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The potential application of all-nitrogen molecules as high energy density materials (HEDMs) has been
attracting considerable scientific effort. If stable enough to be synthesized and stored, these systems
may be used as a green source of energy. However, it is very difficult to obtain these structures under
mild experimental conditions. Theoretical chemistry may aid in the search for polynitrogens that are
more likely to have experimental usability. The barriers towards decomposition are an effective way to
assess their stability, but these have not been thoroughly studied. Most of the previous effort in this
direction focus on a single N, case, each employing different accuracy levels, and the decomposition of
caged structures has been little explored. Here we explore the stability and decomposition of several
neutral molecular polynitrogens of different sizes and shapes using a common and accurate theoretical

framework in order to compare among them, search for patterns and identify potential candidates for
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Accepted 19th May 2021 synthesis. We focus especially on new caged geometries, and our results indicate that the prismatic ones
can be expected to present higher energy densities and be very stable with respect to unimolecular

DOI: 10.1039/d1ra03259¢ decomposition. It is shown that the energy content can be clearly stratified between chain, ring, cage
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1 Introduction

Polynitrogen systems (polyN) have been the subject of a vast
number of studies in the past decades, both in neutral and ionic
forms, due to the fact that they are candidates for clean energy
sources. This comes from the nature of their structures, built by
single and/or double N-N bonds. The triple bond of molecular
nitrogen is highly thermodynamically stable, and therefore
these systems tend to decompose, dissociating into N, mole-
cules and releasing large amounts of energy. As the product of
this dissociation is the major component of atmospheric air,
this process occurs without the formation of polluting
compounds or greenhouse gases, such as carbon dioxide.*™*
Because of their high potential energy content, polyN are
part of a group of substances called high energy density mate-
rials (HEDMs). For practical usage, the material must not only
be able to release a large amount of energy on demand, but also
must have a reasonable chemical stability in order to be
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produced and stored. For polyN systems, this means a high
dissociation energy coupled with a relatively high decomposi-
tion barrier."

PolyN species can be sub-categorized in chain, ring or caged
structures. The latter tend to show more single bonds between
nitrogen atoms, and thus may be expected to release a larger
amount of energy when several new triple N, bonds are formed
upon its dissociation. As this process may involve the breaking
of several chemical bonds simultaneously, its decomposition
barrier is also expected to be higher.® Therefore, cage-like
structures are possibly the most suitable ones for HEDM use.

Experimentally, it is very hard to synthesize polyN at ambient
conditions. Usually, extremely high pressures and cryogenic
temperatures are necessary.>” In the field of neutral polyN, it
has already been reported a covalent allotropic form of nitrogen
in which the atoms are arranged in a cubic gauche structure (cg-
N),® a polymeric nitrogen with the black phosphorus structure
(bp-N)° and a molecular form of Ng.'* On the ionic front, on the
other hand, many species have been obtained over the past few
years, such as the pentazolate anion," the pentazenium
cation™" and metal pentazolate hydrate complexes.* Slightly
larger anions have also been recently reported, such as a tung-
sten hexanitride'® and the Ng~ anion, which has been synthe-
sized on the sidewalls of multi-walled carbon nanotubes'® and
also stabilized on boron-doped graphene."”

Theoretically, several studies involving polyN (especially up
to 10 atoms) have been reported over the past decades,
regarding their structures and thermodynamic properties, both
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in neutral®®*®® and ionic forms at gas phase.”>*”*° Stable
molecular crystals of Ng, Ng and N;o >**™** have also been
proposed. However, less attention has been given to their
dissociation and isomerization barriers, which is a key aspect to
predict what isomeric forms may actually be stable at ordinary
temperatures, which is a major advantage for storage. Most of
previous research that has been published on this property
focused on chain or ring structures with up to 10 atoms for
neutral*®”**% and ionic forms.”*>»**%*¢1-%> To the best of our
knowledge, the dissociation and isomerization barriers of
neutral caged structures have been, up until now, little exploi-
ted,** and most of these studies employed symmetry
constraints in the search for transition state structures.

