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A DFT study of the synthesized MAX phase Zr,SeC has been carried out for the first time to explore its
physical properties for possible applications in many sectors. The studied properties are compared with
prior known MAX phase Zr,SC. The structural parameters (lattice constants, volume, and atomic
positions) are observed to be consistent with earlier results. The band structure and density of states
(DOS) are used to explore the metallic conductivity, anisotropic electrical conductivity, and the dominant
role of Zr-d states to the electrical conductivity at the Fermi level. Analysis of the peaks in the DOS and
charge density mapping (CDM) of Zr,SeC and Zr,SC revealed the possible variation of the mechanical
properties and hardness among them. The mechanical stability has been checked using elastic
constants. The values of the elastic constants, elastic moduli and hardness parameters of Zr,SeC are
found to be lowered than those of Zr,SC. The anisotropic behavior of the mechanical properties has
been studied and analyzed. Technologically important thermodynamic properties such as the thermal
expansion coefficient (TEC), Debye temperature (@p), entropy (S), heat capacity at constant volume (C,),
GrUneisen parameter (y) along with volume (V) and Gibbs free energy (G) are investigated as a function
of both temperature (from 0 to 1600 K) and pressure (from O to 50 GPa). Besides, the ®p, minimum
thermal conductivity (Kmin), melting point (T,,), and vy have also been calculated at room temperature and

found to be lowered for Zr,SeC compared to Zr,SC owing to their close relationship with the
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coating material. The optical properties such as dielectric constant (real and imaginary part), refractive
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index, extinction coefficient, absorption coefficient, photoconductivity, reflectivity, and loss function of

rsc.li/rsc-advances Zr,SeC are computed and analyzed to reveal its possible applications.

promising candidates such as in high-temperature technology
as components, sliding electrical contacts, and contacts for 2D

1. Introduction

Since the 1990s, one of the most widely known classes of tran-
sition metal carbides or nitrides is the so-called MAX phase
materials with general formula M,,,;AX,, (M - early transition
metal, A - A-group element, X - C or N; n = 1-4)."* MAX phase
materials can attract great attention owing to their exceptional
performance combining both ceramics (elastically rigid, light-
weight, creep and fatigue resistant as ceramic materials) and
metals (machinable, electrically and thermally conductive, not
susceptible to thermal shock, plastic at high temperature and
exceptionally damage-tolerant);* consequently, they are
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electronic circuits, Li-ion batteries, wear and corrosion-resistant
coatings, superconducting materials, spintronics, and nuclear
industry.>* The hybrid properties of MAX phases are due to the
existence of strong covalent M-X bonds and relatively weak
metallic M-A bonds within their structure.>'*"* These challenging
properties are always motivating scientists; consequently, more
than 150 MAX phases have been discovered." Moreover,
researchers are also trying to manipulate the composition and
structure to achieve better combination of the properties such as
different alloys/solid solutions,?* M,A,X**** and M;A,X,** rare-
earth i-MAX phases,* 212 MAX phases,”* 314 MAX pha-
ses,””* MAX phase borides****” and two-dimensional (2D) MAX
phase derivatives termed MXenes.***

As an A element, chalcogen S containing MAX phases have
drawn attention owing to their comparatively strong M-A(p-d)
bonding which is usually weak for MAX phases. So far known,
the S-containing ternary MAX phases are M,SC (M = Ti, Zr, Hf,
and Nb) and M,SB (M = Zr, Hf, and Nb)."**"** The existence of
strong M-A bonding for the S-containing MAX phases is

© 2021 The Author(s). Published by the Royal Society of Chemistry
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reflected from the higher values of Young's modulus, bulk
modulus, and shear modulus of M,SC (M = Ti, Zr, Hf)
compared to that of M,AIC (M = Ti, Zr, Hf).****** All the S-
containing phases have been studied completely by the
different research groups. Amini et al.** have synthesized and
studied the mechanical properties of Ti,SC. Bouhemadou
et al.** have performed a first-principles investigation of M,SC
(M = Ti, Zr, Hf) compounds. A comprehensive study of elastic
properties of 211 MAX phases has been carried out by Cover
et al.,** where the Ti,SC and Zr,SC were included. M,SB (M = Zr,
Hf, Nb) borides have been synthesized by Rackl et al.,**** which
has been further subjected for the comprehensive study of the
physical properties of M,SX (X = C and B).* For each case, the S-
containing MAX phases have enhanced mechanical properties
compared to corresponding Al-containing MAX phases.

Recently, a new chalcogen (Se) containing MAX phase (Zr,SeC)
has been synthesized by Chen et al.,** where they have investigated
the only electronic density of states, charge density, electrical
resistivity, and thermal conductivity of Zr,SeC. These limited
results are not enough to explore the Zr,SeC thoroughly for prac-
tical application in many sectors where many other MAX phases
have already been used. For example, the MAX phases have the
potential to be used as structural components at high-tempera-
ture**** where the knowledge of mechanical properties is essen-
tial. MAX phases are also using in high-temperature technology
[e.g:, as thermal barrier coating (TBC) material] where some prior
knowledge of Debye temperature, minimum thermal conductivity
as well as melting temperature is required.***” Moreover, the MAX
phases are potential candidates for use as cover materials to
diminish solar heating*® where the knowledge of optical properties
is fundamental. Thus, to predict its possible relevance in other
sectors, a detailed study of Zr,SeC is of scientific importance.
Therefore, a detailed study of Zr,SeC needs to be performed to take
the full advantages for possible use in many sectors.

