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Disulfide—yne reaction: controlling the reactivity of
a surface by lightt
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In this paper we provide new insight into the disulfide—yne photo reaction, which is similar but different

from the well-known thiol-yne photoclick reaction. We show that, unlike the stable product generated

from thiol-yne chemistry, the vinyl dithioether structure obtained from disulfide—yne reaction exhibits
unique reactivity with thiols and disulfides, which can be used for surface photochemistry to fabricate
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reactive and dynamic surfaces. The possible mechanism for the unique reactivity of vinyl dithioether

structure was discussed. We demonstrated that disulfide—yne reactions are highly compatible with thiol-
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Introduction

Being first reported in the 1920s and reinvented in 2009," thiol-
yne photochemistry, one of the most studied “click” reactions,”
has been widely applied in the last decade."*® Upon UV irra-
diation, thiols irreversibly react with alkyne groups to form
stable ethyl dithioether structures (1) via a radical addition
process. The reaction ends in seconds with high conversion and
perfect spatial-temporal controllability.> Due to these advan-
tages, thiol-yne chemistry is recognized as a reliable and
powerful tool for chemists and material scientists, with
numerous applications ranging from drug delivery,*** hydrogel
fabrication'>** and polymer synthesis and modification,*'**¢*°
to surface functionalization and surface patterning.>*>

On the contrary, very little attention has been paid to its
sister chemistry, disulfide-yne photochemistry. Disulfides react
with alkynes under UV irradiation, forming a unique vinyl
dithioether structure (2) that has a very similar structure with
the product of thiol-yne chemistry (1). Although first reported
in 1960s,* this chemistry has almost been forgotten during the
past half century.>*

The absence of studies on disulfide-yne photochemistry can
be attributed to several reasons. On one hand, as reported by
Heiba et al., the disulfide-yne reaction leads to various products
when equimolar amounts of disulfides and alkynes are reacted.*
The reaction exhibit better conversion only when disulfides were
used with >2 eq. excess. On the other hand, no applications were
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yne chemistry, but offer the flexibility and dynamic nature that is lacking in thiol-yne chemistry, thus
could be a good replenishment for the existing thiol-yne toolbox.

found for the vinyl dithioether structures forming during the
disulfide-yne reaction and the only proposal for the potential
application was to synthesize sulfide containing drugs.*® There-
fore, compared to the superior thiol-yne chemistry, the disulfide-
yne photoreaction has been largely neglected.

In this paper, we first report the unique photo-induced
reversible/irreversible exchange reaction on the vinyl
dithioether structure. We show that, the double bond in the
structure 2 maintains its reactivity and can react with both
disulfides and thiols under UV irradiation (Scheme 1). The use
of thiol or disulfide as a reactant will lead to a different product
with distinct reactivity. We show that disulfide-yne photoreac-
tion could be applied as a novel surface chemistry, to construct
smart surfaces with dynamic features. Therefore, disulfide-yne
reaction could be considered as a good replenishment for the
existed thiol-yne toolbox for the construction of smart surfaces
and materials.

Results and discussion

The disulfide-yne photo reaction was first investigated on small
molecular level. To perform the reaction, 4-pentynoic acid (PA),
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Scheme 1 Thiol-yne and disulfide—yne reactions.
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dibutyl disulfide (DBD) and a photoinitiator 2,2-bimethoxy-2-
phenylacetophenone (DMPA) were added into a 20 mL glass
vial containing 4 mL THF, the solution was purged by argon and
irradiated under UV (365 nm, 5 mW cm ™ ?) for 1 h. The thiol-yne
reaction between 4-pentynoic acid and butanethiol (BT) was
also performed as a comparison (Fig. 1a). The products of the
reactions were analyzed by mass spectrometry, as shown in
Fig. 1b. The reaction between PA and BT exhibited high effi-
ciency, leading to a dithioether product (Fig. 1aii), 4,5-bis(bu-
tylthio)pentanoic acid (Fig. 1bi, m/z = 277.12 for negative ion).
Disulfide-yne reaction leads to a similar product but with vinyl
dithioether structure, 4,5-bis(butylthio)-4-pentenoic acid
(Fig. 1aiii), as confirmed by the mass spectrometry (Fig. 1bii, m/z
= 275.13 for negative ion) and NMR results (Fig. S1, from
purified product). However, the conversion was rather poor
when DBD and PA are in 1:1 ratio, as confirmed by the
complicated MS results (Fig. 1bii, less than 10% conversion by
column chromatography); when the amount of DBD increases,
the side reaction significantly decreased, as indicated by the
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much higher intensity at the peak of 275 (Fig. 1biii and iv) and
the higher calculated conversion after column chromatography
(40% and 55% for PA with 2 eq. and 4 eq. DBD, respectively).
When the amount of DBD reaches 16 eq., clear peak at m/z =
277 is observed, this is probably because in this case, DBD is 16
times excess, thus the little impurity (probably BT) in the
chemicals will lead to obvious amount of side product. Reaction
between PA and other types of disulfides (bis(carboxyethyl)
disulfide, dihydroxyethyl disulfide, phenyl disulfide) were also
investigated, the mass spectrometry analysis on the UV-exposed
reaction mixture clearly show the formation of vinyl dithiolether
structures with different functional groups (Fig. S27). Disulfide-
yne reaction in different solvents was also tested, the reaction
was performed using ethanol, toluene and water as a solvent.
Mass spectra of the obtained mixtures shown clear peaks of the
products and few side products were obtained (Fig. S31).