For the reasons mentioned above, this work is focused on
providing a systematic study on the decomposition mecha-
nisms for several polyN neutral molecules, in order to provide
insights into what type of structure might be best suitable for
HEDMs. The various isomers are compared by their calculated
dissociation barriers and dissociation energies using the same
theoretical level for all structures and without symmetry
constraints in the decomposition pathways, allowing for a fair
comparison between all structures. We focus on caged geome-
tries, but for each polyN size, other relevant structures are
always included for a direct analysis between the different
classes.

2 Methodology

All electronic structure calculations reported here were per-
formed using the GAMESS-US” and MOLPRO™ packages. The
calculations were based on density functional theory (DFT)"
using the def2 (SVP and TZVPP) basis sets.” The M06-2X"* and
SOGGA11-X">7® exchange and correlation functionals were
chosen due to their known accuracy for predicting energy
barrier heights.”””® In fact, it has been shown by Peverati and
Truhlar,”* that the mean unsigned error (MUE) for non-
hydrogen-transfer barrier heights (NHTBH) for the hybrid
SOGGA11-X functional and of MO06-2X are respectively
1.16 keal mol " and 1.22 kcal mol ™. Therefore both functionals
show chemical accuracy for potential energy barriers and are
expected to provide reliable results for our purposes. Vibra-
tional analysis was carried out to confirm the minima and
transition states (TSs) found within the employed levels of
theory. The wxMacMolPlt program was used for graphic visu-
alization and representation of the molecular geometries.”

The initial structures selected (shown in Fig. 1) were taken
from ref. 36 and 80 and were chosen such as to provide four
different structures for each molecular size, and to present
a diverse set of all geometrical classes of structures. This work
provides the first account on the unconstrained dissociation
paths of six nitrogen allotropic forms: Ng(C,,)-A, Ng(Cs), and all
four N,, isomers including the prismatic one.

As a first step, the smaller def2-SVP basis set was used for an
initial exploration of possible dissociation and isomerization
paths associated with each studied polyN. Intrinsic reaction
coordinate (IRC) calculations were performed with this basis set
using the Gonzalez-Schlegel second-order algorithm® for all
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Fig. 1 Initial structures.

TSs found to ensure their connection to decomposition or
isomerization products. After that, reoptimization employing
the larger def2-TZVPP basis set was carried out for all stationary
points found. The energies of all minima and TSs were zero-
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point energy (ZPE) corrected within the def2-TZVPP approach
and no symmetry restrictions were imposed in any case.

To assess the performance of our DFT results, we have also
performed geometry optimizations and frequencies calcula-
tions at the coupled cluster singles and doubles and perturba-
tive triples (CCSD(T)) level,®*** using the cc-pVDZ basis set.*>®®
This was followed by a single point energy refinement using the
explicitly correlated coupled cluster method (CCSD(T)-F12)
method,*”® using the aug-cc-pVTZ basis set. Such calculations
were considered as benchmark and the results were directly
compared to the DFT ones.

3 Results

In the results presented throughout this work, the energies in
all graphs are given relatively to the nN, dissociation limit. The
reaction pathways in the IRC plots are displayed with black
circles (at the SOGGA11-X/def2-SVP level). The horizontal lines
in these graphs correspond to the ZPE corrected energies at
M06-2X/def2-TZVPP (orange) and SOGGA11-X/def2-TZVPP
(black) levels.

For a summary of the results, the tables in this section show
the numerical values of the activation energy (AE) and dissoci-
ation energies (DE), which are positively defined as

AE = ETS + ZPETS - [EpolyN + ZPEpolyN] (1)
and
n
DE — EpolyN + ZPEpo]yN - i [EN2 + ZPENJ (2)

where Ers, Epoyn and Ey, stand for the total energies of the
transition state, the initial polyN and a nitrogen molecule,
respectively. ZPErs, ZPE,qyn and ZPEy, are the corresponding
zero-point energies of these species and 7 is the total number of
atoms of the polyN. In the calculation of AE, only the lowest
lying TS is considered. In summary, AE is a measure of how
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Fig. 2 Decomposition path of Ng(C,,)-A isomer obtained from IRC
calculation at SOGGA11-X/def2-SVP level. The bars correspond to the
zero-point corrected energies at M06-2X/def2-TZVPP (orange) and
SOGGA11-X/def2-TZVPP (black) levels. The zero of energy is set as the
fully dissociated system (nN,).
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Fig. 3 Decomposition path of Ng(C»,)-B isomer with IRC calculation
following the scheme of Fig. 2.

difficult it is to break the polyN structure in an unimolecular
decomposition, while DE gives the amount of energy released in
the process. We also report the values of dissociation energy per
atom (DE/n), since this is more related to the energy content of
the HEDM.