Therefore, the structural, electronic, mechanical, thermal,
and optical properties of Zr,SeC have been presented in this
paper, and the properties of Zr,SeC have been compared with
those of the Zr,SC MAX phase. It is found that the Zr,SeC is soft
with low Vickers hardness like other phase materials. Moreover,
it is suitable to be used as a TBC material. Furthermore, it can
also be used as a cover material for spacecraft to reduce solar
heating. The rest of the article is organized as follows: the
detailed Computational methodology is given in Section 2,
Results and discussion are presented in Section 3, and impor-
tant Conclusions are drawn in Section 4.

2. Computational methodology

A density functional theory based on the plane-wave pseudo-
potential method was implemented in the Cambridge Serial
Total Energy Package (CASTEP) code**° to calculate the phys-
ical properties of Zr,SeC. The exchange and correlation func-
tions were treated by the generalized gradient approximation
(GGA) of the Perdew-Burke-Ernzerhof (PBE).** The pseudo-
atomic calculations were performed for C - -2s*2p® Se -
4s”4p*, and Zr - 4d®5s electronic orbitals. A k-point®> mesh of
size 10 x 10 x 3 was selected to integrate the Brillouin zone,

© 2021 The Author(s). Published by the Royal Society of Chemistry
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and the cutoff energy was set as 500 eV. The Broyden Fletcher
Goldfarb Shanno (BFGS) technique® was used for structure
relaxation, and density mixing was used for electronic structure
calculation. The structure was relaxed with the following
parameters: the self-consistent convergence of the total energy
is 5 x 107° eV per atom, the maximum force on the atom is
0.01 eV A~!, the maximum ionic displacement is set to 5 x 10~*
A, and maximum stress of 0.02 GPa. The optical properties of
the Zr,SeC compound were calculated using the complex
dielectric function &(w) = &;(w) + iey(w). The time-dependent
perturbation theory (first-order) is used to obtain the imagi-
nary part of the dielectric function. The equation used to
calculate the imaginary part ¢,(w) is given by:
2T . FESPR ,
= S W B~ B~ E) (1)

0 kv,

&(w)

where @ and ¢, correspond to the volume of the unit cell and
dielectric constant of the free space, # and r stand for the incident
electric field vector (polarized) and position vector. w, e and y;° and
Yv stand for the light frequency, electronic charge, and conduc-
tion and valence band wave functions at k, respectively. Here, the
sum k was used to present the Brillouin zone’ sampling in the &
space. The sums v and ¢ were used to represent the contribution
from the unoccupied conduction band (CB) and occupied valence
band (VB). The Kramers-Kronig relations were used to estimate
the real part &(w) from the imaginary part ¢,(w). The real and
imaginary parts of the dielectric function were further used to
obtain the other optical constants: refractive index, extinction
coefficient, absorption spectrum, reflectivity, and energy-loss
spectrum based on the relations found elsewhere.**

3. Results and discussion
3.1 Structural properties

The unit of Zr,SeC is shown in Fig. 1, which is crystallized in the
hexagonal system with space group P6;/mmc (194).2 The unit cell
contains two formula units, and there are eight atoms in the unit

.Zr .9 ’9
® s )
® C '

c

a‘—l——>b.° .’

Fig. 1 Crystal structure (unit cell) of the Zr,SeC compound.
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Table 1 Calculated lattice parameters (a and c), c/a ratio, volume (V), and atomic positions of Zr,SeC MAX phase

a (A) c(A) cla Vv (A%) Ref. Positions Zr Se C
3.4655 12.5406 3.618 130.429 This study X 1/3 1/3 0
3.462 12.518 3.615 129.029 Expt.*? y 2/3 2/3 0
3.487 12.631 3.622 132.080 Theo.*? z 0.0965, 0.0963 (ref. 43) 3/4 0

cell. The ZrsC octahedron interleaved between two atomic layers of
the Se atom is shown in Fig. 1. For 211 MAX phases, the atomic
positions of Zr, Se, and C atoms in the unit cell are (1/3, 2/3,
0.0965), (1/3, 2/3, 3/4), and (0, 0, 0). The unit of Zr,SeC is opti-
mized geometrically to calculate the physical properties further.
The lattice constants of the optimized cell are presented together
with previous experimental and theoretical results* that assure the
parameters used for calculations. For example, our calculated
values of g, ¢, and V are only 0.1%, 0.18%, and 1.08%, respectively,
higher than those of experimental values (Table 1).

3.2 Electronic properties and bonding nature

The electronic band structure of Zr,SeC of optimized structure
within the GGA-PBE is estimated and analyzed as shown in
Fig. 2(a) along the high symmetry lines of the Brillouin zone (I'-
A-H-K-I'-M-L-H). None existence of a bandgap close to the
Fermi level owing to the overlapping of the conduction and valence
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band reveals the metallic nature of the titled compound like other
MAX phases.® The band structure also reveals the anisotropic
nature of electronic conductivity. It is seen that the energy
dispersion along I'-A, K-H, and L-M directions, which are along
the c-direction, are small. The conductivity in the basal plane is
exhibited by H-K, I'-M, and L-H that are larger than those of ¢-
direction. Thus, the conductivity is higher in the basal plane than
that of c-direction for Zr,SeC, which is typical for MAX phases.?***%¢