An interesting question for the disulfide-yne reaction is that
whether the C-C double bond on the resulted vinyl dithioether
structure keeps reactivity, and if it keeps the reactivity, why does
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Fig.1 Mass spectroscopy measurement of the disulfide—yne photo reaction. (a) Scheme representing the thiol-yne reaction and disulfide—yne
photo reaction. (b) Mass spectrum of the resulted mixture of thiol-yne reaction, and disulfide—yne reaction (with different amount of DBD). PA:

4-pentynoic acid; BT: butanethiol; DBD: dibutyl disulfide.
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the reaction only lead to 1-step addition product. Indeed, as we
check the mass spectrometry results, no peak could be found
for the 2-step addition products (Fig. S21). A similar situation
could be found on allyl disulfides, which is known to undergo
addition-fragmentation chain transfer (AFCT) reaction, leading
to the maintenance of double bond while exhibiting unique
dynamic nature (Fig. S41).** We assume that vinyl dithioether
structure may exhibit similar reactivity as allyl disulfide struc-
ture. To confirm our hypothesis, 4,5-bis(butylthio)pent-4-enoic
acid was purified from the obtained mixture of PA-DBD reac-
tion and then reacted with 4 eq. of mercaptoethanol or
hydroxyethyl disulfide under UV (Fig. 2a). Mass spectrometry
analysis was performed on the resulted mixtures. As we ex-
pected, further reaction indeed occurred on the vinyl
dithioether structures, indicating that the double bond on the
molecule still keeps the reactivity. Interestingly, we found that
the addition of thiol or disulfide would lead to different results.
As shown in Fig. 2b, after UV irradiation in both samples, the
peak of 4,5-bis(butylthio)pent-4-enoic acid (m/z = 275 for
negative ion) completely disappeared, indicating that further
reaction occurred on this molecule. When mercaptoethanol was
used in the further reaction, the reaction leads to 5-(butylthio)-
4-(2-hydroxyethylthio)pentanoic acid, a saturated product with
one butyl sulfide group substituted by hydroxyethyl sulfide
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group. On the contrary, when hydroxyethyl disulfide was added,
the reaction led to 4,5-bis(2-hydroxyethylthio)pent-4-enoic acid
(Fig. 2c), with a retained C-C double bond but complete
substitution of butyl sulfide group by hydroxyethyl sulfide
group. This indicates that vinyl dithioether structure exhibits
reactivity and undergo different reactions when reacting with
thiols or disulfides.

The proposed mechanism for the formation of vinyl
dithioethers in disulfide-yne reaction is shown in Fig. 2d. When
an alkyne group (1) is exposed to a thiyl radical (formed by thiols
or disulfides under UV irradiation), the radical will add to the
C-C triple bond to form a vinyl dithioether radical (2). In
a typical thiol-yne reaction, this radical then absorbs
a hydrogen from mercapto group and becomes a vinyl sulfide,
which can further react with a thiyl radical to form ethyl
disulfide products.'” In disulfide-yne reaction, however, the
reaction solution does not contain mercapto groups and the
vinyl dithioether radical can only be coupled with another thiyl
radical to form vinyl dithioethers (3). This vinyl dithioether can
react with a thiyl radical to form an ethyl trisulfide radical (4),
however, as in the final product the double bond was retained,
in this process the ethyl trisulfide radical probably do not
exhibit further reactivity, which is similar as allyl disulfide
radical.** To obtained a stable product, a thiyl radical will then
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(@) Vinyl dithioether structure keeps further reactivity and can react with thiols or disulfides to results different products. (b) Mass

spectrometry result of the reaction mixture ii in (a). The peak at 275 disappeared and peak at 265 appeared, indicating that vinyl dithioethers
undergo further reactions with thiols (peak 281 refers to the oxidation product of peak 265). (c) Mass spectrometry result of the reaction mixture
iii in (a). The peak at 275 disappeared and peak at 251 appeared, indicating that vinyl dithioethers undergo further reactions with disulfides (peak
267 refers to the oxidation product of peak 251). (d) Proposed mechanism for the disulfide—yne reaction. (e) Proposed mechanism for the

reaction of vinyl dithioether with disulfides or thiols, respectively.
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leave from the ethyl trisulfide radical, leading to vinyl
dithioether again (3). Therefore, vinyl dithioethers will be ob-
tained by disulfide-yne reaction in spite of the large excess of
disulfide molecules.