The Cartesian coordinates and frequencies of all minima
and transition states reported in this section are given in the
ESIt for both DFT functionals. Although the results of both
functionals are given in the figures and tables, the energies
discussed in the text are given only at the SOGGA11-X/def2-
TZVPP level for simplicity.

31 N,

Four isomers of N¢ have been considered in the present work.
Fig. 2-5 present the results of the IRC calculations for structures
Ng(Cay)-A, Ng(Cypy)-B, Ng(Cop) and Ng(Dsp) respectively. Table 1
gathers their AE and DE values. All three different calculation
methods predict the same energetic ordering between the four
structures, and both DFT functionals are in fairly good agree-
ment with the CCSD(T)-F12/aug-cc-pVTZ//CCSD(T)/cc-pVDZ
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Fig. 4 Decomposition path of Ng(Cyp) isomer obtained from IRC
calculation following the scheme of Fig. 2.
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Fig. 5 Direct decomposition path of Ng(Dsp,) isomer into N4(Dyp,) + No
(upper panel) and an alternative path to the same products passing
through an intermediate (lower panel). Following the scheme of Fig. 2.

results for DE. The mean absolute difference between the
benchmark results and the M06-2X one is only 2.0%, with
a standard error of the mean (SEM) of 0.2%. A similar
comparison is obtained for the SOGGA11-X functional, with
a mean absolute difference of 2.2%. This good agreement
between the methods reinforces the conclusions of this work

Table 1 Activation energy barriers (AE), dissociation energies (DE) and
dissociation energies per nitrogen atoms (DE/n) in kcal mol™ for the
Ng isomers

Structure Method AE DE DE/n
Ng(Cay)-A MO06-2X 5.59 240.30 40.05
SOGGA11-X 7.33 231.53 38.59
CCSD(T)-F12 235.12 39.19
MO06-2X 1.94 247.00 41.17
Ng(Cay)-B SOGGA11-X 4.23 239.69 39.95
CCSD(T)—FlZ 243.65 40.61
M06-2X 18.42 178.13 29.69
Ng(Can) SOGGA11-X 19.23 173.20 28.87
CCSD(T)—FlZ 181.77 30.29
MO06-2X 40.53 319.89 53.32
N¢(Dsn) SOGGA11-X 40.96 309.90 51.65
CCSD(T)-F12 312.61 52.10
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Fig. 6 Decomposition path of Ng(C,,)-A isomer obtained from IRC
calculation following the scheme of Fig. 2.

regarding which structure is more stable towards unimolecular
decomposition. A broader comparison between the methods
and their accuracy will be given in the discussion section.

As it can be seen, isomers Ng(C,,)-A (which shows a Dewar
benzene structure) and Ng(C,,)-B possess small dissociation
barriers (AE of 7.33 and 4.23 kcal mol ', respectively), indi-
cating that they are kinetically unstable at ambient conditions.
These isomers decompose in a stepwise process, being the first
the elimination of a N, molecule, followed by the dissociation of
the well known D,;, form of N,,”*® which has a very small
dissociation barrier (around 6.45 kcal mol " above the N, well?).

The Ng(C,n) isomer, also named as diazide, presents
a considerably higher decomposition barrier (19.23 keal mol ™)
when compared to the previous two, in spite of its chain
configuration. Nevertheless, it may not be sufficient to confirm
its stability at room temperature, as it has been suggested that
an energy barrier of approximately 30 kcal mol " is desir-
able.*>®” In agreement with previous studies,*®*>***” we found
a concerted dissociation mechanism in which N¢(C,y,) breaks
directly into three N, molecules. It is worth mentioning that
Greschner et al.** recently predicted a stable molecular crystal
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Fig. 7 Decomposition path of Ng(Cs) isomer obtained from IRC
calculation following the scheme of Fig. 2.
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Fig. 8 The two possible paths for Ng(Cp,)-B with energetically
equivalent barriers as indicated in the text. Following the scheme of
Fig. 2.

composed of Ng(Cyp) chains. Their molecular dynamics simu-
lations suggest reasonable thermal stability.