After band structure, the next step for insight into the elec-
tronic properties of Zr,SeC is to investigate its density of states
(DOS). Fig. 2(b) shows the DOS of Zr,SeC with a finite value of
DOS (1.84 states per unit cell per eV) at the Fermi level that is
slightly higher than the value (1.48 states per unit cell per eV)
obtained by Chen et al.,** might due to the difference in the
functionals used. The DOS of Zr,SeC is slightly higher than that
of Zr,SC (1.79 states per unit cell per eV); a similar result is also
reported by Chen et al.** The value of DOS at the Fermi level (Ey)

(b)

101

W
1

DOS (states/eV)

- 1.000e1

- 6.250e-2

- -5.000e-2

Fig.2 The electronic band structure of (a) Zr,SeC, (b) total and partial DOS of Zr,SeC, (c) the total DOS of Zr,AC (A =S, Se) and (d) charge density

mapping of Zr,AC (A =S, Se).
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can provide information regarding electrical conductivity as it is
directly related to the DOS and electron mobility.> The partial
DOS is used to explore the contribution from different states to
the total DOS. For instance, the DOS at the Ey is contributed
from Zr-d states and involved in the conduction of Zr,SeC. The
C and Se do not contribute to the DOS at Er and are not involved
in the conduction properties. The contribution of different
atoms to the DOS at different energy states is also observed from
the partial DOS (PDOS). The DOS profile is almost similar to
that of the reported DOS.* The hybridization among the
different Zr, Se, and C electronic states is observed from PDOS.
The lowest energy band (—9 to —12 eV) comes from the
hybridization between Zr-d and C-s orbital's electrons with
a dominating role of C-s states. The peak in the energy range
—4.5 to —7.5 eV is accredited by the strong hybridization of Se-p
and Zr-d states with a minor contribution from Zr-s and C-p
states. The strongest peak in the range - 1.7 to 4.5 eV results
from the hybridization between Zr-d, Se-p, and C-p states with
dominant contribution from C-p states.

The highest valence band in the range 0 to 1.7 eV is domi-
nated by Zr-d states with a small contribution from Se-p and C-p
states. The PDOS of Zr,SC is not presented here due to similar
nature. The TDOS of Zr,AC (A = S, Se) is shown in Fig. 2(c) to
disclose the effect of the A element. As seen in Fig. 2(b), the S/Se
contributed to the TDOS mostly in the energy range of —4.5 to
—7.5 eV. The peak found in this region is shifted towards lower
energy (indicated by the green line and black arrow) for Zr,SC
compared to Zr,SeC, indicating a higher bonding M-A strength
for Zr,SC compared to that in Zr,SeC. The peaks position due to
Zr and C remain the same for both compounds. Thus, higher
values of the mechanical properties characterizing parameters are
expected owing to the presence of stronger M-A bonding in Zr,SC
than in Zr,SeC. To strengthen this statement, we have calculated the
charge density mapping (CDM) for both phases, as shown in Fig. 2(d).
Fig. 2(d) shows the CDM for both Zr,AC (A = S, Se), where the red and
blue colors indicate the highest and the lowest value, respectively.
The directional covalent bonding occurs between Zr and C atoms
where the charges are geometrically localized, and this boding is
comparatively stronger, required more energy to break this
bonding. As seen in the figure, the charge density at Zr and C
position is unchanged for both Zr,SC and Zr,SeC. The charges are
accumulated to a greater extent at S positions of Zr,SC than that of
Se positions of Zr,SeC. The greater charges at the S position the
greater bonding strength between Zr-S than Zr-Se which is in good
agreement with DOS results. Now it's time to prove the statement
that the Zr- S bonding stronger than Zr-Se which will be proven in
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the following section. The electronic band structure and DOS of
Zr,SeC and Zr,SC are similar to that of M,SC (M = Hf, Nb).>>**

3.3 Mechanical properties

Some of the physical properties of solids, for example, the
mechanical stability, bonding strength, deformation, failure
mode, stiffness, anisotropic nature in bonding strength, etc., can
be brought out by studying mechanical properties characterizing
parameters that are subjected in this section. At first, the stiffness
constants (Cy) have been calculated using the well-known strain-
stress method.?*?**”"** The stiffness constants, which are five in
number as independent due to the hexagonal nature of Zr,SeC and
presented in Table 2 together with those of other S-containing
MAX phases Zr,SX (X = C, B). One of the prime importance of
stiffness constants is the use of checking the mechanical stability
of solids. Max Born® proposed some conditions on the stiffness
constants of solids for being mechanically stable, having a limita-
tion that they are not enough to predict the stability for all crystal
systems correctly. The limitation is overcome by Mouhat et al.**
and the stability conditions for a hexagonal systems becomes:

Ci1>0,Cp > Cra, Cyu >0, (Cry + Cp2)Cs3 — 2(C13)2 >0. (2)

The C;; presented in Table 2 satisfy the above relations, and
hence Zr,SeC is expected to be mechanically stable like M,SC (M
= Zr, Hf, Nb). It should be noted here that Zr,SeC is already
experimentally realized; thus, the question regarding stability is
not expected at all. But, checking mechanical stability is
necessary for practical application under load. The importance
of C;; is not only limited to mechanical stability checking but
also provides significant information. For example, the stiffness
of solids along [100] and [001] directions are defined by Cy; and
Cs3, respectively, thus, comparatively low pressure is required to
deform Zr,SeC along crystallographic a-axis than c-axis because
of Cy; < C33. The resistance to shear deformation is measured by
the value of Cy4,. It is evident from Table 2 that C,, < C3;3 and Cy4,
indicating a low pressure required to shear deformation than
axial deformation. Moreover, Cy4, is also a hardness predictor, in
fact, directly related to the hardness compared to other elastic
moduli.** C,, of Zr,SeC is smaller than M,SC (M = Zr, Hf) but
larger than Nb,SC, thus, the hardness of Zr,SeC is expected to
be lower than M,SC (M = Zr, Hf) but higher than Nb,SC.
Furthermore, the unequal values of C;; and Cj; reveal the
anisotropy in the bonding strength in the a and c-axis owing to
the difference in the atomic arrangement in a and c-axes. The

