region
within tMAX. Finally, searches are done preferentially from
structures in the nal region since the structures in the initial
and intermediate regions can transition to the nal region
within tMAX. It should be noted that many other possibilities
that originate from the initial region are searched as the other
regions are unknown at the start. This can account for why
structures having the highest closeness centrality are found
within the initial region. Node 54 is quasi-symmetric, having
C]C and H–H almost on the plane of H, Co, and C in the axial
CO, making it a possible transit point among other HCo(CO)4 +
C2H4 + H2 complexes in the initial region. Therefore, the
closeness centrality is useful for identifying the most important
© 2021 The Author(s). Published by the Royal Society of Chemistry
structure within the initial region. As noted, the SC-AFIR
searched various possibilities originating from the initial
region and created many local areas within the network. By
denition, a node that has high betweenness centrality is
a node that can be viewed as havingmore control in the network
as many paths lead through it. Given this, structures that have
high betweenness centrality should correspond to key inter-
mediates within paths that connect to different areas of the
network. Various different chemical transformations are able to
be identied by tracing nodes having high betweenness
centrality. Identifying possible intermediates, regardless of
their kinetic importance, is very important for actual mecha-
nism studies on chemical reactions. Hence, betweenness
centrality can be powerful for identifying key intermediates.
Chemical reaction network has become possible to create by
combining the rst principles calculation with data science.
However, it has been a challenge to extract knowledge from the
network due to the high complexity of the chemical reaction.
Here, data science, graph theory in particular, is found to be
a powerful approach for quickly extracting knowledge from the
reaction network without any kinetics analysis. Thus,
combining graph theory and the rst principles calculations
helps accelerate the determination of the reaction path in
a chemical reaction network.
RSC Adv., 2021, 11, 23235–23240 | 23239
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Conclusion

In summary, data science is implemented to determine the
reaction path in a calculated reaction network. In particular,
cobalt catalyzed hydroformylation is selected as a prototype
reaction where articial force induced reaction within the rst
principles calculations is implemented to create a hydro-
formylation reaction network. Data science, graph theory,
unveils the frequency of nodes as well as closeness centrality
determining the reactant which is found to be cobalt tetra-
carbonyl hydride HCo(CO)4. Furthermore, betweenness
centrality reveals the 3 reaction paths which lead to the
formation of aldehyde, CH2O, and CO2 where the energy prole
indicates that the formation of aldehyde is energetically
favored. Thus, it is proposed that data science accelerates
identication of the reactant, product, and reaction path from
the complex reaction network without kinetics. This approach
would act as a rst step for understanding a complex reaction
network towards further kinetic understanding of a chemical
reaction.
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