Differently from the other three, Ng(Dsy,) (or prismane) shows
more promising results. In our study, we found a new TS that
connects prismane directly to Ny(D,) + N,, with an energy
barrier of 40.96 kcal mol™* (upper panel in Fig. 5). Li and Liu®”
found instead a considerable isomerization energy barrier
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Fig. 9 Isomerization path of Ng(Oy) into Ng(C,,)-B. Following the
scheme of Fig. 2.
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towards the Ng(C,,)-B structure (34.4 kcal mol ') at CCSD/6-
311G(d)(energies)//B3LYP/6-311G(d)(geometries) level. We
could also find the isomerization path connecting these two
isomers (lower panel in Fig. 5), and an energy barrier of
40.84 kcal mol ' was obtained. Within the accuracy of our
calculations, both isomerization and dissociation processes can
be considered as energetically equivalent. The Ng(C,,)-B isomer,
in turn, will easily dissociate as illustrated in Fig. 3. These
barriers are a good indicative of practical use of Ng(Dsp) as
HEDM, and the unraveling of the direct decomposition pathway
is relevant to the understanding of the energy landscape asso-
ciated with prismane.

Within the Ng size, prismane releases the largest amount of
energy considering its dissociation into three N, molecules,
being 78% more exothermic than the chain isomer (Ng(Cyp))- Its
AE is also more than two times higher than that of Ng(C,p),
indicating that it may be stable on higher temperatures. This
can be partially attributed to its caged geometry, but as will be
explored later in section 4, not all caged structures follow this
pattern, and there are other features involved.

3.2 Ng

Four allotropes of Ng have been considered in the present work.
Fig. 6-9 present the results of the IRC calculations for isomers
Ng(Cay)-A, Ng(Cs), Ng(C,y)-B and Ng(Oy,), respectively. To the best
of our knowledge, this is the first work regarding the dissocia-
tion barriers of Ng(Cy,)-A and Ng(Cy). Table 2 presents the values
of their AEs and DEs. It should be noted that azidopentazole has
been found to be the lowest energy isomer of Ng, but ref. 49 and
50 already ruled out the possibility that this could be a good
candidate for a HEDM.

Regarding the Ng(C,,)-A isomer, we found a decomposition
path that leads to Ng(Cy,)-A + N, (Fig. 6). It passes through an
intermediate resulting from the opening of a triangular ring of
the initial structure. The isomerization barrier that is determi-
nant to the decomposition process was found to be
23.72 keal mol ™" (AE). Although not as high as that of prismane,
this isomer might be an interesting candidate for production.

Table 2 Activation energy barriers (AE), dissociation energies (DE) and
dissociation energies per nitrogen atoms (DE/n) in kcal mol™ for the
Ng isomers

Structure Method AE DE DE/n
Ng(Cpy)-A M06-2X 22.26 375.47 46.93
SOGGA11-X 23.72 363.13 45.39
CCSD(T)-F12 367.69 45.96
Mo06-2X 31.65 352.27 44.03
Ng(Cp)-B SOGGA11-X 29.34 341.44 42.68
CCSD(T)—FlZ 344.10 43.01
MO06-2X 3.33 350.60 43.83
Ng(Cs) SOGGA11-X 4.53 339.09 42.39
CCSD(T)—FlZ 341.98 42.75
MO06-2X 24.11 450.31 56.29
Ng(Oh) SOGGA11-X 24.06 436.51 54.56
CCSD(T)-F12 435.88 54.49
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Fig. 10 Decomposition path of Njo(Cs) isomer obtained from IRC
calculation following the scheme of Fig. 2.

On the other hand, the Ng(C;) isomer did not present promising
results, as its predicted barrier for decomposition into Ng(Cy,)-A
+ N, is only 4.53 kcal mol ™" (see Fig. 7).