Table 2 The elastic constants, C;; (GPa), bulk modulus, B (GPa), shear modulus, G (GPa), Young's modulus, Y (GPa), macro, Hmacro (GPa), micro
hardness, Hmicro (GPa), Pugh ratio, G/B, Poisson ratio, v and Cauchy pressure, CP (GPa) of Zr,SeC, together with those of M,SC (M = Zr, Hf, Nb)

Phase Ci1 Cia Ci3 Css Caq B G Y Hpacro Hpicro G/B v CP Ref.
Zr,SeC 260 97 96 293 128 154 100 247 14.85 17.79 0.65 0.23 —30 This study
Zr,SC 295 89 102 315 138 166 115 280 17.89 21.57 0.69 0.22 —49 34

Hf,SC 311 97 121 327 149 181 120 295 17.35 21.72 0.66 0.23 —52 34

Nb,SC 316 108 151 325 124 197 105 267 11.58 15.84 0.53 0.27 -16 34

© 2021 The Author(s). Published by the Royal Society of Chemistry
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difference in the atomic arrangement is mainly responsible for
the mechanical anisotropy that will be presented in the letter.

Bulk modulus (B) defines the property related to the
incompressibility of the materials. The material's resistance to
change its volume keeping shape unchanged under hydrostatic
pressure is measured by its B. The resistance of solids to plastic
deformation at constant volume is provided by its shear modulus
(G). The stiffness of solids is measured by its Young's modulus (Y);
the higher value of Y indicates stiffer solids and vice versa. These
moduli are also important to realize the hardness, stiffness,
brittleness/ductileness of solids. From these points of view, we
have calculated the B and G using Hill's approximation® based on
the Voigt*® and Reuss® models as follows:

B = (BV + BR)/Z, (3)

where By = [2(Cyy + C1,) + C33 + 4C13)/9 and By = C*/M; C* = (Cy4
+ C12)Cs3 — 2C13% M = Cyy + Cyp + 2C33 — 4Cy3.

By represents the upper limit of B (Voigt bulk modulus) and
By represents the lower limit of B (Reuss bulk modulus). Like B,
average values of Voigt (Gy) and Reuss (Gg) were used to
calculate G using the following equations:

G = (Gy + G)2, (4)

where Gy = [M + 12C, + 12Ce)/30  and

5
Gr = (E) [C*C44Ce6)/[3ByC14Ce6 + C*(Cas + Ces)]; Co6 = (C11 —

C1o)/2.
The Young's modulus (Y) and Poisson's ratio (v) were also
calculated using their relationships with B and G:**

Y = 9BG/(3B + G) (5)
and
v= (3B — Y)I(6B) (6)

The lower values of B and G of Zr,SeC than those of Zr,SC
revealed that low pressure is required to volume and plastic
deformation for Zr,SeC than Zr,SC and lower value of Y for
Zr,SeC than Zr,SC, indicating that Zr,SeC is less stiff than
Zr,SC. The elastic moduli were further used to study the hard-
ness of Zr,SeC using the equations:*>*’

Hmacro = z(sz)O-SXS -3 (7)

(where Pugh's ratio, k = G/B) and

(1-2»)E

Hyiero = .
6(1+v)

(8)
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The study of the hardness parameter is beneficial for those materials
which are used as structural components like MAX phases. The
replacement of Se by S is enough to increase the M-A bonding
strength that must improve the hardness of Zr,SC than Zr,SeC. The
obtained values of Hpacro and Hpicro = 14.85 (17.89) and 17.79
(21.57) GPa for Zr,SeC (Zr,SC). Thus, the enhancement of hardness
for Zr,SC is observed. Though the elastic moduli (B, G, Y) of Zr,SeC
are smaller than that of Nb,SC but the hardness parameters of
Zr,SeC are larger than those of Nb,SC owing to the larger value of
Cyy (ref. 62) (Cyy of Zr,SeC and Nb,SC are 128 and 124 GPa,
respectively). The elastic moduli and hardness parameters of Hf,SC
are larger than those of Zr,SeC. The lowering of the bonds strength
(Zr-C and Zr-Se bond) for Zr,SeC compared to Zr,SC (Zr-C and Zr-S
bond) is responsible for the lowering of elastic moduli and hardness
for the same. The bond length of Zr-C (2.339 A) in Zr,SeC is higher
than in Zr,SC (2.326 A), and Zr-Se (2.776 A) in Zr,SeC is higher than
Zr-S in Zr,SC (2.687 A) and hence the bonds (Zr-C, Zr-S) of Zr,SC
are stronger than those of Zr,SeC (Zr-C, Zr-Se). Thus, lower hard-
ness parameters for Zr,SeC compared to Zr,SC is expected as re-
flected from the hardness parameters presented in Table 2. To be
more confirmed, we have calculated the Vickers hardness (H,) using
the Gou et al® formula that is based on the Mulliken bond pop-
ulation and geometrical averages of the bonds present within the
crystal. The relevant formula can be found elsewhere.* The calcu-
lated values of H, for Zr,SeC and Zr,SC are 2.52 and 4.33 GPa,
respectively. Again, the Vickers hardness of Zr,SeC is lower than that
of Zr,SC as expected. The obtained elastic moduli and hardness are
in good agreement with the DOS and CDM results.