When the vinyl dithioether (1) is reacted with a thiyl radical
from a different disulfide (R,-S"), as shown in Fig. 2e, an ethyl
trisulfide radical (2) without further reactivity would be formed.
This ethyl trisulfide radical will then release a thiyl radical to go
back to vinyl dithioether. However, in this process, the released
thiyl radical can either be the newly added one (R,-S°) or the
former one (R;-S’), leading to the possible substitution of the
sulfide group on vinyl dithioethers. This addition-release
process is dynamic and reversible under UV irradiation, thus
a new vinyl dithioether (5) with both sulfide chains (R;-S-)
substituted by new substituents (R,-S-) would be obtained
when the new disulfide is excess.

When thiols were used in the secondary reaction, however,
the mechanism of the reaction alters. As shown Fig. 2e, upon UV
irradiation, vinyl dithioether (1) reacts with the thiyl radical R,-
S’ to form an ethyl trisulfide radical (2), which can release a thiyl
radical to form an intermediate radical (3). The intermediate
radical has the opportunity to absorb a hydrogen from the
surrounded thiol molecules, to generate a new radical that
cannot go back to vinyl dithioether (6). The resulting radicals
are still unable to couple with a thiyl radical, thus the only
possible reaction for the radical is to absorb another hydrogen,
leading to a stable ethyl dithioether (7) with one sulfide group
being substituted (when the thiol is in excess). Therefore, the
use of thiol or disulfide to react with vinyl dithioether will
determine whether the reaction is irreversible (with thiols) or
reversible (with disulfides).

To investigate the potential reactivity of vinyl dithioether
structure with other groups, 4 eq. butanol, acetic acid and
octylamine were allowed to react with vinyl dithioether under
UV for 1 h, and the products were analyzed by mass spectrom-
etry. As shown in Fig. S5, it's clear that no addition or exchange
products can be found, indicating that the vinyl dithioether
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structure is quite stable to these groups. This is beneficial since
those groups are commonly existed in bioenvironment, the
stability of vinyl dithioether structure to such groups avoid the
possible disturb when disulfide-yne reaction is used in
bioapplications.

Due to its distinctive property, disulfide-yne reaction may be
employed to generate surfaces with unique reactivity. We
investigated the performance of this reaction as a surface
chemistry. An alkyne surface was generated on a porous HEMA-
EDMA surface as reported previously (Fig. 3a).* to perform the
functionalization, 50 uL. mL~' DBD in toluene (with 2.5 mg
mL ™' DMPA) was added onto the surface, then the surface was
covered with a quartz glass and irradiated under UV for 5 min,
resulting in a DBD modified surface (DBD surface). The same
process was also applied by using butanethiol (50 uL mL ™" in
toluene) as a comparison (BT surface, generated with thiol-yne
chemistry). As shown in Fig. 3a, the reaction with both buta-
nethiol (BT surface) and dibutyldisulfide (DBD surface) showed
an increase in static WCA from 100° to 130°, confirming the
successful attachment of hydrophobic butyl sulfide groups onto
the alkyne surface. Disulfides with other functional groups
could also be used to modify the alkyne surface, leading to
corresponding WCA change after modification. To further
characterize the surface, we performed ToF-SIMS measurement
on alkyne, BT and DBD surfaces. As shown in Fig. 3b, the alkyne
surface exhibits a strong peak at m/z = 97, referring to the anion
of the attached 4-pentynioc acetate (Fig. S6t). After functional-
ization by BT or DBD, the peak at m/z = 97 disappeared and
strong peaks at m/z = 89 appeared (butyl sulfide anion), indi-
cating the consumption of alkyne groups and the attachment of
butyl sulfide groups on the surface. Clear peak at 277 is
observed on BT surface, which comes from the thiol-yne addi-
tion product (Fig. S61), while such peak is not observed on DBD
surface. Thus, the attachment of butyl sulfide groups to the
DBD surface should follow a different path. The peak at 275,
referring to the product of disulfide-yne reaction, is not
observed on the DBD surface, this might be because of the low
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Fig. 3 Disulfide—yne reaction on surface. (a) Direct functionalization of an alkyne surface with disulfides leads to different surfaces. (b) ToF-SIMS
results of (i) alkyne surface, (i) alkyne—DBD surface and (iii) alkyne—BT surface.
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Fig. 4 Reactivity of surfaces generated via thiol-yne and disulfide—yne reaction. (a) Reactivity test on the obtained surface using WCA test. BT:
butyl thiol; CED: bis(carboxyethyl) disulfide; DBD: dibutyl disulfide; MPA: mercaptopropionic acid. (b) ToF-SIMS test on a patterned vinyl