More interesting results were achieved for the Ng(Cs,)-B
isomer within our calculations. At the preliminary exploration
using the def2-SVP basis set, only one barrier was found to be
relevant. However, when we reoptimized the minima and TSs
using the def2-TZVPP basis set, another barrier presented
a similar and promising result, and we report both. First,
a mechanism that leads to a D,q structure followed by decom-
position to Ng(C,,) + N, with an activation energy of
30.84 kcal mol™" (upper panel in Fig. 8). Second, a direct
decomposition route through a structure opening transition
state yielded an activation energy of 29.34 kcal mol *, leading to
an open chain Ng(C,) isomer (lower panel in Fig. 8). Both
barriers are high and show similar values, and thus Ng(Cy,)-B
may be another relevant candidate. Fau and Bartlett® reported
that isolated open chains of Ng possess a relatively low
decomposition barrier. In their work, this C; structure is easily
decomposed to Ng + N,.*
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Fig. 11 Decomposition path of Nig(Dsy) isomer obtained from IRC
calculation following the scheme of Fig. 2.
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Still regarding Ng(C,,)-B, it should be noted that a TS directly
connecting it to full dissociation, was obtained by Schmidt
et al.®® at the MP2/6-31G(d) level, with an AE of 20 kcal mol /,
but could not be reproduced within our calculation method.
Gagliardi et al.*® found (employing B3LYP/cc-pVTZ calculations)
two pathways for this structure: one similar to that shown in the
upper panel of Fig. 8, with a barrier of 43.3 kcal mol ', and
another for isomerization of Ng(C,,)-B into another structure of
28.2 keal mol ™", In summary, the final AE value reported in ref.
66 is similar to the one reported here.

Extensive research has been performed on the octaazacu-
bane allotrope,®*##7:666%69 N¢(Oy,). Engelke and Stine** studied
the concerted symmetry forbidden D, dissociation path Ng(Oy,)
— 4N, and found a 162 kcal mol~ "' energy barrier at RHF/4-
31G* level, in good agreement with the work of Evangelisti and
Gagliardi*” (159 kecal mol " at CASSCF/VDZP level) considering
the same constrained D, path. However, both studies agree
that octaazacubane dissociation should occur in a less
symmetric path. On the other hand, an almost barrierless
pathway to the total decomposition of the isolated Ng(Oy,) into
4N, (2.5 kecal mol ') was obtained by Gimaldinova et al. within
the frame of the non-orthogonal tight-binding model for
describing interatomic interactions.®

The lowest energy TS linked to Ng(Oyp,) that we managed to
find in the present study lies 24.06 kcal mol™" above it.
According to our IRC calculations, this TS actually connects
Ng(Op) to the Ng(C,,)-B isomer. Our proposed isomerization
pathway agrees with the results of ref. 66, 68 and 89. After
isomerization, Ng(Oy,) may readily follow the Ng(C,,)-B decom-
position path already discussed and presented in Fig. 8.
Therefore, analogously to the Ng(C,,)-B isomer, octaazacubane
may also be of experimental relevance, but with the advantage
of generating 28% more energy upon full dissociation.

Octaazacubane, Ng(Oy), presents the highest DE/n ratio
among all polyN studied here, which can be attributed to its
strained prismatic structure where each N atom makes 3 single
bonds. On the other hand, our calculations show that Ng(C,,)-B
(which does not show a caged structure) shows the highest
activation energy for the 8 atoms polyN. As will be summarized
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Fig. 12 Decomposition path of Nio(C;) isomer obtained from IRC
calculation following the scheme of Fig. 2.
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Fig. 13 Decomposition path of Nio(Cs,) isomer obtained from IRC
calculation following the scheme of Fig. 2.

later, although it is possible to draw correlations between the
geometric shape and DE values, a similar analysis often fails to
explain the calculated AEs. Finally, the relatively small differ-
ence between the dissociation barriers of Ng(C,,)-B and Ng(Oy,)
(5.3 keal mol ") compared to the significant difference between
their DEs (95 kcal mol ") should be taken into consideration.

3.3 Ny

Four allotropes of N;, have been considered in the present
work. Fig. 10-13 present the results of the IRC calculations for
isomers Nyo(Cs), N1o(Dsn), N1o(C;) and Nyo(Csy), respectively. To
the best of our knowledge, this is the first work to provide fully
relaxed dissociation mechanisms for these structures. The
numerical results are gathered in Table 3. The difference
between the two exchange correlation functionals employed in
the case of the N;, structures follows the same trend observed
for the previous structures: both functionals predict very similar
AE barriers, but M06-2X predicts larger DEs.