3.4 Mechanical anisotropy

For hexagonal crystal, the elastic anisotropy is related to
microcracks and anisotropic plastic deformation, which plays
a vital role in understanding the mechanical stability of the
material under service. The mechanical anisotropy in MAX
phases is normally due to unequal elastic constants, i.e..C;; #
Cs3, which indicates that the mechanical properties in all
crystallographic planes are not identical.” Moreover, the
knowledge of anisotropy offers the information necessary to
enhance further the stability of solids for many applications.”
Therefore, it is necessary to study the anisotropic behavior of
mechanical properties in Zr,SeC. For this purpose, the 2D and
3D visualization of Young's modulus, compressibility, shear
modulus, and Poisson's ratio of Zr,SeC MAX phase is presented
ESI [Fig. S1(a-d)] in comparison with those of Zr,SC [Fig. S2(a-
d)t] by using the open-source software packages ELATE and
AnisoVis.”>”® The extent of anisotropy is estimated by the vari-
able value of elastic properties in all directions. The 2D
projections and 3D plots are perfectly circular and spherical for

Table 3 The minimum and maximum values of Young's modulus, Y (GPa), linear compressibility, K (TPa™2), shear modulus, G (GPa), and Poisson's

ratio, v and their anisotropic indices, A of Zr,AC (A = Se, S)

Phases Ymin Yimax AY Kinin Kinax AK Gmin Gmax AG Umin Umax AU Ref.
Zr,SeC 208.93 277.50 1.32 1.913 2.288 1.19 81.071 127.59 1.57 0.078 0.343 4.394 This work
Zr,SC 250.08 306.39 1.22 1.78 2.12 1.19 101.19 137.27 1.35 0.110 0.290 2.53 34
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Table 4 The anisotropic factors, Ay, Ay, As, B,, Be, kc/ks, and universal
anisotropic index AY of Zr,AC (A = Se, S)

Phase A, A, Az klk, B, B, AY
Zr,SeC 0.73 1.57 1.14 0.84 383 904 0.218
Zr,SC 0.73 1.34 0.98 0.85 412 955 0.113

isotropic materials, and variation from circular/spherical shape
demonstrates the degree of anisotropy of the corresponding
elastic property. The obtained results for Zr,SeC and Zr,SC are
tabulated in Table 3. The unit value of the anisotropic index
indicates the identical mechanical properties in all directions
where the value higher or lower than 1 (one) measures the
degree of anisotropy. Table 3 confirms the anisotropic nature of
the mechanical properties and Zr,SeC is more anisotropic
compared to Zr,SC.

We have also investigated the different anisotropic factors
for the {100}, {010} and {001} planes that are computed using
the eqn (9)—(11), respectively and presented in Table 4:™*

1
E(Cll + Ci2+2C53 —4C)3)
A= 9
I Cn ©)
2Cy
Ay = ——— 10
T Ch -G (o)
1
g(cll + Ciu +2C53 —4C3)
A=A, Ay = (11)

Cll - CIZ

Since the values of A;'s are not equal to 1 (one), thus Zr,SeC
and Zr,SC are anisotropic because 4; = 1 implies the isotropic
nature. The bulk modulus for a and c¢-direction are computed
using the eqn (12) and (13), respectively:"

dpP A
B =—a0—— ——— 12
“ da 24« (12)
dpP B,
B.=c—=— 13
¢ de o (13)
Zr,SeC
6k
L
M
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where A4 = 2(Cy; + Cp3) + 4Cjsa + Cie® and
C Cpy) —2C
Q= (Cu + Cuo) Y The unequal values of B, and B, [Table
Csz3 — C13

4] indicates the anisotropic nature of Zr,AC (A = Se, S). The
linear compressibility (k) along the a and c-axis are calculated by
the equation:”®

k.
P Ci+ Cp —2C13/(Cs3 — C13) (14)

a

The obtained values of k/k, are not equal to 1 (k/k, = 1 for
isotropic materials) and hence Zr,AC (A = Se, S) are anisotropic.
Another important anisotropic factor, the universal anisotropic
index A" is estimated by the following equation:”

(15)

where B and G are obtained by Voigt and Reuss models. Since,
the values of A” are greater than zero, indicating the anisotropic
nature of Zr,AC (A = Se, S).

3.5 Thermal properties

The thermodynamic properties of the material at high temperatures
and pressures are of scientific and technical significance, which
help to predict the material's applications at elevated temperatures
and pressure. Here we have investigated the thermodynamic prop-
erties of the newly synthesized Zr,SeC MAX phase in comparison
with Zr,SC over the wide temperature (from 0 to 1600 K) and pres-
sure (from 0 to 50 GPa) by using the quasi-harmonic Debye
approximation.”®” To disclose the important thermodynamic
properties, the thermal expansion coefficient (TEC), heat capacity at
constant volume (C,), entropy (S), and Griineisen parameter (y) have
been investigated in this temperature and pressure range. The
quasi-harmonic Debye model remains valid in this given range of
temperature and pressure and has been successfully used to
calculate the thermodynamic properties of MAX phases.****

The temperature dependence of the thermal expansion coefficient
(TEC) is displayed in Fig. 3. It is seen that the TEC increases rapidly
with the increase in temperature up to 300 K. The increase in TEC of
Zr,SeC and Zr,SC becomes less sensitive of temperature at the T'=

Zr,SC
6 F
o
N
w 5F
=
<
3 4T
g
=]
‘B 3F
=
<
&
o 2 F
=
£
5 1t
ﬁ —#—(0 GPa —®—10 GPa—4—20 GPa
4 —¥—30 GPa—®—40 GPa—¢—50 GPa
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Fig. 3 The temperature effect on the thermal expansion coefficient of (a) Zr,SeC and (b) Zr,SC at different pressure.
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Fig. 4 The temperature on the heat capacity at constant volume, C, of (a) Zr,SeC and (b) Zr,SC at different pressure.