dithioether surface. After UV exposure, the hydroxyethyl sulfide anion on

irradiated area decreased, and the butyl sulfide anion on the same area

increased, indicating that exchange of sulfide chains were occurred during the secondary modification. (c) Co-functionalization an alkyne

surface with thiol-yne chemistry and disulfide—yne reaction, resulting a

stability of the vinyl dithioether group under the condition of
ToF-SIMS experiment.

The kinetics of the disulfide-yne surface photochemistry was
investigated by modifying the alkyne surface with DBD, HED or
CED, and measuring the WCA change of the surface during
modification. As shown in Fig. S7, the kinetics of the reaction
is very fast, in general 180 s is enough for the modification
(Fig. S8t). The photo-controlled nature of the reaction also
allows the modification to be patterned with a photomask
(Fig. S91).

We then examine the reactivity of the obtained surfaces. As
shown in Fig. 4a, thiol-yne reaction on alkyne surface generates
a stable BT surface without further reactivity, thus the WCA of
the surface is unchangeable with further modification (Fig. 4ai).
On the contrary, disulfide-yne reaction generates a reactive
DBD surface (Fig. 4aii), which is reactive to thiols and disulfides,
as confirmed by the WCA change of the surface after further
modification. When thiol is used to functionalize DBD surface,
the reactivity of the surface is inhibited due to the elimination
of the vinyl dithioether structure (Fig. 4aiii). When disulfide is
used, the obtained surface is still reactive due to the remaining
vinyl dithioether structure after exchange (Fig. 4aiv). Thus the
selection of thiol or disulfide can determine the further reac-
tivity of the surface. The exchange process is also confirmed by
a ToF-SIMS test on a patterned surface, where HED modified
alkyne surface was secondary modified with DBD under
a photomask. The result (Fig. 4b) clear shows the significant
decrease of hydroxyethyl sulfide anion and the increase of butyl

© 2021 The Author(s). Published by the Royal Society of Chemistry

surface with hidden reactivity at selected area.

sulfide anion on the exposed area, describing that an exchange
process was occurred between hydroxyethyl sulfide group and
butyl sulfide group, which corresponds to the proposed mech-
anism for the dynamic exchange on vinyl dithioether structure.

Combining the thiol-yne and disulfide-yne reaction,
patterned surface with hidden reactivity can be generated. As
shown in Fig. 4c, a patterned surface was generated by
sequently modifying alkyne surface with mercapto ethanol and
hydroxyl ethyl disulfide under a photomask (Fig. S9t1). A
hydrophilic surface was obtained, when immersing in water,
the surface was completely wetted (Fig. 4c, left). After
immersing in DBD solution and flood irradiated, butyl sulfide
chains were attached on the exposed area, making the area
hydrophobic and none wettable in water (Fig. 4c, right). This
leads to the reveal of the “hidden pattern”. This makes the
disulfide-yne reaction a very good replenishment for the thiol-
yne chemistry for the construction of smart surfaces and
materials.

Conclusions

In conclusion we proposed a new insight into the disulfide-yne
photochemistry, which is similar but also different from the
well-known thiol-yne photoclick chemistry. We show the vinyl
dithioether structures obtained from disulfide-yne reaction
exhibit unique dynamic properties that can further react with
thiols and disulfides. The choose of thiols or disulfides for
further reaction can selectively eliminate or keep the C-C
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double bond on vinyl dithioether, allowing the control of the
reactivity of the product. Disulfide-yne photochemistry could
be applied on surface, resulting a surface with similar proper-
ties as the surface produced by thiol-yne chemistry, but with
hidden reactivity. Further modification can be performed on
this surface using thiols or disulfides. Disulfide-yne reaction is
highly compatible and complemental to the existed thiol-yne
toolbox, offering the flexibility and reversibility that is lacked in
thiol-yne chemistry. We expect a wide application for this
chemistry and look forward for further investigations in this
field.
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