The branched chain isomer N;o(Cs) possesses a small
decomposition barrier 7.73 kcal mol~' and may not be a good
candidate for HEDM. Together with the other chain isomer

Table 3 Activation energy barriers (AE), dissociation energies (DE) and
dissociation energies per nitrogen atoms (DE/n) in kcal mol™ for the
Nig isomers

Structure Method AE DE DE/n
N;0(Cs) MO06-2X 7.14 305.30 30.53
SOGGA11-X 7.73 299.23 29.92
CCSD(T)-FlZ 312.74 31.27
MO06-2X 23.97 513.39 51.34
Nio(Dsn) SOGGA11-X 25.81 498.12 49.81
CCSD(T)—FlZ 499.31 49.93
Mo06-2X 9.02 463.42 46.34
Nio(C1) SOGGA11-X 9.55 449.47 44.95
CCSD(T)—FlZ 454.18 45.42
MO06-2X 7.24 471.95 47.19
Ni0(Cav) SOGGA11-X 8.22 457.24 45.72
CCSD(T)-F12 459.62 45.96

© 2021 The Author(s). Published by the Royal Society of Chemistry
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explored in this work (Ng(Csp)), they represent the lowest DE/n
ratio. Interestingly, Ng(C,,) has a decomposition barrier 2.5
times larger than N;o(C;), despite the analogous structures,
which again indicates the difficulty in correlating the AE value
with molecular shape.

The prismatic N;o(Dsy) isomer decomposes in a stepwise
fashion, passing through two different intermediates, to reach
a chain isomer (Fig. 11). As reported by Strout,* such acyclic
forms of Ny, tend to present low activation barriers towards
dissociation, and thus the system will easily dissociate from
there. Therefore, if there is available energy for N;o(Dsp) to
surpass the first isomerization barrier (25.81 kcal mol %), it will
promptly undergo dissociation. This barrier is comparable to
those presented by Ng(C,,)-B and Ng(Oy) isomers which,
together with a large energy released upon full dissociation
(DE), makes N;4(Dsp) the most attractive polyN within the Ny,
structures according to our calculations. The just published
study employing reaction dynamics® obtained a similar tran-
sition state, but the B3LYP reported energy barrier is substan-
tially lower (13 kcal mol™'). Since the B3LYP functional is well
known to underestimate barrier heights,”*** with a MUE about
four times higher than the functionals employed here,”® our AE
value should be more realistic.

Even though N;((C;) and N;(Cs,) present cage-like struc-
tures and high energy content (as given by DE/n), their rather
small decomposition energy barriers (AE) make them not suit-
able for HEDM application. This is also the case for smaller
polyN such as Ng(Cs) and Ng(C,,)-B, although all of them present
significant DEs. Therefore, despite caged structures are
consistently related to higher DEs, this is not the main factor
governing their decomposition barriers. Symmetry seems to
play an important role, as specific prismatic structures with
peripheral N4(D,},) rings tended to yield higher kinetic stability,
as well as DEs. Like the other prismatic structures of smaller
nuclearities approached here, N;o(Dsy) is the isomer that
releases the greatest amount of energy towards full decompo-
sition into N, molecules.

4 Discussion

For summarizing the results we first present a graph based on
the Evans-Polanyi principle,” relating activation energy with
reaction energy, which is shown in Fig. 14. Although no clear
correlation between AE and DE is observed, this graph is helpful
for a general overview. First of all, the two graphs show that both
functionals (one hybrid-GGA and one of meta-GGA type), are in
very good agreement and the exact same conclusions can be
drawn from both. In fact, analysing all structures calculated in
this work, the difference between the two functionals in pre-
dicting DE is on average 3.1%, with a SEM of 0.1%. The
SOGGA11-X functional is in better agreement with the bench-
mark calculations, in average deviating from the CCSD(T)-F12
ones by only 1.5% with a SEM of 0.4%. As for the AE values,
the two funcionals always agree qualitatively in predicting the
order of increasing AE. The difference between their calculated
AEs is on average 1.19 kcal mol ™' which is indeed their expected
accuracy.
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We have also classified the structures into chains, rings,
cages and caged prisms, which is presented in Fig. 14 in
different colors. It is clearly seen that prismatic structures
always show large activation energies towards unimolecular
decomposition, and that of prismane Ng(Dj3y,) is specially high.
This plot is helpful for an easy visualization of polyN molecules
that display high values for both AE and DE, and thus could be
good candidates for HEDMs. Besides the prismatic structures,
Ng(C,y)-B shows a surprisingly high activation energy, and could
be one of the best candidates explored here. The chain structure
of Ng(Cpn) shows a significant decomposition barrier, even
though it is the structure that releases the least amount of
energy upon dissociation into nitrogen molecules. It is worth
recalling that Greschner et al.** proposed a stable molecular
crystal composed of Ng(C,y,) chains.