Table 5 The calculated volume (V), Debye temperature (@p), melting
conductivity (Kmin), specific heat (C,) and entropy (S) of Zr,SeC together
and pressure of O Pa

temperature (T,,), TEC (@), GrUneisen parameter (y), minimum thermal
with those of M,SC (M = Zr, Hf, Nb) MAX phases at temperature of 300 K

Phases Vv (A% 05 (K) Tm (K) a(x107° K™Y v Kmin (Wm™ ' K1) Cy(Jmol 'K Sy mol 'K
Zr,SeC 129.7 679 1571 3.88 3.11 1.3 156.5 126.5

Zr,SC 126.3 727 1712° 4.03 3.12 1.12¢ 151.3 115.9

Hf,SC 130.1 598 1778 3.59 3.11 0.85¢ 164.8 146.7

Nb,SC 113.7 821 1790° 3.12 3.12 1.09° 141.0 98.1

“ Ref. 34.

300 K. However, at the constant temperature, TEC decreases with the
increase in pressure. The calculated value of TEC for Zr,SeC (3.88 x
107> K ') < Zr,SC (4.03 x 107> K ') at zero pressure and 7 = 300 K.

The specific heat is significant to predict the density of
states, band structure, and lattice vibrations. The effect of
temperature on the specific heat at constant volume (C,) for
Zr,SeC and Zr,SC is given in Fig. 4. The heat capacity for both
MAX phases satisfies the Debye T® power-law at the low
temperatures, which is mainly due to an exponential increase in
the number of exciting phonon modes. At high temperatures,
the specific heat curves become converged to get the classical

Zr,SeC
33
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Dulong-petit (DP) limit (Cy, = 3nNakg). The DP limit for Zr,SeC
and Zr,SC is found to be at ~197.12 T mol ™ K~ * and ~196.80 ]
mol™* K™'. The heat capacity decreases linearly with the
increase in pressure. The calculated value of C, for Zr,SeC
(156.46 J mol ' K ') is greater than that of Zr,SC (151.32 J mol "
K™ ") at zero pressure, and T = 300 K. It is also observed in Fig. 4
that the heat capacity of Zr,SeC reached the DP limit at a lower
temperature compared to Zr,SC. The values of @y, (Table 5) and
H, of Zr,SeC are smaller than those of Zr,SC; thus, it is expected
to reach the DP limit at a lower temperature for Zr,SeC than that
of Zr,SC. A similar result is also found for other solids.*
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Fig. 5 The effect of temperature and pressure on the Grineisen parameter of (a and c) Zr,SeC and (b and d) Zr,SC, respectively.
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The Griineisen parameter (y) for Zr,SeC and Zr,SC as a func-
tion of temperature is depicted in Fig. 5. It is an important
parameter that is used to calculate the thermal states and can also
quantify the anharmonic effect. The Griineisen parameter for
Zr,SeC and Zr,SC increases with the increase in temperature and
decreases with the increase in pressure. The effect of temperature
on v for Zr,SeC and Zr,SC at higher pressure is less significant. The
trend of y at 50 GPa is nearly constant with the increase in
temperature. The calculated value of «y for Zr,SeC (3.11) is smaller
than that of Zr,SC (3.12) at zero pressure and 7' = 300 K.

We have further calculated pressure and temperature
dependence of volume (V), Gibbs free energy (G) Debye
temperature (@p) and entropy (S) of Zr,SeC and the results are
presented in ESI (see ESI Fig. S3-S61). Moreover, we have also
calculated the parameters discussed above for M,SC (M = Zr,
Hf, Nb) and the results are presented in ESIT (to save the journal
space) together with those of Zr,SeC (see Fig. S3-S91).

Furthermore, we have also calculated three important
parameters regarding the application at high temperatures,
such as the Debye temperature (@p), minimum thermal
conductivity (Kmin) and melting temperature (7,,) at room
temperature. The Oy, is calculated using the quasi-harmonic
Debye model. It is found that the Oy for Zr,SeC (679 K) is
smaller than that of Zr,SC (727 K) which is good agreement with
statement that Debye temperature is higher for harder solids
and vice versa. The thermal conductivity of the materials which
are used at high temperatures (e.g., ceramics) reduces to the
smallest value (K,;) at high temperatures. The K;, of Zr,SeC is
computed by the equation:*

M )2/3

Kiin = kB Vm (MTA

(16)
where kg, Vi, Na and p are Boltzmann constant, average phonon
velocity, Avogadro's number and density of crystal, respectively.
The obtained value of Ky is 1.3 (W m ™' K *) for Zr,SeC which
is comparable with those of M,SC (M = Zr, Hf, Nb)** as well as
other MAX phase materials.””**® The thermal conductivity of
Zr,SeC (18.30 W m~ " K ') is also lower than that of Zr,SC
(21.10 W m~" K™') as measured by Chen et al.** They have also
measured the electronic contribution to the electrical conduc-
tivity, which is important for predicting high-temperature
application. Accordingly, the electronic contribution to the
thermal conductivity is 25% for Zr,SeC and 19.3% for Zr,SC;
thermal conductivity is dominated by phonon contribution.
Thus, Knin of Zr,SeC and Zr,SC is also dominated by phonon
contribution and the low values of K., could be useful to
predict its suitability as TBC material. Elastic constants can be
used to calculate the melting temperature (7y,) of Zr,SeC and
Zr,SC by using the expression:**

Tm = 3C11 + 1.5C33 + 354 (17)

It is found that the melting temperature of Zr,SeC (1571 K) is
lower than that of Zr,SC (1712 K), Hf,SC (1778 K) and Nb,SC
(1790 K),** and is comparable with the melting point of Zr,GaC
(1481 K), Hf,GaC (1648 K), and Hf;SnC, (1773 K).*>”® Recently,
the research has been focused to prove the MAX phases as TBC

© 2021 The Author(s). Published by the Royal Society of Chemistry
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materials.””* The calculated values of the parameters related to
the TBC applications for Zr,SeC are: Op ~ 679 K, TEC ~ 2.81 x
10 °K !, Kpin - 1.3Wm 'K %, and T,, ~ 1571 K. The values for
a promising TBC material, Y,Al,Oq are: ®p, ~ 564 K, TEC ~ 7.51
X 107 K™Y, Kmin - 1.13 Wm ™ K%, and T, ~ 2020 K.3%% A
comparison of these values indicates that the Zr,SeC MAX
phase can be used as a TBC material for high-temperature
applications. However, all the thermal properties character-
izing parameters of Zr,SeC calculated at ambient condition are
presented in Table 5 together with those of M,SC (M = Zr, Hf,
Nb) for comparison.

3.6 Optical properties

The optical properties of the Zr,SeC compound are calculated
and presented in Fig. 6 for [100] and [001] polarization direc-
tions up to 25 eV incident phonon energy. These two polariza-
tion directions represent the related electric field which is in
perpendicular and parallel directions to the c-axis of unit cell
structure. As confirmed that the titled compound is metallic;
thus, a correction (intra-band) is needed to the low energy
region of the spectrum. This correction is done by setting up
a plasma frequency of 3 eV and damping of 0.5 eV. Besides,
Gaussian smearing of 0.5 eV was used with the intention that
the k-points be more effective on the Fermi level. The optical
constants of Zr,SeC are compared with those of M,SC (M = Zr,
Hf, Nb) for [100] direction only.

Fig. 6 shows the (a) real and (b) imaginary part of the
complex dielectric function of Zr,SeC, which is very important
and used to explain the material's response to the electric
field.*” As seen, the high negative static value of the real part and
high positive static value of the imaginary part of the dielectric
function indicates the metallic nature of Zr,SeC; is consistent
with the band structure result. The ¢;(w) and ¢&,(w) of Zr,SeC are
too much similar to those of M,SC (M = Zr, Hf, Nb). Strong
anisotropy is observed in the low energy part, which tends to be
isotropic in the high-energy region. The peaks in the &,(w) are
the results of electrons excitation, such as intra-band transi-
tions (within M-d states) and inter-band transitions due to
absorption of photon incident on it. The first two peaks for [001]
direction of Zr,SeC are due to electron transition within Zr-
d states. The third peak for [001] and the only peak for [100]
direction assumed to be due to the inter-band transition of
electrons. Approaching of zero by ¢;(w) from below [at 14.91 and
15. 25 eV for [100] and [001] directions, respectively] and &,(w)
from above [at 19 eV for both directions] is another indication
for the metallic nature of Zr,SeC. The energy at which the ¢ (w)
touches zero from below are 15.42, 16.5, 16.44 eV for M,SC (M =
Zr, Hf, Nb), respectively. Fig. 6(c) shows the refractive index n(w)
of Zr,SeC. The value of static n(0) is 19 and 6 for [100] and [001]
directions, respectively. As the value of n(w) is an indication for
the light velocity propagating the materials, thus, lower value of
n(w) is good for optical devices such as waveguides. The value of
n(w) is 6 for [001] direction implies the use of Zr,SeC in parallel
to the field direction (parallel to the c-axis) is better than that of
[100] direction (perpendicular to the c-axis). However, the
velocity is reduced by the interaction with electrons during

RSC Adv, 2021, 11, 16892-16905 | 16899
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Fig. 6 (a) Real part ¢; and (b) imaginary part ¢, of dielectric function ¢ (w), (c) refractive index n, (d) extinction coefficient k, (e) absorption
coefficient «, (f) photoconductivity g, (g) reflectivity R, and (h) loss function LF of Zr,SeC together with those of M,SC (M = Zr, Hf, Nb) MAX phases
as a function of photon energy.
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propagation through the Zr,SeC, as confirmed from values
greater than the unit value. Fig. 6(d) shows the imaginary part of
the refractive index, known as extinction coefficient, k(w), also
used to measure the absorption capability of solids. The spectra
of k(w) follow the trend of &,(w) for each of the MAX phases
presented here. The static value of k(w) is 2.8 and 0.23 for [100]
and [001] directions, respectively. The k(w) decreases to zero at
~16 eV, indicating that the intrinsic oscillation frequency of
Zr,SeC is 16.0 eV. The higher value of k(w) than n(w) indicates
the energy range wherein light cannot propagate, and Zr,SeC
exhibit the behavior belongs to the reflective metal.®**°