Although we have shown that all prismatic structures show
high activation energies, it is seen that having a caged structure
is not a sufficient condition. All caged structures present a high
energy content (DE) but for some reason it is relatively easy to
break some of them (small AE). Ring structures often have low
activation energy, and are easier to break but, as seen before,
Ng(Csy)-B is an exception.

For a global analysis of all results given in the previous
section, and also aiming to find correlations between the
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energetic properties with electronic and structural ones, we
have calculated several molecular parameters such as HOMO-
LUMO gap, average bond order, average bond length and
asphericity for all polyN structures reported here. After the
calculations we plotted these properties against AE, DE and DE/n,
which are all given in the ESI{ for both DFT functionals.

None of the molecular parameters explored here were found
to correlate with AE. If such correlation existed, it would be very
useful for predicting the dissociation barriers of new polyN
structures obtained in the future, since exploring their high
dimensional PES in the search for the lowest TS is a very diffi-
cult task.

The average bond lengths and average bond orders were
found to be correlated with DE and DE/n. The latter is shown in
Fig. 15, where it is seen that lower bond orders (and higher
bond lengths, as given in the ESIf) generally mean higher
dissociation energy. It is interesting to see that DE/n, which is
more related to the energy content of a structure than DE, can
be clearly stratified among the four geometrical categories
(chain, ring, cage and caged prism), which was not observed in
the case of DE (see Fig. 14). Although caged prisms have higher
DE/n than caged structures, their average bond orders are
similar, lying below 0.9. Ring structures have average bond
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orders from 0.95 to 1.14, while chained structures show the
largest values, as more double bonds are possible.

5 Conclusions

In this work, the unimolecular decomposition routes for several
polynitrogen allotropes were predicted at the SOGGA11-X/def2-
TZVPP and MO06-2X/def2-TZVPP levels of theory. These two
methods were shown to yield similar results, compare well with
highly accurate CCSD(T)-F12 ones, and the same conclusions
can be drawn from both.

Though the potential barriers for some polyN have been
previously explored in the literature, this work provides new
accounts on the unconstrained decomposition of six structures:
Ng(Cay)-A, Ng(Cs), and all four Ny, isomers, including the pris-
matic one. Furthermore, new mechanisms involving prismane
and Ng(C,,)-B were obtained.

By using the same computational methods for three
different sizes, and several geometrical shapes for each, we were
able to extract interesting information about this class of
chemical systems. First, it is shown that the energy content (DE/n,
which may be released if these substances are used as energy
sources) can be clearly stratified between chain, ring, cage and
prismatic cage structures. This variable shows a linear correla-
tion with average bond size and average bond order.

The energy barriers towards unimolecular decomposition
(AE) could not be correlated to any electronic or geometrical
property of the molecule. If such correlation existed, it would be
very useful for screening newly proposed polyN structures, as
the search for the dissociation transition states is a very time
consuming task.

Comparing between individual structures, it is found that
prismane (Ng(Dsp)) shows a very high dissociation barrier and, if
it could be synthesized, would be very stable, perhaps allowing
its storage at ambient conditions. Upon triggering its dissocia-
tion reaction, it would deliver a very large amount of energy,
without producing any pollutant products.

All prismatic cage structures are shown to have considerably
high activation energies as well. Although Ng(0Oy,) and Nyo(Dsp)
do not display an AE as high as that of prismane, they also have
a very large energy content. An unexpected promising case was
Ng(C,y), a boat-like structure that displays an activation energy
even higher than those of the Ng(Oy,) and Nyo(Dsp) prismatic
structures.

The present overall survey of possible polyN structures may
serve as a guide for future computational work, to direct efforts
in finding crystal structures and other properties only for the
most promising and kinetically stable polyN structures.
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