Fig. 6(e) shows the absorption coefficient («) of Zr,SeC [100]
and [001] for two polarization directions along with that of
M,SC (M = Zr, Hf, Nb) for [100] direction only. The metallic
behavior of Zr,SeC and M,SC (M = Zr, Hf, Nb) is reflected from
the starting of the spectra, started at zero photon energy owing to
no existence of the bandgap. For [100] directions, « increases with
the rise in photon energy, exhibits a peak in the range of 1.5-
1.9 eV, and then decreases slightly 3.3 to 3.6 eV, finally reaches
maximum values at 7 to 9 eV. The energy range wherein « attains
a value of greater than 10° cm ™" is the zone of strong absorption.
The strong absorption zone of Zr,SeC is 3.5 to 14 €V and 2.8 to
14.4 eV for [100] and [001], respectively. The absorption coefficient
of Zr,SeC is similar to that of M,SC (M = Zr, Hf, Nb) for [100]
direction. The photoconductivity (¢) of Zr,SeC is shown in Fig. 6(f),
in which the curve is noted to be started in association with the
photon incident, which implies the zero bandgap of the titled
compound. The ¢ is found to be similar to that of k(w) in peaks
position as ¢ is the results of photon absorption that is exhibited
by k(w). Strong anisotropy is also observed in the low energy region
that tends to be lowered in the high region.

Fig. 6(g) demonstrates the reflectivity (R) Zr,SeC that is
similar to that of M,SC (M = Zr, Hf, Nb) for [100] direction. The
static values of R are 0.81 and 0.5 for [100] and [001] directions,
respectively. The inset of Fig. 6(g) shows the R up to 6 eV in which
a horizontal redline is drawn at 0.44 (44%) of R to demonstrate the
suitability for use as a cover material to diminish solar heating. It
was suggested by Li et al.*** that the MAX phase with reflectivity
greater than 44% is suitable for use cover materials for the same
mentioned before. As seen, R decreases to lower than 0.44 at 1.7
and 2.8 eV for [001] and [100] directions, respectively. However, R
of Zr,SeC decreases to lower than 0.44 at slightly lower energy than
that of M,SC (M = Zr, Hf), but the lowest value (34%) is higher
than that of M,SC (M = Zr, Hf, Nb). R increases to a maximum of
0.91 at 10 eV, followed by another peak of 0.7 at 14.1 eV and finally
declined sharply towards zero, and the titled compound becomes
transparent for the incident light. The Zr,SeC shows reflective
behavior in the energy range of 7.5 to 14 eV in which the refractive
index is very low, and the reflectivity is greater than 70%. A similar
reflectivity is also shown by M,SC (M = Zr, Hf, Nb) MAX phases.
Fig. 6(h) shows the loss function of Zr,SeC that demonstrates how
fast electrons losing their energy when traversing the Zr,SeC
compound. A peak corresponding to the plasma frequency (wy) is
observed at the energy where ¢,(w) and ¢,(w) approaches zero from
below and above respectively, and reflectivity shows trailing edges.
The wy, of Zr,SeC are 14.7 and 15.1 eV for [001] and [100] directions,
respectively. The w;, of M,SC (M = Zr, Hf, Nb) MAX phases are

© 2021 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

slightly higher than that of Zr,SeC for [100] direction. This plasma
frequency defined a critical value at which the material changes its
behavior from metallic to transparent dielectric.

4. Conclusions

A comparative study of the structural, electronic, mechanical,
thermal, and optical properties of synthesized MAX phase Zr,SeC
with prior known MAX phase Zr,SC has been performed by density
functional theory for the first time. The obtained lattice constants,
volume, and atomic positions are noticed to be agreed with
experimental and theoretical results. The metallic behavior has
been confirmed from the band structure and density of states
(DOS). The less energy dispersion along the c¢-direction confirmed
the anisotropic behavior of electrical conductivity, and partial DOS
revealed the dominant role of Zr-d states to the electrical
conductivity. Shifting of the peak in the DOS owing to the
replacement of Se by S and difference in charge density mapping
(CDM) revealed that the strength of bonds present in Zr,SeC is
lower than the bonds in Zr,SC. The mechanical stability of the
synthesized phase is further confirmed by the stiffness constants.
The stiffness constants, elastic moduli, and hardness parameters
of Zr,SeC are found lower than those of Zr,SC. The lowering of the
parameters is explained based on the bond populations, and bond
lengths present within them in an association with the DOS and
CDM results. Both the directional projections of the elastic moduli
and anisotropy indices confirm the anisotropic behavior of Zr,SeC
and Zr,SC; Zr,SeC is more anisotropic than Zr,SC. The tempera-
ture and pressure-dependent properties exhibit the expected vari-
ation for the same. The value of ®p, Kin, Tm, and TEC of Zr,SeC
are lower than those of Zr,SC, C, of Zr,SeC reach classical DP limit
at a lower temperature than that of Zr,SC; is consistent with the
parameters used to characterize mechanical properties. A
comparison of the values of @p, Kiin, Trm, and TEC for Zr,SeC with
those of a promising TBC material (Y,Al,Oo)* reveals its possibility
to be used as TBC material. The real and imaginary parts of the
dielectric constant and the absorption and photoconductivity
curves agree with the band structure results and confirm the
metallic nature of Zr,SeC. The possible relevance of Zr,SeC for use
as shielding material to diminish solar heating has been
confirmed from the analysis of the studied optical properties. Like
electrical conductivity and mechanical properties, the optical
properties of Zr,SeC also exhibit anisotropic behavior.
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